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Abstract

Motivation: Biclustering has become a major tool for analyzing large datasets given as matrix of

samples times features and has been successfully applied in life sciences and e-commerce for

drug design and recommender systems, respectively. Factor Analysis for Bicluster Acquisition

(FABIA), one of the most successful biclustering methods, is a generative model that represents

each bicluster by two sparse membership vectors: one for the samples and one for the features.

However, FABIA is restricted to about 20 code units because of the high computational complexity

of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and

sample membership is difficult to determine. We propose to use the recently introduced unsuper-

vised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of

existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional

representations of the input via their posterior means. RFN learning is a generalized alternating

minimization algorithm based on the posterior regularization method which enforces non-negative

and normalized posterior means. Each code unit represents a bicluster, where samples for which

the code unit is active belong to the bicluster and features that have activating weights to the code

unit belong to the bicluster.

Results: On 400 benchmark datasets and on three gene expression datasets with known clusters,

RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes

Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins

starting already before ancestors of modern humans left Africa.

Availability and implementation: https://github.com/bioinf-jku/librfn

Contact: djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at

1 Introduction

Biclustering is widely used in statistics (Kasim et al., 2016), machine

learning (O’Connor and Feizi, 2014; Kolar et al., 2011; Lee et al.,

2015) and bioinformatics (Cheng and Church, 2000; Hochreiter,

2013; Madeira and Oliveira, 2004; Povysil and Hochreiter, 2014,

2016), e.g. for analyzing large dyadic data given in matrix form,

where one dimension are the samples and the other the features.

A matrix entry represents a feature value for the according sample.

A bicluster is a pair of a sample set and a feature set for which the

samples are similar to each other on the features and vice versa.

Biclustering simultaneously clusters rows and columns of a matrix.

It clusters row elements that are similar to each other on a subset of

column elements. In contrast to standard clustering, the samples of a

bicluster are only similar to each other on a subset of features.

Furthermore, a sample may belong to different biclusters or to no

bicluster at all. Thus, biclusters can overlap in both dimensions. For

example, in drug design biclusters are compounds which activate

the same gene module and thereby indicate a side effect. In this ex-

ample, different chemical compounds are added to a cell line and

the gene expression is measured (Verbist et al., 2015). If multiple

pathways are active in a sample, it belongs to different biclusters

and may have different side effects.

FABIA (Factor Analysis for Bicluster Acquisition, Hochreiter

et al., 2010) evolved into one of the most successful biclustering

methods. A detailed comparison has shown FABIA’s superiority

over existing biclustering methods both on simulated data and real-

world gene expression data (Hochreiter et al., 2010). FABIA outper-

formed nonnegative matrix factorization with sparseness constraints
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and state-of-the-art biclustering methods. It has been applied to gen-

omics, where it identified in gene expression data task-relevant bio-

logical modules (Xiong et al., 2014). In the large drug design project

Quantitative Structure Transcriptional Activity Relationships

(QSTAR), FABIA, was used to extract biclusters from a data matrix

that contains bioactivity measurements across compounds (Verbist

et al., 2015). FABIA has been applied to genetic data, where it has

been used to identify DNA segments that are identical by descent

(IBD) in different individuals because these individuals inherited the

segment from a common ancestor (Hochreiter, 2013; Povysil and

Hochreiter, 2014). FABIA is a generative model that enforces sparse

codes (Hochreiter et al., 2010) and, thereby, detects biclusters.

Sparseness of code units and parameters is essential for FABIA to

find biclusters, since only few samples and few features belong to a

bicluster. Each FABIA bicluster is represented by two membership

vectors: one for the samples and one for the features. These member-

ship vectors are both sparse since only few samples and only few fea-

tures belong to the bicluster.

However, FABIA has shortcomings, too. A disadvantage of

FABIA is that it is only feasible with about 20 code units (the biclus-

ters) because of the high computational complexity which depends cu-

bically on the number of biclusters, i.e. the code units. If less code

units would be used, only the large and common input structures

would be detected, thereby occluding the small and rare ones.

