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HMGB1 promotes HCC progression partly by downregulating
p21 via ERK/c-Myc pathway and upregulating MMP-2
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Abstract High-mobility group box 1 (HMGB1) was found to
be over-expressed in many kinds of human cancer, which
binds with several receptors and activates RAGE-Ras-MAPK,
Toll-like receptors, NF-κB, and Src family kinase signaling
pathways and plays a crucial role in tumorigenesis and cancer
progression. However, the function and mechanism of
HMGB1 in hepatocellular carcinoma (HCC) remain unclear.
The aim of this study was to investigate the effect of HMGB1
on HCC progression and explore new molecular mechanism.
HMGB1 transient knockdown, stable knockdown, and re-
expression were performed by transfection with specific
siRNA, shRNA, or expression vector in HCCLM3 cells. Re-
sults showed that transient knockdown HMGB1 prevented
cell proliferation, promoted apoptosis, induced S phase arrest,
and inhibited migration and invasion in vitro, and stable
knockdown HMGB1 inhibited xenograft growth in Balb/c
athymic mice in vivo. Molecular mechanism investigation
revealed that knockdown HMGB1 significantly reduced the
activation ofMAPKs, including ERK1/2, p38, SAPK/JNK, as
well as MAPKKs (MEK1/2, SEK1) and its substrates (c-Jun,
c-Myc); downregulated NF-κB/p65 expression and phosphor-
ylation level; decreased MMP-2 expression and activity; and
upregulated p21 expression. Interestingly, c-Myc was firstly

found to be involved in the promoting function of HMGB1 on
HCC progression, which provided a novel clue for the inhib-
itory effect of HMGB1 on p21 expression by a p53-
independent pathway. Collectively, these findings indicated
that HMGB1 promoted HCC progression partly by enhancing
the ERK1/2 and NF-κB pathways, upregulating MMP-2, and
downregulating p21 via an ERK/c-Myc pathway.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common
and aggressive malignant tumors worldwide [1]. But the
mechanisms of tumorigenesis and cancer progression of
HCC are still unclear [2]. Therefore, to identify relevant genes
and explore their function and mechanisms are crucial to the
prevention and treatment of HCC. High-mobility group box 1
(HMGB1) is a non-histone chromosomal protein implicated
in diverse biological processes, including DNA replication,
extracellular signaling [3, 4], nucleosome stabilization, and
transcriptional facilitation [5]. HMGB1 could also be a target
for inflammation control [6].

Studies have shown that HMGB1 is over-expressed in
many kinds of cancer tissues, including breast [7], lung [8],
colon [9], nasopharyngeal [10], prostate [11], hepatocellular
carcinoma [12], and melanoma [13]. HMGB1 was located
both in mucleus and cytosol, also secreted into extracellular
space [14]. Nuclear HMGB1 binds to DNA and interacts with
various transcription factors, including the NF-κB members,
p53, and TATA-binding proteins [15–17]. The cytoplasmic
HMGB1 was found to bind with a number of molecules relat-
ed to cancer progression, including factors involvement in cell
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cycle progression, cell proliferation, and anti-apoptosis [18,
19].

The extracellular HMGB1 can bind with high affinity to
several receptors. It is well documented that HMGB1 binds to
the receptor for advanced glycation end products (RAGE) and
activates the Ras-MAPK pathway, which results in expression
of MMP-2 and MMP-9 [20–22]. Recent evidences revealed
that HMGB1 bound to Toll-like receptor (TLR)-2, TLR-4,
TLR-9, CD24, and CXCR4, leading to activation of multiple
signaling pathways, including NF-κB, ERK, p38 MAPK, and
Src family kinases [23–26]. Many studies suggested that
HMGB1 interacts with RAGE mainly in tumor cells but not
in normal tissues [27]. Blockade of HMGB1-RAGE-MAPK
signaling has been demonstrated to suppress tumor growth
and metastasis [28]. HMGB1-specific silencing significantly
decreased gastric cancer cellMGC-803 proliferation by reduc-
ing cyclin D1 expression, sensitized cells to induce apoptosis,
and significantly reduced cellular metastatic ability andMMP-
9 expression [29]. The serum HMGB1 level in HCC is signif-
icantly higher than that in liver cirrhosis, chronic hepatitis, and
healthy status [30]. HMGB1 released from hypoxic HCC cells
could activate TLR-4 and RAGE signaling pathways, induce
inflammation, and promote cancer invasion and metastasis
[31]. Knockdown of HMGB1 in HCCLM3 cell inhibited cell
proliferation, migration, and invasion as previously reported
by other researchers [32]. However, the function and mecha-
nism of HMGB1 in HCC remains unclear. HCCLM3 is a
human hepatocellular carcinoma (HCC) cell line with a highly
metastatic potential [4]. In the present study, the effects of
HMGB1 on HCCLM3 cell growth and invasion were inves-
tigated, and the mechanisms involved were further examined.

