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Abstract

Nasu-Hakola disease (NHD) is a recessively inherited rare disorder characterized

by a combination of neuropsychiatric and bone symptoms which, while being

unique to this disease, do not provide a rationale for the unambiguous identification

of patients. These individuals, in fact, are likely to go unrecognized either because

they are considered to be affected by other kinds of dementia or by fibrous

dysplasia of bone. Given that dementia in NHD has much in common with

Alzheimer’s disease and other neurodegenerative disorders, it cannot be expected

to achieve the differential diagnosis of this disease without performing a genetic

analysis. Under this scenario, the availability of protein biomarkers would indeed

provide a novel context to facilitate interpretation of symptoms and to make the

precise identification of this disease possible. The work here reported was

designed to generate, for the first time, protein profiles of lymphoblastoid cells from

NHD patients. Two-dimensional electrophoresis (2-DE) and nano liquid

chromatography-tandem mass spectrometry (nLC-MS/MS) have been applied to all

components of an Italian family (seven subjects) and to five healthy subjects

included as controls. Comparative analyses revealed differences in the expression

profile of 21 proteins involved in glucose metabolism and information pathways as

well as in stress responses.
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Introduction

Nasu-Hakola disease (NHD) also referred to as Polycystic Lipomembranous

Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL), is a recessively

inherited rare disorder characterized by a combination of pre-senile frontal

dementia and systemic bone cysts formation [1–3]. Formally, in the natural

progression of this disorder the following four different stages may be identified:

i) latent disease (asymptomatic); ii) bone implication (pathological fractures); iii)

early neurological symptoms (patient’s personality changes and first dementia

symptoms begin to arise) and iv) late neurological stage in which patients show

symptoms of profound dementia and begin to lose their motility [4]. NHD has

been demonstrated to rise from a structural defect in the DNAX-activating

protein 12 gene (DAP12 gene, also called TYROBP, for tyrosine-kinase binding

protein) or in the Triggering Receptor Expressed on Myeloid cells 2 (TREM 2)

gene, the two genes encoding for different subunits of the same membrane

receptor signaling complex [5, 6]. Investigations on the role of DAP12 in B cells

have been carried out by Nakano-Yokomizo et al. [7] by generating DAP12-

deficient mouse B cells. Based on their results, this gene was found to play an

important role in antigen-specific immune responses by B cells in vivo [7].

Despite this conclusion, the patho-physiological significance of the DAP12

involvement in humoral immune responses remains uncertain and further studies

are needed to gain insights into these mechanisms. While the signaling pathways

involved in DAP12-mediated inhibition have not been completely understood yet

[8, 9], the relationship between inflammation and neuro-degeneration for a

number of disorders, including Multiple Sclerosis (MS); Alzheimer’s Disease (AD)

and Parkinson’s Disease (PD), is gradually emerging [10]. Taken together, these

data provide a new and larger context for hypothesizing that a variety of

mechanisms involved in immune system may contribute to neuronal damage

[10–12]. In this respect, TREM2 gene is known to possess an immunoglobulin

superfamily domain [13] and to be expressed in peripheral blood cells such as

macrophage- and monocyte-derived dendritic cells. This gene plays important

roles in innate and adaptive immunity [14] and is most likely involved in chronic

inflammatory diseases [15, 16]. This hypothesis has been recently confirmed by

Paloneva et al. [6] who postulated the involvement of TREM2 in chronic

inflammatory disorders of central nervous system (CNS).

It was in the course of NHD investigations on patients (belonging to an Italian

family) negative for mutations in DAP12 gene, that a conversion of nucleotide C

to T (that determines the change of Gln 33 to a stop codon (Q33X) at position 97

in exon 2 of TREM2 gene, was shown to be responsible for the disease [17].