Another shortcoming of FABIA is that units are insufficiently decorre-

lated and, therefore, multiple units may encode the same event or part

of it. A third shortcoming of FABIA is that the membership vectors do

not have exact zero entries, i.e. the membership is continuous must be

thresholded for clear membership assignment. This threshold is diffi-

cult to adjust. A forth shortcoming is that biclusters can have large

positive but also large negative members of samples (i.e. positive or

negative code values). In this case, it is not clear whether the positive

pattern or the negative pattern has been recognized.

Rectified factor networks (RFNs; Clevert et al., 2015) overcome the

shortcomings of FABIA. The first shortcoming of only few code units is

avoided by extending FABIA to thousands of code units in a computa-

tionally feasible way. RFNs introduce rectified units to FABIA’s poster-

ior distribution and, thereby, allow for fast computations on graphical

processing units (GPUs). Even though rectification is well established in

Deep Learning by rectified linear units, the RFN approach is the first

method which applies rectification to the posterior distribution of factor

analysis and matrix factorization. RFNs transfer the methods for rec-

tification from the neural network field to latent variable models.

Addressing the second shortcoming of FABIA, RFNs achieve decorrela-

tion by increasing the sparsity of the code units using dropout

(Srivastava et al., 2014), a method used in Deep Learning to avoid co-

adaptation of latent variables. RFNs also address the third shortcoming

of FABIA: because the rectified posterior means yield exact zero values,

membership to biclusters can be readily assigned to all non-zero values.

Since RFNs only have non-negative code units, the forth problem of

separating the negative from the positive pattern disappears, too.

2 Identifying biclusters by RFNs

We propose to use the recently introduced RFNs (Clevert et al.,

2015) for biclustering to overcome the drawbacks of the FABIA

model. The factor analysis model and the construction of a bicluster

matrix are depicted in Figure 1. RFNs efficiently construct very

sparse, non-linear, high-dimensional representations of the input.

RFN models identify rare and small events in the input, have a low

interference between code units, have a small reconstruction error

and explain the data covariance structure.

RFN learning is a generalized alternating minimization algo-

rithm (Gunawardana and Byrne, 2005) derived from the posterior

regularization method (Ganchev et al., 2010) which enforces non-

negative and normalized posterior means. These posterior means are

the latent code of the input data. The RFN code can be computed

very efficiently. For non-Gaussian priors, the computation of the

posterior mean of a new input requires either to numerically solve

an integral or to iteratively update variational parameters. In con-

trast, for Gaussian priors the posterior mean is the product between

the input and a matrix that is independent of the input. RFNs use a

rectified Gaussian posterior therefore; they have the speed of

Gaussian posteriors but lead to sparse codes via rectification.

The RFN model is a factor analysis model

v ¼Whþ � ; (1)

which extracts the covariance structure of the data. The prior

h � N 0; Ið Þ of the hidden units (factors) h 2 Rl and the noise

� � N 0;WÞð of visible units (observations) v 2 Rm are independent.

The model parameters are the weight (factor loading) matrix

W 2 Rm�l and the noise covariance matrix W 2 Rm�m.

RFN model selection is done via the posterior regularization

method, that introduces a variational distribution Q hjvð Þ 2 Q from

a family Q, which approximates the posterior p hjvð Þ. We choose Q
to constrain the posterior means to be non-negative and normalized.

The full model distribution p h; vð Þ contains all model assumptions

and, thereby, defines which structures of the data are modeled.

Q hjvð Þ contains data dependent constraints on the posterior, there-

fore on the code.

For data fvg ¼ fv1; . . . ; vng, it maximizes the objective F :

1

n

Xn

i¼1
log p við Þ �

1

n

Xn

i¼1
DKL Q hijvið Þ k p hijvið Þð Þ; (2)

where DKL is the Kullback-Leibler distance. Maximizing F achieves

two goals simultaneously: (i) extracting desired structures and infor-

mation from the data as imposed by the generative model and

(ii) ensuring sparse codes via Q from the set of rectified Gaussians.