Materials and methods

Cell line and animals

HCCLM3 cell was derived from HCC cell lines (MHCC97)
with high metastatic potential and provided by Liver Cancer
Institute and Zhong Shan Hospital of Fudan University. Nude
mice (male BALB/c nu/nu, 4-week-old) were obtained from
Shanghai SLAC Laboratory Animal Co., Ltd., Chinese Acad-
emy of Sciences, and maintained in accordance with Guide-
lines for the Care and Use of Laboratory Animals, as pub-
lished by the National Academy Press.

Cell culture, transfection, and real-time PCR analysis

HCCLM3 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Thermo Scientific, USA) supplemented
with 10 % fetal bovine serum (FBS, Biochrom, Germany)
and maintained at 37 °C with 5 % CO2. Small interfering
RNA (siRNA) oligonucleotides against HMGB1 and the

scrambled sequences were synthesized by RiboBio Company
(Guangzhou, China). The following siRNA sequences were
used: siHMGB1-1, 5 ′-GGAGGAAGAUGAAGAA
GAUdTdT-3 ′ (sense) ; s iHMGB1-2, 5 ′ -GGACAA
GGCCCGUUAUGAAdTdT-3′ (sense). HMGB1 was
knocked down by specific siRNA (50 nM) transfections using
Lipofectamine 2000 (Invitrogen, USA) according to the man-
ufacturer’s protocol. At 48 h after transfection, cells were col-
lected for RNA and protein extraction. Total RNAwas extract-
ed using TransZol UP (TransGen Biotech, China). Reverse
transcription was performed using PrimeScript RT reagent
Kit (TaKaRa, Japan). Quantitative real-time PCR analyses
were performed by Applied Biosystems (7500 system) using
SYBR Premix Ex Taq™ (TaKaRa, Japan) according to the
manufacturer’s instructions. β-Actin gene was used as the
internal control. The primers were as follows: HMGB1, 5′-
TGCTCAGAGAGGTGGAAGACCA-3′ (forward) and 5′-
TTGGGCGATACTCAGAGCAGAA-3′ (reverse); β-AC-
TIN, 5′-GGACTTCGAGCAAGAGATGG-3′ (forward) and
5′-AGCACTGTGTTGGCGTACAG-3′ (reverse). The rela-
tive expression of HMGB1 was calculated using 2−ΔΔCt

method. Expression analysis was performed in triplicate for
each sample.

Western blot analysis

The whole-cell extracts were prepared using RIPA lysis buffer
(Beyotime, China) with phenylmethanesulfonyl fluoride and
protease inhibitor cocktail (Roche, USA) and subjected to
10 % sod ium dodecy l su l f a t e - po l y a c ry l am ide
gelelectrophoresis (SDS-PAGE), with 30 μg of load per lane.
Then, the membranes adhered with proteins were incubated
with primary antibodies (Supplemental Table 1) overnight at
4 °C and probed with the corresponding horseradish
peroxidase-conjugated secondary antibodies (KPL, USA).
Chemiluminescence detection of membranes was conducted
with ECL detection system (GE, RPN2132) and imaged under
Las4000 Luminescent Imaging Analyzer (BioRad). Densi-
tometry was performed using ImageJ software. The value of
density ratio (target protein/β-actin) represented the relative
level of protein expression. For the western blot analysis of
xenograft tumors, tissue samples were initially homogenized
and lysed in RIPA lysis buffer at 4 °C for 1 h, then centrifuged
at 15,000 rpm for 15 min at 4 °C. And the supernatants were
subjected to western blot analysis. The experiment was per-
formed in triplicate.