Interestingly, apparently identical clinical phenotype has been observed in both

patients with TREM2- and DAP12-mutations [17, 18]. Moreover, microglial

TREM2 was shown to be involved in phagocytosis of apoptotic cellular material

[19, 20], a function which is essential to keep central nervous system homeostasis.

Thus, it seems plausible to state that a nonfunctional TREM2 could play a pivotal
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role in brain damage, due to the accumulation of toxic products such as apoptotic

material.

Despite the worldwide distribution of NHD, Finland and Japan are the

countries with the highest number of cases so far reported [3, 16]. Outside these

countries the disease is unknown and/or underestimated [18]. While the

combination of neuropsychiatric and bone symptoms is unique to this disease,

they do not provide a rationale for the unambiguous identification of patients.

Patients in fact are likely to go unrecognized either because they are considered to

be affected by other kinds of dementia or by fibrous dysplasia of bone [18]. As far

as the clinical characteristics are concerned, dementia has much in common with

Alzheimer’s or Pick’s diseases [3] and, despite the existence of peculiar symptoms,

it cannot be expected to obtain the differential diagnosis of NHD without

performing a genetic analysis. Under this scenario, it appears clear that the

availability of protein biomarkers would provide a novel context for the precise

identification of Nasu-Hakola disease thus greatly enhancing the interpretation of

symptoms.

The means of analyzing this biological signaling have undergone dramatic

changes over the last few years. Not that long time ago, the procedures

traditionally in use allowed to identify proteins one by one. The great advances in

technologies and experimental strategies, mainly in the field of proteomics (and

genomics), have enabled a general shift in paradigm from dedicating work to the

analysis of a single protein to the analysis of biochemical (and cellular) processes.

In particular, two-dimensional gel electrophoresis (2-DE) techniques have been

implemented and gained high popularity in the search of over- or under-

expressed proteins in pathological conditions [11, 21–23]. In this respect, to

provide insights into the molecular mechanisms of Nasu-Hakola disease, 2-DE

proteomic profiles of lymphoblastoid cells from seven individuals (six patients

and one healthy subject), all belonging to an Italian family, have been generated

for the first time. The comparison of these with proteomic patterns obtained from

five additional controls aimed at identifying differentially-expressed proteins that

could be candidate biomarkers of the disease. Proteins were identifed by nano

Liquid Chromatography-tandem Mass Spectrometry (nLC-MS/MS) and validated

by western blotting analysis.

The current report contains an accurate description of this comprehensive

study.

Materials and Methods

Reagents

REDtaq Genomic DNA polymerase was from Sigma Aldrich (St. Louis, MO,

USA). Carrier ampholytes and immobilized pH gradient gel strips were from GE

Healthcare (Uppsala, Sweden). RC DC Protein Assay Kit was purchased from

BioRad (Richmond, CA, USA). Antibodies used to validate a good number of
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proteins identified were from Santa Cruz Biotechnology (Dallas, TX, USA). All

other reagents were of analytical grade and used without further purification.

Subjects

This investigation was performed on twelve subjects in total. Seven individuals

belonged to the same Italian family and consisted of two patients with

homozygous C-to-T mutation at position 97 in exon 2 of TREM2 gene; four

patients with heterozygous mutation, and one healthy individual (control). Five

additional healthy subjects (female volunteers from the laboratory) participated to

this study as controls. At the moment of blood withdrawal, heterozygotes (He) for

the mutated allele showed impairment of visuo-spatial memory and mild

hypoperfusion in the right basal ganglia. Homozygotes (Ho), in the first stage of

the disease, presented the same neuropsychological and neuro-functional patterns.

In the subsequent stages, however, neuropsychological tests were no longer

administrable and the hyperfusion became severe and diffuse. Obviously, the

homozygote subject for the wild-type allele (wt) presented normal neuropsy-

chological and neuro-imaging findings. Additional information about clinical

conditions of these subjects may be found in reference [18].