In the variational framework, Q is the variational distribution and

F is called the negative free energy Neal and Hinton (1998). If

p hjvð Þ 2 Q, then Q hjvð Þ ¼ p hjvð Þ and we obtain the classical EM al-

gorithm. The EM algorithm maximizes the lower bound F on the

log-likelihood as seen at the first line of Equation (2) and ensures in

its E-step Q hjvð Þ ¼ p hjvð Þ.
For Gaussian posterior distributions, and mean-centered data

fvg ¼ fv1; . . . ; vng, the posterior p hijvið Þ is Gaussian with mean vec-

tor lp

� �
i
and covariance matrix Rp:

lp

� �
i
¼ I þ WTW�1W
� ��1

WTW�1 vi;

Rp ¼ I þ WTW�1W
� ��1

:

(3)

For rectified Gaussian posterior distributions, Rp remains as in the

Gaussian case, but minimizing the second DKL of Equation (2) leads

to the constrained optimization problem (see Clevert et al. 2015) for

a detailed description of the RFN objective and the algorithm’s cor-

rectness and convergence.)

min
li

1

n

Xn

i¼1
li � lp

� �
i

� �T
R�1

p li � lp

� �
i

� �

s:t: 8i : li � 0 ; 8j :
1

n

Xn

i¼1
l2

ij ¼ 1 ;

(4)

where ‘�’ is component-wise. In the E-step of the generalized alter-

nating minimization algorithm (Gunawardana and Byrne, 2005),
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which is used for RFN model selection, we only perform a step of

the gradient projection algorithm (Bertsekas, 1976; Kelley, 1999), in

particular a step of the projected Newton method for solving

Equation (4) (Clevert et al., 2015).

Therefore, RFN model selection is extremely efficient but still

guarantees the correct solution. Additional speed-up is generated by

implementing RFNs on GPUs.

2.1 RFN biclustering
For an RFN model, each code unit represents a bicluster, where

samples for which the code unit is active, belong to the bicluster. On

the other hand, features that activate the code unit belong to the

bicluster, too. The vector of activations of a unit across all samples

is the sample membership vector. The weight vector which activates

the unit is the feature membership vector. The unconstrained poster-

ior mean vector is computed by multiplying the input with a matrix

according to Equation (3). The constrained posterior of a code unit

is obtained by multiplying the input by a vector and subsequently

rectifying and normalizing the code unit (Clevert et al., 2015).

To keep feature membership vectors sparse, we introduce a

Laplace prior on the parameters of the original RFN model.

Therefore, only few features contribute to activating a code unit,

that is, only few features belong to a bicluster. Sparse weights W i

are achieved by a component-wise independent Laplace prior for

the weights:

p W ið Þ ¼ 1ffiffiffi
2
p
� �nYn

k¼1
e�
ffiffi
2
p
jWki j (5)

The weight update for RFN (Laplace prior on the weights) is

W ¼W þ g U S�1 �W
� �

� a sign Wð Þ: (6)

Whereby the sparseness of the weight matrix can be controlled by

the hyper-parameter a and U and S are defined as U ¼ 1
n

Pn
i¼1 vil

T
i

and S ¼ 1
n

Pn
i¼1 lil

T
i þ R, respectively. To enforce more sparseness

of the sample membership vectors, we introduce dropout of code

units. Dropout means that during training some code units are set to

zero at the same time as they get rectified. Dropout avoids co-

adaptation of code units and reduces correlation of code units—an-

other problem of FABIA which is solved.

RFN biclustering does not require a threshold for determining

sample memberships to a bicluster since rectification sets code units

to zero. Further crosstalk between biclusters via mixing up negative

and positive memberships is avoided; therefore spurious biclusters

appear less often.

2.2 Extraction of IBD segments from RFN biclusters
RFN biclusters that result from applying RFN to genotype data, rep-

resent individuals that are similar to each other because they share

minor alleles of a subset of SNVs (single nucleotide variants).

However, a bicluster does not automatically represent an IBD seg-

ment because RFN does not regard the physical location or the tem-

poral order of the features (SNVs). Only shared minor alleles that

accumulate locally constitute IBD segments as shown in Hochreiter

(2013). To distinguish random minor allele matches extracted by

RFN from true IBD segments, we compute a histogram of counts of

the RFN model SNVs and calculate the probability of observing k or

more counts by chance. Let p be the probability of a random minor

allele match between t individuals. If n SNVs are in a segment of

DNA, the probability of observing k or more model SNVs by chance

in this segment is given by:

Pr K � kð Þ ¼
Xn

i¼k
n
i

� �
pi 1� pð Þn�i : (7)

Towards this end, the routine implemented in HapFABIA

(Hochreiter, 2013) was adjusted to extract IBD segments from RFN

biclusters. The binomial test (Equation 7) is used as a first step to

identify local accumulations of minor alleles that were extracted by

RFN. In a second step IBD segments are disentangled and individ-

uals reassigned. Later-on, spuriously correlated minor alleles are

removed based on an exponential test on long physical distances.