HCCLM3 cell proliferation assays

To determine the effect of HMGB1 on HCCLM3 cell growth
in vitro, cells were plated at a density of 2.5×103 cells/well in
96-well plates. After 24-h culture, siRNAs specific to
HMGB1 and negative control were transfected into the cells
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at a density of 50 nM/well and six parallel wells for each
siRNA. At the followed 1, 2, 3, 4, and 5 days post-transfec-
tion, cell viability was assessed using cell counting kit-8
(CCK-8, Dojindo, Japan) according to the manufacturer’ s
instruction; then, the absorbance was read at 450 nm using
microplate reader (BioTek, USA). The experiment was per-
formed in triplicate.

Analysis of cell cycle by flow cytometry

To determine the effect of HMGB1 on cell cycle, HCCLM3
cells were plated in 24-well plates at a density of 7.5×
104 cells/well. After 24-h culture, siRNAs specific to HMGB1
and negative controls were transfected into the cells at the
density of 50nM/well and three parallel wells for each siRNA.
After 72-h culture, the cells were collected and centrifuged at
200×g for 5 min. Cell pellets were re-suspended in 500 μL of
ice-cold 70 % ethanol and fixed for at least 24 h at −20 °C.
Then, the fixed cells were centrifuged at 500×g for 5 min and
re-suspended in phosphate buffered saline (PBS) containing
ribonuclease A and stained with propidium iodide (PI) for
30 min at room temperature. The percentage of cells in G1,
S, and G2/M phases of the cell cycle was analyzed by flow
cytometry.

Analysis of apoptosis by flow cytometry

To determine the effect of HMGB1 on HCCLM3 cell apopto-
sis, we knocked down HMGB1 by specific siRNA transfec-
tions as described above. At 48 h after transfection, cells were
collected and analyzed using Annexin V-FITC apoptosis de-
tection kit (BioVision, USA). In brief, cells were washed twice
and re-suspended at the density of 5×105 cells/100 μL in
binding buffer with 5 μL of PI and 5 μL of Annexin V-FITC.
After incubation at room temperature for 5 min in dark, cells
were subjected to flow cytometry for analysis of apoptosis.
The cells only stained with Annexin V-FITC (FL1) were in the
early stage of apoptosis; those positive for both Annexin V-
FITC and PI (FL2) were in the stage of late apoptosis. Exper-
iments were performed in triplicate.

Analysis of cell migration and invasion ability

Migration assay was performed in a 24-well transwell chamber
(BD, USA) containing a polycarbonate membrane filter (pore
size, 8 μm) without Matrigel coating. Approximately 8×
104 cells/insert were suspended in DMEM without FBS, and
the medium supplemented with 20 % FBS was added to the
bottom chamber. After 48 h, the transwell chambers were fixed
with 4% paraformaldehyde and stained with crystal violet. The
invasion assay was conducted in a similar manner but with
45 μg/50 μLMatrigel precoating on the filters and culture time
for 72 h. The number of trans-membrane cells was counted

under randomly selected five fields per well using microscope.
The experiment was performed in triplicate.

Construction of stable cell lines

HMGB1 was stably suppressed by the vector-based transfec-
tion of a specific shRNA (pMKO.1-shRNA) in HCCLM3
cell. Specific short hairpin RNA (shRNA) against HMGB1
was cloned into pMKO.1-puro retroviral vector to facilitate
knockdown of HMGB1 expression. The shRNA target se-
quences (shHMGB) and negative control sequences (shNC)
were listed as follows: shHMGB1-1, 5′-CCCAGATG
CTTCAGTCAACTT-3 ′ (sense); shHMGB1-2, 5 ′-
GGAGGAAGATGAAGAAGAT-3′ (sense); shNC1, 5′-
CCTAAGGTTAAGTCGCCCTCG-3′ (sense); shNC2, 5′-
TTCTCCGAACGTGTCACGT-3′ (sense). HCCLM3 cells
were infected with retrovirus particles containing different
shRNA sequences packaged from 293T cells, respectively,
and the resistant cells were screened with puromycin. The
HMGB1 stable knockdown cells were confirmed by testing
HMGB1 expression through RT-qPCR and western blot. Fur-
thermore, HMGB1 was re-expressed by the vector-based
transfection of full-length HMGB1 (pCDH-HMGB1) in its
stable knockdown cells. Full-length human HMGB1 was am-
plified using PCR and cloned into pCDH-CMV-MCS-EF1-
copGFP lentiviral vector between EcoRI and NotI sites. The
primers for PCR are 5 ′-GTCCGAATTCACCACCA
TGGGCAAAGGAGATCCTAA-3′ (forward) and 5 ′-
CGCCGCGGCCGCTTATTCATCATCATCATCTT-3′ (re-
verse). The constructed vectors were verified by sequencing.
Lentiviral partials containing HMGB1 obtained from 293T
package cells were added to HMGB1 stable knockdown cells.
Culturing for several days, a majority of cells were observed
to emit green fluorescence under fluorescence microscope for
GFP expression (Supplementary Figure S1), then subjected to
flow cytometry for selecting the cells with green fluorescence.
The re-expression of HMGB1 in the stable knockdown cells
was analyzed by western blot.