Samples

Individuals considered in this study had been previously involved in the clinical

investigation described in reference [17]. At the moment of blood withdrawal all

of them signed a written informed consent that was approved by the Ethics

Committee of the Neurological Institute ‘‘C.Mondino’’, Pavia and the ‘‘Laura

Fossati Foundation’’, Montesegale, Pavia, who reviewed and authorized studies on

these patients. Frozen blood samples (20 mL) were thawed and treated as follows:

an aliquot (10 mL) was centrifuged at 1100 6 g for 10 min to separate the

plasma. Another aliquot (10 mL) was used to isolate the B-lymphocytes that were

immortalized by treatment with Epstein-Barr Virus (EBV) [24]. The lympho-

blastoid B-cell lines were maintained in suspension culture in RPMI 1640 medium

supplemented with 10% fetal bovine serum, 4 mM glutamine, streptomycin, and

penicillin. To obtain total extracts, cells were harvested by centrifugation (1300 6
g for 5 min at 4 C̊); re-suspended in 8M urea, 4% (w/v) CHAPS, 65 mM DTE in

the presence of a protease inhibitors cocktail (Sigma Aldrich) and finally sonicated

three consecutive times (for 5 s) at 20 kHz. Protein concentration was determined

using the RC DC (reducing agent and detergent compatible) Protein Assay Kit,

with BSA as standard.

Purification and reverse transcription of total cellular RNA and

PCR amplification

The total lymphoblastoid B-cell RNA was purified by using the RNeasy mini kit

(Qiagen, Manchester, UK), according to the instructions of the manufacturer. The

concentration of cellular RNA was quantified by determining the optical density
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at 260 nm. Total cellular RNA was reverse-transcripted by means of the RNA PCR

Core Kit (Applied Biosystems, Foster City, CA, USA). The resulting comple-

mentary DNA (cDNA, 200 ng) was submitted to conventional PCR amplification

in a 25 ml reaction volume on a PCR SPRINT Thermal Cycler (Thermo Electron

Corporation, MA, USA). The parameters used for PCR amplification were the

following: i) initial DNA denaturation at 94 C̊ for 3 min followed by 35 cycles of

denaturation at 94 C̊ for 30 s; ii) primer annealing at 57 C̊ for 30 s, and

elongation at 72 C̊ for 30 s; iii) extension at 72 C̊ for 3 min. Detection of the PCR

amplification products was performed using the PCR 59-TCT TTG TCA CAG

AGC TGT CC-39 (sense) and 59-AGG GTA TCG TCT GTG ATG GC-39

(antisense) primers (PRIMM Co. Ltd, Milan, Italy). An aliquot (10 ml) of each

PCR reaction sample was finally submitted to 1.5% agarose gel electrophoresis to

visualize the products by staining with ethidium bromide.

Two-dimensional Gel Electrophoresis (2-DE)

Protein extracts were loaded on nonlinear (NL) pH 3–10 gradient range IPG gel

strips (18 cm length). One of the pretreatment procedures consisted in

rehydrating gel strips in a buffer containing 8 M urea, 4% (w/v) CHAPS, 65 mM

DTE, 0.8% (v/v) carrier ampholytes and traces of bromophenol blue. Rehydration

was performed for 8 h at 16 C̊ using a voltage of 30 V. The same voltage regime

was applied for each step of isoelectrofocusing (IEF) both in case of nonlinear

pH 3–10 or linear pH 4–7 IPG strips according to a program driven by the

BioRad (CA, USA) Ettan IPGphor system (1 h at 120 V; 30 min at 300 V; linear

ramping from 300 to 3500 V in 3 h; 10 min at 5000 V and then 7950 V to reach a

total of 62 KV/h). Reduction/alkylation steps were applied between the first and

the second dimension. The focused IPG strips were incubated for 12 min at room

temperature in 6 M urea, 2% (w/v) SDS, 50 mM Tris pH 6.8, glycerol 30%

containing 2% (w/v) DTE and for 5 min in an equilibration buffer containing

2.5% (w/v) iodoacetamide.