Finally, similar IBD segments that were separated in the first step be-

cause of their length are rejoined in the last step.

Pairwise IBD detection methods like fastIBD Browning and

Browning (2011) or GERMLINE Gusev et al. (2009) directly look

for shared continuous DNA segments and incorporate the likelihood

of IBD in their original model. In contrast to that we first look for

shared minor alleles in multiple individuals via biclusters and only in

subsequent steps use local accumulations and likelihood computa-

tions to extract IBD segments from the biclusters.

(a) (b)

Fig. 1. Left: Factor analysis model: hidden units (factors) h, visible units v, weight matrix W , noise �. Right: The outer product w hT of two sparse vectors results in

a matrix with a bicluster. Note that the non-zero entries in the vectors are adjacent to each other for visualization purposes only
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3 Experiments

In this section, we will present numerical results on multiple syn-

thetic and real-world datasets to verify the performance of our RFN

biclustering algorithm, and compare it with various other bicluster-

ing methods.

3.1 Methods compared
To assess the performance of RFNs as unsupervised biclustering

methods, we compare the following 14 biclustering methods:

1. RFN: rectified factor networks (Clevert et al., 2015),

2. FABIA: factor analysis with Laplace prior on the hidden units

(Hochreiter et al., 2010; Hochreiter, 2013),

3. FABIAS: factor analysis with sparseness projection (Hochreiter

et al., 2010),

4. MFSC: matrix factorization with sparseness constraints

(Hoyer, 2004),

5. plaid: plaid model (Chekouo et al., 2015; Lazzeroni and Owen,

2002),

6. ISA: iterative signature algorithm (Ihmels et al., 2004),

7. OPSM: order-preserving sub-matrices (Ben-Dor et al., 2003),

8. SAMBA: statistical-algorithmic method for bicluster analysis

(Tanay et al., 2002),

9. xMOTIF: conserved motifs (Murali and Kasif, 2003),

10. Bimax: divide-and-conquer algorithm (Prelic et al., 2006),

11. CC: Cheng-Church d-biclusters (Cheng and Church, 2000),

12. plaid_t: improved plaid model (Turner et al., 2003),

13. FLOC: flexible overlapped biclustering, a generalization of CC

(Yang et al., 2005) and

14. spec: spectral biclustering (Kluger et al., 2003).

For a fair comparison, the parameters of the methods were opti-

mized on auxiliary toy datasets. If more than one setting was close

to the optimum, all near optimal parameter settings were tested. In

the following, these variants are denoted as method_ variant (e.g.

plaid_ss). For RFN we used the following parameter setting: 13 hid-

den units, a dropout rate of 0.1, 500 iterations with a learning rate

of 0.1, and set the parameter a (controlling the sparseness on the

weights) to 0.01.

3.2 Simulated datasets with known biclusters
In the following subsections, we describe the data generation process

and results for synthetically generated data according to either a

multiplicative or additive model structure.

3.2.1 Data with multiplicative biclusters

We assumed n ¼ 1000 features and l ¼ 100 samples and implanted

p ¼ 10 multiplicative biclusters. The bicluster datasets with p biclus-

ters are generated by the following model:

X ¼
Xp

i¼1
ki zT

i þ ! ; (8)

where ! 2 Rn�l is additive noise; ki 2 Rn and zi 2 Rl are the biclus-

ter membership vectors for the ith bicluster. The ki’s are generated

by (i) randomly choosing the number Nk
i of genes in bicluster i

from f10; . . . ; 210g, (ii) choosing Nk
i features randomly from

f1; . . . ; 1000g, (iii) setting ki components not in bicluster i to N
0; 0:22
� �

random values, and (iv) setting ki components that are in

bicluster i to N 63; 1ð Þ random values, where the sign is chosen ran-

domly for each gene. The zi’s are generated by (i) randomly choos-

ing the number Nz
i of samples in bicluster i from f5; . . . ; 25g,

(ii) choosing Nz
i samples randomly from f1; . . . ; 100g, (iii) setting zi

components not in bicluster i to N 0; 0:22
� �

random values and (iv)

setting zi components that are in bicluster i to N 2; 1ð Þ random val-

ues. Finally, we draw the ! entries (additive noise on all entries) ac-

cording to N 0;32
� �

and compute the data X according to Equation

(8). Using these settings, noisy biclusters of random sizes between

10 � 5 and 210 � 25 (features � samples) are generated. In all ex-

periments, rows (features) were standardized to mean 0 and variance 1.

3.2.2 Data with additive biclusters

In this experiment, we generated biclustering data where biclusters

stem from an additive two-way ANOVA model:

X ¼
Xp

i¼1
hi � ki zT

i Þ þ !;
�

(9)

where hikj ¼ li þ aik þ bij and � is the element-wise product of

matrices and both ki and zi are binary indicator vectors which indi-

cate the rows and columns belonging to bicluster i. The ith bicluster

is described by an ANOVA model with mean li, kth row effect aik

(first factor of the ANOVA model), and jth column effect bij (second

factor of the ANOVA model). The ANOVA model does not have

interaction effects. Although the ANOVA model is described for the

whole data matrix, only the effects on rows and columns belonging

to the bicluster are used in data generation. Noise and bicluster sizes

are generated as in previous Subsection 3.2.1. Data were generated

for three different signal-to-noise ratios which are determined by the

distribution from which li is chosen: A1 (low signal) N 0;22
� �

, A2

(moderate signal) N 62; 0:52
� �

and A3 (high signal) N 64; 0:52
� �

,

where the sign of the mean is randomly chosen. The row effects aki

are chosen from N 0:5; 0:22
� �

and the column effects bij are chosen

fromN 1; 0:52
� �

.

3.2.3 Results on simulated datasets

For method evaluation, we use the previously introduced bicluster-

ing consensus score for two sets of biclusters (Hochreiter et al.,

2010), which is computed as follows:

1. Compute similarities between all pairs of biclusters by the

Jaccard index, where one is from the first set and the other from

the second set.

2. Assign the biclusters of one set to biclusters of the other set by

maximizing the assignment by the Munkres algorithm.

3. Divide the sum of similarities of the assigned biclusters by the

number of biclusters of the larger set.

Step (3) penalizes different numbers of biclusters in the sets. The

highest consensus score is 1 and only obtained for identical sets of

biclusters.

Table 1 shows the biclustering results for these datasets. RFN

significantly outperformed all other methods (t-test and McNemar

test of correct elements in biclusters).

3.2.4 Runtime comparison

Our open-source implementation of RFN offers high-performance

CPU and GPU versions. In a runtime comparison on synthetic data

displayed in Figure 2, we can clearly see how execution times for

RFN is much lower and scales much better with the number of

biclusters than its main competitor FABIA. This comparison was

run on an Intel i5-3470 CPU and an NVIDIA Titan X GPU.

3.3 Gene expression datasets
In this experiment, we test the biclustering methods on gene expres-

sion datasets, where the biclusters are gene modules. The genes that
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are in a particular gene module belong to the according bicluster

and samples for which the gene module is activated belong to the

bicluster. We consider three gene expression datasets which have

been provided by the Broad Institute and were previously clustered

by Hoshida et al. (2007) using additional datasets as side informa-

tion. Note, that Hoshida et al.’s clustering may include falsely as-

signed cluster memberships, which could affect the benchmark

results.

1. The ‘breast cancer’ dataset (vanta Veer et al., 2002) was aimed

at a predictive gene signature for the outcome of a breast cancer ther-

apy. We removed the outlier array S54 which leads to a dataset with

97 samples and 1213 genes. In Hoshida et al. (2007), three biologic-

ally meaningful sub-classes were found that should be re-identified.

2. The ‘multiple tissue types’ dataset (Su et al., 2002) are gene ex-

pression profiles from human cancer samples from diverse tissues

and cell lines. The dataset contains 102 samples with 5565 genes.

Biclustering should be able to re-identify the tissue types.