Tumor formation assay in nude mice

To investigate the effect of HMGB1 on HCC growth in vivo,
we generated xenograft subcutaneous tumors in nude mice.
The mice were randomly divided into four groups with five
differently markedmice in each group. HMGB1 stable knock-
down cell lines (shHMGB1-1 and shHMGB1-2) and control
cell lines (shNC1 and shNC2) were respectively injected into
nude mice. In brief, 5×106 HCCLM3 cells in 200 μL of PBS
were subcutaneously injected into the right flank of mice by
using a 1-mL syringe needle. After palpable tumors were
formed, the tumor sizes were measured every 5 days (tumor
volume=LW2/2 and plotted in mm3, where L is the length and
W is the width, i.e., the longest and shortest perpendicular
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diameters of tumors, respectively). Tumor weights were de-
termined at the 35th day, and the tumor growth curve was
drawn. HMGB1 expression level in subcutaneous tumor was
detected by western blot analysis.

MMP-2 activity assay by gel zymography

Approximately 20 μg protein of each sample was loaded into
different lanes of 10 % SDS-PAGE gel containing 1 mg/mL
gelatin. After electrophoresis, the gel was washed twice with
elution buffer (2.5 % Triton X-100, 50 mmol/L Tris-HCL,
5 mmol/L CaCl2, and 1 μmol/L ZnCl2; pH 7.6) for 1 h at
room temperature to remove SDS. Then, the gel was washed
twice with washing buffer (50 mmol/L Tris-HCl, 5 mmol/L
CaCl2, and 1 μmol/L ZnCl2; pH 7.6) for 40min and incubated
at 37 °C in the reaction buffer (50 mmol/LTris-HCL, 5 mmol/
L CaCl2, 1 μmol/L ZnCl2, and 0.02 % Brij-35; pH 7.6) for
48 h. After the gel was stained with 0.05 % Coomassie bril-
liant blue, MMP activity was identified as a clear band against
blue background.

Statistical analysis

Values were expressed as mean±SD. Student’s t test was used
to determine significant difference between compared groups.
P<0.05 indicated significant difference.

Results

Downregulation of HMGB1 inhibits HCCLM3 cell
proliferation

HMGB1 knockdown was performed by transfecting specific
HMGB1-siRNAs into HCCLM3 cells. The mRNA and pro-
tein expression level of HMGB1 evaluated by real-time PCR
and western blot were significantly reduced in HCCLM3 cells
transfected with siHMGB1-1/2 compared with the siCtrl-1/2
(Fig. 1a, b). To determine whether or not HMGB1 knockdown
elicits an inhibitory effect on HCCLM3 cell proliferation, we
analyzed cell growth by conducting the CCK-8 assay. The
growth of cells with HMGB1 knockdown was significantly
inhibited compared with that of controls (Fig. 1c). This result
suggested that HMGB1 would play a key role in cell
proliferation.

HMGB1 knockdown inhibited cell proliferation
and induced S phase arrest

We further examined the effect of HMGB1 knockdown on
cell cycle and cell apoptosis using flow cytometry. And the
results showed that HMGB1 knockdown induced S phase
arrest (Fig. 1d) and promoted cell apoptosis (Fig. 2a, b) in

HCCLM3 cells. These results indicated that HMGB1 exhib-
ited an important function in the regulation of S phase cell
cycle transition and cell apoptosis.

HMGB1 knockdown inhibits HCCLM3 cell migration
and invasion

Transwell assay results revealed that cell migratory and inva-
sive ability were lower in HMGB1-knocked down cells com-
pared with those in control ones (Fig. 2c, d), which suggested
that HMGB1 may promote cell migration and invasion
in vitro.