At the end of the IEF step, strips were hold in place with 0.4% low melting

temperature agarose and loaded onto a 20618 cm slab, 9–16% SDS-

polyacrylamide gels. Electrophoresis was carried out at a constant current of

40 mA per gel in a PROTEAN II xi 2-D Cell (Bio-Rad) equipment. The 2-DE gels

were stained with ‘‘Blue silver’’ (colloidal Coomassie G-250 staining), according

to Candiano et al. [25]. Digital images of stained gels were acquired using

VersaDoc Imaging Model 3000 (BioRad) and then subjected to quali/quantitative

analysis using the PD Quest (BioRad) version 8.0.1 software. Scanned images were

filtered and smoothed to remove background noise; vertical/horizontal streaking;

gel artifacts and then normalized to eliminate the variability of each sample. The

software then determined the amount of spots present and calculated their

intensity by applying the following algorithm: peak value (ODs/image units) *sx

*sy (standard deviations in x and y).
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Protein identification

Proteins were identified using the following approaches: i) by comparing our

maps with the SWISS-2D PAGE (http://www.expasy.org/sprot) map, ii) by

applying nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS)

to the spots excised from the maps obtained in this study and treated as indicated

below; and iii) by comparing our maps with previously published lymphocyte

maps [26, 27].

Protein validation

Differentially-expressed proteins were transferred onto Millipore PVDF mem-

branes (Billerica, MA, USA) at 200 mA for 1.20 h in transfer buffer (25 mM Tris,

192 mM glycine, pH58.3, containing 20% methanol). Membranes were blocked

in 5% of non-fat dry milk in PBS-buffer for 1 h at room temperature on

rollerbank and were incubated overnight at 4 C̊ in 1% non-fat dry milk in PBS-

buffer, containing 0.05% Tween-20, in the presence of primary antibodies (goat

anti-human vimentin, actin, glyceraldheyde 3-P dehydrogenase, heterogeneous

nuclear ribonucleoprotein, heat shock protein 70, alcohol dehydrogenase NADP,

phosphoglycerate kinase 1, ubiquitin carboxy-terminal hydrolase L1 and

elongation factor 1) diluted 1:5000. Subsequently, they were washed in PBS-buffer

containing 0.05% Tween-20 and reacted for 1 h with the goat anti-rabbit Ig

secondary antibody conjugated with HRP diluted 1:5000. After washing in the

same buffer indicated above, membranes were incubated for 2 min in 6 ml of ECL

Advance Western Blotting Detection Kit (GE-Healthcare) and finally proteins

visualized using ImageQuantTM LAS 4000 mini Biomolecular Imager (GE

Healthcare).

Reproducibility of the study

To verify the reproducibility of the study, 2-DE maps were carried out in triplicate

for each subject. A total of 36 gels was thus produced. Those presented in this

report are the best representative gels among all generated that showed spots

constantly present. The spot averages of the replicated gels from each repeated

operation were used for calculating the mean ¡ SD spot number. Experimental

steps concerning sample preparation; electrophoresis run and gel staining were

performed ‘‘in parallel’’ on all samples.

LC-MS/MS analysis

In-gel digestion

The selected spots, excised from 2D-gel and chopped into smaller pieces, were

incubated on a shaking thermo block at 30 C̊ for 15 min with wash solution

(50:50 v/v CH3CN: 0.1 M NH4HCO3, pH 8.0). This procedure was repeated until

complete destaining. After removal (under vacuum at 60 C̊ for 10 min) of the

wash solution, gel pieces were resuspended in 30 mL of 0.1 M NH4HCO3 pH 8.0
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and digested overnight at 37 C̊ by addition of 0.5 mg sequencing grade trypsin

(Promega, Madison, WI, USA). Peptides were then extracted sequentially from gel

matrix by treatment (at 37 C̊ for 15 min) with 30 mL of 50% CH3CN in water,

0.1% HCOOH and finally with 50 mL of 100% CH3CN. Each extraction involved

10 min of stirring followed by centrifugation and removal of the supernatant. The

original supernatant and those obtained from sequential extractions were

combined and dried. At the moment of use the peptide mixture was solubilized in

10 mL of 0.1% HCOOH for MS analyses.