3. The ‘diffuse large-B-cell lymphoma (DLBCL)’ dataset

(Rosenwald et al., 2002) was aimed at predicting the survival after

chemotherapy. It contains 180 samples and 661 genes. The three

classes found by Hoshida et al. (2007) should be re-identified.

For methods assuming a fixed number of biclusters, we chose

five biclusters—slightly higher than the number of known clusters to

avoid biases towards prior knowledge about the number of actual

clusters. Besides the number of hidden units (biclusters) we used the

same parameters as described in Section 3.1. The performance was

assessed by comparing known classes of samples in the datasets with

the sample sets identified by biclustering using the consensus score

defined in Subsection 3.2.3—here the score is evaluated for sample

clusters instead of biclusters. The biclustering results are summar-

ized in Table 2. In two out of three datasets, RFN biclustering

yielded significantly better results than all other methods and was

on second place for the third dataset (significantly according to a

McNemar test of correct samples in clusters).

3.4 1000 Genomes datasets
In this experiment, we used RFN for detecting DNA segments that

are IBD. A DNA segment is IBD in two or more individuals, if it is

identical because they have inherited it from a common ancestor, that

is, the segment has the same ancestral origin in these individuals.

Biclustering is well-suited to detect such IBD segments in a genotype

matrix (Hochreiter, 2013; Povysil and Hochreiter, 2014, 2016),

which has individuals as row elements and genomic SNVs as column

elements. Entries in the genotype matrix usually count how often the

minor allele of a particular SNV is present in a particular individual.

Table 1. Results are the mean of 100 instances for each simulated

dataset

Mult. model Add. model

Method M1 A1 A2 A3

RFN 0.643 6 7e-4 0.475 6 9e-4 0.640 6 1e-2 0.816 6 6e-7

FABIA 0.478 6 1e-2 0.109 6 6e-2 0.196 6 8e-2 0.475 6 1e-1

FABIAS 0.564 6 3e-3 0.150 6 7e-2 0.268 6 7e-2 0.546 6 1e-1

SAMBA 0.006 6 5e-5 0.002 6 6e-4 0.002 6 5e-4 0.003 6 8e-4

xMOTIF 0.002 6 6e-5 0.002 6 4e-4 0.002 6 4e-4 0.001 6 4e-4

MFSC 0.057 6 2e-3 0.000 6 0e-0 0.000 6 0e-0 0.000 6 0e-0

Bimax 0.004 6 2e-4 0.009 6 8e-3 0.010 6 9e-3 0.014 6 1e-2

plaid_ss 0.045 6 9e-4 0.039 6 2e-2 0.041 6 1e-2 0.074 6 3e-2

CC 0.001 6 7e-6 4e-4 6 3e-4 3e-4 6 2e-4 1e-4 6 1e-4

plaid_ms 0.072 6 4e-4 0.064 6 3e-2 0.072 6 2e-2 0.112 6 3e-2

plaid_t_ab 0.046 6 5e-3 0.021 6 2e-2 0.005 6 6e-3 0.022 6 2e-2

plaid_ms5 0.083 6 6e-4 0.098 6 4e-2 0.143 6 4e-2 0.221 6 5e-2

plaid_t_a 0.037 6 4e-3 0.039 6 3e-2 0.010 6 9e-3 0.051 6 4e-2

FLOC 0.006 6 3e-5 0.005 6 9e-4 0.005 6 1e-3 0.003 6 9e-4

ISA 0.333 6 5e-2 0.039 6 4e-2 0.033 6 2e-2 0.140 6 7e-2

spec 0.032 6 5e-4 0.000 6 0e-0 0.000 6 0e-0 0.000 6 0e-0

OPSM 0.012 6 1e-4 0.007 6 2e-3 0.007 6 2e-3 0.008 6 2e-3

Datasets M1 and A1–A3 were multiplicative and additive bicluster, re-

spectively. The numbers denote average consensus scores with the true biclus-

ters together with their standard deviations in parentheses. The best results

are printed bold and the second best in italics (‘better’ means significantly bet-

ter according to both a paired t-test and a McNemar test of correct elements

in biclusters).