Stable HMGB1 knockdown inhibits the growth
of xenograft tumor in vivo

The shRNAs specific of HMGB1 or negative control were
cloned into pMKO.1, and two stable HMGB1-knocked down
cell lines (shHMGB1-1 and shHMGB1-2) and two control
cell lines (shNC1 and shNC2) were constructed. Western blot
assay demonstrated that HMGB1 expression was suppressed
in stable knockdown cells as showed in Fig. 3a. To investigate
the biological effect of HMGB1 on HCC growth in vivo, we
generated xenograft subcutaneous tumors in nude mice. As
expected, the mice injected with HMGB1 knockdown cells
(shHMGB1-1 and shHMGB1-2) developed smaller solid tu-
mors than those injected with the control cells (shNC1 and
shNC2; Fig. 3b). The stable knockdown of HMGB1 in
HCCLM3 cells resulted in slower growth of xenograft in
Balb/c athymic mice in tumor size (Fig. 3c) and weight
(Fig. 3d) than those of the control ones (Supplemental
Table 2). The inhibitory role of shHMGB1-1 was more effec-
tive than that of shHMGB1-2 which was consistent with the
RNA interference efficiency of shHMGB1-1 stronger than
that of shHMGB1-2 (Fig. 3a). Western blot analysis revealed
that HMGB1 expression was significantly suppressed in the
stable knocked down cells (Fig. 3a) and subcutaneous tumor
generated from these cells (Fig. 3e), which is consistent with
the effect in vitro. These results demonstrated that HMGB1 is
a critical modulator of the growth of xenograft tumors in nude
mice.

Effect of HMGB1 knockdown on MAPKs and NF-κB
expression and phosphorylation

To further investigate the downstream molecules of HMGB1,
we performedwestern blot to examine the expression and phos-
phorylation of proteins in several important signaling path-
ways, e.g., MAPKs and NF-κB/p65. HMGB1 knockdown re-
duced the activation of MAPKs, including ERK1/2, p38, and
SAPK/JNK, as well as MAPKKs (MEK1/2, SEK1) and sub-
strates (c-Jun, c-Myc). HMGB1 knockdown not only downreg-
ulated the expression of NF-κB/p65 but also decreased its
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Fig. 1 Knockdown of HMGB1
inhibited HCCLM3 cell
proliferation and induced S phase
arrest. HMGB1 knockdown in
HCCLM3 cells was performed by
transfection of siRNA specific
targeting at HMGB1 (siHMGB1)
or non-targeting negative control
(siCtrl). a, b The interference
effect was detected by real-time
PCR for mRNA and western blot
for protein expression. c The cell
viability was measured by cell
counting kit-8 assay at 1, 2, 3, 4,
and 5 days after transfection, and
cell growth was analyzed between
cells with or without HMGB1
knockdown. d Cell cycle was
tested by flow cytometry analysis.
All statistical analysis was based
on three independent
experiments. *vs. siCtrl-1,
P<0.05; **vs. siCtrl-1, P<0.01;
†vs. siCtrl-2, P<0.05; ††vs. siCtrl-
2, P<0.01

Fig. 2 Knockdown of HMGB1 promoted HCCLM3 cell apoptosis and
inhibited cell migration and invasion. a Cell apoptosis was tested by flow
cytometry analysis using Annexin V/PI double staining method. b Cell
apoptosis analysis was carried out using flow cytometry in cells with
HMGB1 knockdown or control ones. c Trans-membrane cells was
stained by crystal violet and observed under microscope (×100). d Cell

migration activity was determined by counting trans-membrane cells in
the inserts without Matrigel precoating, and cell invasion was measured
by the same way but with Matrigel precoating inserts. The experiments
were performed in triplicate. *vs. siCtrl-1, P<0.05; **vs. siCtrl-1,
P<0.01; †vs. siCtrl-2, P<0.05; ††vs. siCtrl-2, P<0.01
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phosphorylation level at Ser536. By contrast, re-expression of
HMGB1 in the knocked down cells enhanced the phosphory-
lation levels of MEK1, ERK1/2, p38, c-Myc and NF-κB/p65,
except SEK1, SAPK/JNK, and c-Jun (Fig. 4a, b).

HMGB1 stable knockdown upregulates p21 and decreases
MMP-2 activity

HMGB1 knockdown results in S phase arrest and suppression
of cell migration and invasion, so we investigated the expres-
sion of several key cell cycle inhibitors and MMP-2 expres-
sion and activity affected by HMGB1. The results showed that
p21 was upregulated in stable HMGB1 knockdown
HCCLM3 cells but downregulated in HMGB1 re-expressed
cells (Fig. 5a, b). By comparison, the expression and phos-
phorylation levels of p53 and p27 were not affected by
HMGB1. Furthermore, zymography assay showed that the

MMP-2 activity in HCCLM3 cells was decreased as HMGB1
was knocked down, but this activity was enhanced as
HMGB1 was re-expressed in stable knockdown cells
(Fig. 5c). Each lane was loaded with the same amount of
protein sample as verified by SDS-PAGE and Coomassie blue
staining (Fig. 5c). Western blot data confirmed the downreg-
ulation of MMP-2 in stable HMGB1 knockdown cells
(Fig. 5a, b).

Discussion

In this study, the effect of HMGB1 on HCCLM3 cell prolif-
eration and invasion as well as the mechanisms involved was
determined. We found that knockdown of HMGB1 in
HCCLM3 cells by siRNA resulted in growth inhibition, apo-
ptosis improvement, and S phase cell cycle arrest. This

Fig. 3 Stable knockdown of HMGB1 suppressed tumor growth in vivo.
The effect of HMGB1 on HCC growth in vivo was performed by
xenograft subcutaneous injection of stable HMGB1 knockdown cells or
control ones in nude mice. Size and weight of subcutaneous tumors were
measured after implantation, and HMGB1 expression in subcutaneous
tumors was detected by western blot. a The expression of HMGB1 in
cells with shNC or shHMGB1 was detected by western blot. b The
pictures of nude mice and subcutaneous tumors were taken at the 35th
day after implantation. c The size of subcutaneous tumors was measured

every 5 days after implantation, and growth curve was draw after 35 days.
dWeight of the subcutaneous tumors was measured at the 35th day after
implantation. e HMGB1 expression in subcutaneous tumors from
experimental and control groups was detected by western blot. shNC1/2
HCCLM3 stable cell lines with control shRNA used as control group,
shHMGB1-1/2 HCCLM3 cell stable knockdown HMGB1 used as
experimental group. Statistical significance was determined by two-
tailed Student’s t test with SPSS software. *vs. shNC1, P<0.05; **vs.
shNC1, P<0.01; †vs. shNC2, P<0.05; ††vs. shNC2, P<0.01
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Fig. 4 Stable knockdown and re-
expression of HMGB1 affected
protein expression and
phosphorylation levels of
MAPKs and NF-κB. HMGB1 re-
expression was performed by
transfection of pCDH-HMGB1 in
the HMGB1 stable knockdown
HCCLM3 cell line, and protein
expression was detected by
western blot. All experiments
were performed in triplicate. a
Protein expression and
phosphorylation levels of
members of MAPKs and NF-κB
signaling pathways. b
Densitometric analysis for protein
bands relative to β-ACTIN using
ImageJ software. **vs shNC1 or
HMGB1 re-expression, P<0.01

Fig. 5 Stable knockdown and re-
expression of HMGB1 affected
p21 expression and MMP2
expression and activity. a The
expression of HMGB1, MMP2,
p21, p27, p53, and P-p53 in
HMGB1 knockdown and re-
expression cells were detected by
western blot. b Densitometric
analysis for HMGB1, p21, and
MMP2 protein bands relative to
β-actin was analyzed using
ImageJ software. c MMP2
activity was determined by gel
zymography, and the protein
quantity was measured by SDS-
PAGE and Coomassie blue
staining. **vs shNC1 or HMGB1
re-expression, P<0.01

Tumor Biol. (2016) 37:4399–4408 4405



process also inhibited cell migration and invasion in vitro, and
stable knockdown of HMGB1 in HCCLM3 cells inhibited the
growth of xenograft in Balb/c athymic mice in vivo.