Fig. 2. Runtime comparison of FABIA and RFN for 10, 30, 100, 300 and 500

biclusters on synthetic inputs of n ¼ 500 features and l ¼ 1000 samples for

100 iterations each. Shown data are the median of five measurements, error

bars are standard errors of the mean

Table 2. Results on the (A) breast cancer, (B) multiple tissue sam-

ples, (C) DLBCL datasets measured by the consensus score

(A) breast cancer (B) multiple tissues (C) DLBCL

method sco #bc #g #s sco #bc #g #s sco #bc #g #s

RFN 0.57 3 73 31 0.77 5 75 33 0.35 2 59 72

FABIA 0.52 3 92 31 0.53 5 356 29 0.37 2 59 62

FABIAS 0.52 3 144 32 0.44 5 435 30 0.35 2 104 60

MFSC 0.17 5 87 24 0.31 5 431 24 0.18 5 50 42

plaid_ss 0.39 5 500 38 0.56 5 1903 35 0.30 5 339 72

plaid_ms 0.39 5 175 38 0.50 5 571 42 0.28 5 143 63

plaid_ms5 0.29 5 56 29 0.23 5 71 26 0.21 5 68 47

ISA_1 0.03 25 55 4 0.05 29 230 6 0.01 56 26 8

OPSM 0.04 12 172 8 0.04 19 643 12 0.03 6 162 4

SAMBA 0.02 38 37 7 0.03 59 53 8 0.02 38 19 15

xMOTIF 0.07 5 61 6 0.11 5 628 6 0.05 5 9 9

Bimax 0.01 1 1213 97 0.10 4 35 5 0.07 5 73 5

CC 0.11 5 12 12 nc nc nc nc 0.05 5 10 10

plaid_t_ab 0.24 2 40 23 0.38 5 255 22 0.17 1 3 44

plaid_t_a 0.23 2 24 20 0.39 5 274 24 0.11 3 6 24

spec 0.12 13 198 28 0.37 5 395 20 0.05 28 133 32

FLOC 0.04 5 343 5 nc nc nc nc 0.03 5 167 5

An ‘nc’ entry means that the method did not converge for this dataset. The

best results are in bold and the second best in italics (‘better’ means signifi-

cantly better according to a McNemar test of correct samples in clusters). The

columns ‘sco’, ‘#bc’, ‘#g’, ‘#s’ provide the consensus score, the numbers of

biclusters, their average numbers of genes, and their average numbers of sam-

ples, respectively. RFN is two times the best method and once on second

place.
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Individuals that share an IBD segment are similar to each other be-

cause they also share minor alleles of SNVs (tagSNVs) within the IBD

segment, therefore IBD segments can be seen as biclusters.

For our IBD-analysis we used the next generation sequencing

data from the 1000 Genomes Phase 3 (The 1000 Genomes Project

Consortium, 2015) [ftp://ftp.1000genomes.ebi.ac.uk/Vol03325/ftp/

release/20130502/ (31 October 2014, date last accessed)]. This data-

set consists of low-coverage whole genome sequences from 2504 in-

dividuals of the main continental population groups (Africans,

East Asians, South Asians, Europeans and Admixed Americans).

Individuals that showed cryptic first degree relatedness to others

were removed so that the final dataset consisted of 2493 individuals

(see Povysil and Hochreiter, 2016). High-coverage genomes of the

Altai Neanderthal and Denisovan were provided by the Max Planck

Institute for Evolutionary Anthropology (Meyer et al., 2012; Prüfer

et al., 2014) [http://cdna.eva.mpg.de/denisova/ (2 February 2012,

date last accessed) and http://cdna.eva.mpg.de/neandertal/altai/, 23

May 2013, date last accessed]. Furthermore, we used the sequence

of the reconstructed common ancestor of human, chimpanzee, gor-

illa, orang-utan, macaque and marmoset genomes which was part of

the 1000 genomes project data.

Like Povysil and Hochreiter (2016), we restricted the analysis to

SNVs and removed repeat regions and CpGs. RFN IBD detection

is based on low frequency and rare variants (minor allele frequency

< 0.05), therefore we removed common and private SNVs prior to

the analysis. Afterwards, all chromosomes were divided into inter-

vals of 10 000 SNVs with adjacent intervals overlapping by 5000

SNVs. RFN was applied to the unphased genotype data and IBD

segments were extracted from biclusters as described in Section 2.2.