However, the mechanism of HMGB1 in tumorigenesis and
tumor progression is partially understood. Studies have shown
that HMGB1 over-expression is associated with self-
sufficiency in growth signals and insensitivity to growth inhib-
itors, mainly via AKT, MAPKs, and NF-κB pathways [4].
HMGB1-RAGE interaction may activate NF-κB, PI3K/AKT,
and MAPK signaling pathways [29, 33]. To understand wheth-
er or not the function of HMGB1 in HCC is dependent of
MAPKs, NF-κB and AKT signaling pathways, we analyzed
the effect of alteration of HMGB1 expression on activity of
those pathways in HCCLM3 cells. Consistent with former stud-
ies [31–34], we also found that the expression and phosphory-
lation levels of NF-κB/p65 and the activation of MAPKs, in-
cluding ERK1/2, p38, SAPK/JNK,MEK1/2, SEK1, c-Jun, and
c-Myc, were regulated by HMGB1. Because these molecules
have been verified to participate to cell proliferation, apoptosis
and cell cycle control. consequently, which could be reasonable
explicated the phenotypic changes about cell proliferation, ap-
optosis and cell cycle in HCCLM3 cells on account of HMGB1
knockdown. Fortunately and firstly, we found that c-Myc phos-
phorylation level varied along with the expression of HMGB1.
C-MYC is a transforming oncogene, which is usually over-
expressed in many kinds of human cancers. Resent study de-
scribed that MT-MC1 and HMG1, two direct target genes of c-
Myc, could each recapitulate multiple c-Myc phenotypes ma-
nipulated in c-Myc nullizygous cells, which indicated that
HMGB1 is one of key functional target genes modulated by
c-Myc [35]. But, whether adverse regulation exists is not clear.
Our founding suggested that HMGB1 could regulate c-Myc
phosphorylation in HCCLM3 cells, while partly for the activa-
tion of ERK1/2 or p38 regulated by HMGB1 contributes to c-
Myc phosphorylation.

Cell cycle analysis showed that HMGB1 knockdown in-
duced HCCLM3 cells S phase arrest, so the expressional alter-
ation of several S phase inhibitors were detected after HMGB1
knockdown. The result showed that p21waf/ci1 (CDK inhibitor
1, CDKN1A, CKIp21) was upregulated in HMGB1 knock-
down cells and downregulated when HMGB1 was re-
expressed, while the expression and phosphorylation level of
p53 and p27 were not changed. p21 is a transcriptional target of
p53 and exhibits a crucial function in cell cycle arrest. The
activation and suppression of p21 are usually regulated by
p53-dependent or p53-independent modes [36, 37]. Consider-
ing that p53 was deficient in the HCC97 cell lines for its 249
codon mutation, and the expression and phosphorylation levels
of p53 were not changed in HMGB1 knockdown cells [38, 39].
In addition, recent study reported that HMGB1 could control
cell cycle association with p21 (Waf1/Cip1) via a p53-indepen-
dent, Sp1-dependent pathway in melanoma [40]. Accordingly,
the regulation mechanism of HMGB1 to p21 may be via a p53-

independent mode in HCCLM3 cells. Many studies have re-
vealed that c-Myc is an important negative regulator of p21
[41]. Myc-mediated antagonism of p21 is accomplished by
the interaction of Myc with several proteins (such as KDM5B,
DMNT3A, AP2C, Miz1) at the proximity of the TSS of
CDKN1A that results in transcriptional repression [41–45].
And another mechanism via Ras pathway. In some chronic
myeloid leukemia (CML) cell lines, Ras upregulates p21 ex-
pression, and activation of the p21 promoter by Ras was depen-
dent on Sp1/3 binding sites. c-Myc antagonized the induction
of p21mediated by Ras by affecting Sp1 transcriptional activity
[46]. In the present study, HMGB1 knockdown reduced the
activation of c-Myc, which may fail to inhibit p21 transcription;
as a result, p21 is upregulated. p21 could directly inhibit the
activity of cyclin/cdk2 complexes and arrest cell cycle in S
phase. Therefore, HMGB1 maybe control cell cycle partly as-
sociated with p21 via the ERK/c-Myc pathway.

Our work also found that HMGB1 knockdown in HCCLM3
inhibited cell migration and invasion in vitro. It is well known
that MMP exhibits an important function in tumor invasion and
metastasis by degrading the extracellular matrix. The extracel-
lular HMGB1 could activate RAGE-Ras-MAPK pathway,
which results in expression of MMP-2 and MMP-9 [47]. So,
we further evaluated the expression and activity of MMP-2 in
HMGB1 knockdown cells. The results showed that MMP-2
expression and activity decrease in HMGB1 knockdown cells
and enhanced when HMGB1 was re-expressed. This result
suggested that HMGB1 may be involved in HCCLM3 cell
invasion by regulated expression and activity of MMP-2.

In conclusion, HMGB1 promotes the proliferation and in-
vasion of HCCLM3 cells partly by enhancing ERK1/2 and
NF-κB pathways, downregulating p21, and upregulating
MMP-2. The inhibitory effect of HMGB1 on p21 expression
may be p53 independent, via an ERK/c-Myc pathway.
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