To distinguish true IBD segments from random findings we de-

fine an IBD score as the total sum of minor allele presences of indi-

viduals that share the IBD segment and tagSNVs that were extracted

by RFN. True IBD segments should have an IBD score close to the

number of individuals times the number of tagSNVs. To determine

the significance of a finding, we calculate the empirical distribution

of IBD scores based on 10E þ 5 randomly sampled DNA segments

of the same size as the detected segment. This allows us to calculate

the P-value of our detected IBD segments under this H0 distribution.

To get randomly sampled DNA segments of the same size, we first

sample the same number of individuals from the total set of individ-

uals and a start SNV that can be anywhere in the genome.

Afterwards, we extract the genotype matrix consisting of the

sampled individuals and a number of SNVs equal to the number of

SNVs between the first and the last tagSNV of the IBD segment, be-

ginning from the sampled start SNV. Finally, we sample tagSNVs

from these SNVs and calculate the IBD score as described above.

The depicted IBD segment in Figure 3 has a highly significant IBD

score (P-value < 1E-5).

In the data of the 1000 Genomes Project Phase 3, we found >1.5

million IBD segments. About 70% of the IBD segments were only

Fig. 3. Example of an IBD segment matching the Neanderthal genome shared among Africans and Admixed Americans. The rows represent all individuals that

have the IBD segment, and columns represent consecutive SNVs. Major alleles are shown in yellow, minor alleles of tagSNVs in violet, and minor alleles of other

SNVs in cyan. The row labeled model L indicates tagSNVs identified by RFN in violet. The rows Ancestor, Neanderthal and Denisova show bases of the respective

genomes in violet if they match the minor allele of the tagSNVs (in yellow otherwise). For the Ancestor genome we used the reconstructed common ancestor se-

quence that was provided as part of the 1000 Genomes Project data
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shared by Africans, while <1% were shared by individuals from all

five continental populations. In contrast to HapFABIA, which was

used for the analyses in Hochreiter (2013) and Povysil and

Hochreiter (2016), IBD segments found with RFN require less post-

processing because RFNs can extract much more biclusters and

therefore IBD segments in a single run. Thus, problems caused by

the iterative approach of HapFABIA can be avoided. To gain in-

sights into the genetic relationships between humans, Neanderthals

and Denisovans, we compared the detected IBD segments with the

respective ancient genomes as described in Povysil and Hochreiter

(2016). Furthermore, we excluded segments that were already present

in the reconstructed ancestral sequence of all primates to distinguish

IBD segments stemming from this ancestor from such that are due to

later interbreedings. We could confirm that a surprisingly high number

of IBD segments is shared between Africans and Neanderthals/

Denisovans (see Fig. 3 for an example of an IBD segment that matches

the Neanderthal genome). Neanderthal- and Denisova-matching IBD

segments only observed in Africans are clearly shorter than IBD seg-

ments shared between non-Africans and the ancient genomes (5500

versus 12 500 bp and 5000 versus 12 000 bp, respectively for

Neanderthal- and Denisova-matching segments). Since shorter segments

are assumed to be older than longer ones (Povysil and Hochreiter,

2014), this is an indication of very early interbreedings within Africa

that involved ancestors of Neanderthals and Denisovans, as well as an-

cestors of modern Africans (Povysil and Hochreiter, 2016).

4 Conclusion

We have introduced RFNs for biclustering and benchmarked it with

13 other biclustering methods on artificial and real-world datasets.

On 400 benchmark datasets with artificially implanted biclus-

ters, RFN significantly outperformed all its competitors including

FABIA. On three gene expression datasets with previously verified

ground-truth, RFN biclustering yielded twice significantly better re-

sults than all other methods and was once the second best perform-

ing method. On data of the 1000 Genomes Project, RFN could

identify IBD segments that previous IBD detection methods were un-

able to discover. Those detected segments support the hypothesis

that interbreedings between ancestors of humans and other ancient

hominins already have taken place in Africa.

RFN biclustering is geared to large datasets, sparse coding, many

coding units and distinct membership assignment. Thereby RFN

biclustering overcomes the shortcomings of FABIA and has the po-

tential to become the new state of the art biclustering algorithm.
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