Liquid Chromatography

Samples were analyzed using the Eksigent nanoLC-Ultra 2D System (Eksigent,

part of AB SCIEX Dublin, CA, USA) combined with cHiPLC-nanoflex system

(Eksigent) in trap-elute mode. Briefly, samples were first loaded on the cHiPLC

trap (200 mm6500 mm ChromXP C18-CL, 3 mm, 120 Å) and washed in isocratic

mode with 0.1% aqueous formic acid for 10 min at a flow rate of 3 mL/min. The

automatic switching of cHiPLC ten-port valve then eluted the trapped mixture on

a nano cHiPLC column (75 mm615 cm ChromXP C18-CL, 3 mm, 120 Å),

through a 40 min gradient of 5–60% acetonitrile (containing 0.1% formic acid),

at a flow rate of 300 nL/min. To preserve system stability, in terms of elution

times of components, trap and column were maintained at 35 C̊.

Mass Spectrometry

All experiments were acquired using a QExactive mass spectrometer (Thermo

Fisher Scientific, San Josè, CA, USA), equipped with a nanospray ionization

source (Thermo Fisher). Nanospray was achieved using a coated fused silica

emitter (New Objective, Woburn, MA, USA) (360 mm o.d./50 mm i.d.; 730 mm tip

i.d.) held at 1.5 kV. The ion transfer capillary was held at 220 C̊. Full mass spectra

were recorded in positive ion mode over a 400–1600 m/z range and with a

resolution setting of 70000 FWHM (@ m/z 200) with 1 microscan per second.

Each full scan was followed by 7 MS/MS events, acquired at a resolution of 17,500

FWHM, sequentially generated in a data dependent manner on the top seven

most abundant isotope patterns with charge §2, selected with an isolation

window of 2 m/z for the survey scan, fragmented by higher energy collisional

dissociation (HCD) with normalized collision energies of 30 and dynamically

excluded for 30 s. The maximum ion injection times for the survey scan and the

MS/MS scans were 50 and 200 ms and the ion target values were set at 106 and

105, respectively.

Data Analysis

All data generated were searched using the Sequest search engine contained in the

Thermo Scientific Proteome Discoverer software, version 1.4. The experimental

MS/MS spectra were correlated to tryptic peptide sequences by comparison with

the theoretical mass spectra obtained by in silico digestion of the human protein

database (about 228763 entries), downloaded January 2013 from the National
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Centre for Biotechnology Information (NCBI) website (www.ncbi.nlm.nih.gov).

The following criteria were used for the identification of peptide sequences and

related proteins: trypsin as enzyme; three missed cleavages per peptide were

allowed and mass tolerances of ¡50 ppm for precursor ions and ¡0.8 Da for

fragment ions were used. Validation based on separate target and decoy searches

and subsequent calculation of classical score-based false discovery rates (FDR)

were used for assessing the statistical significance of the identifications. Finally, to

assign a final score to proteins, the SEQUEST output data were filtered as follows:

1,5; 2.0; 2.25 and 2.5 were chosen as minimum values of correlation score (Xcorr)

for single-; double-; triple- and quadrupole-charged ions, respectively. Only

peptides with high confidence were considered; the protein grouping was enabled

and the consensus score was set higher than 10.

Results

TREM2 expression

TREM-2 belongs to the immunoglobulin superfamily (Ig-SF) and, in the CNS, it

is expressed in close association with DAP12 in microglial cells of frontal,

temporal, parietal and basal ganglia, cerebellum and spinal cord. Although not all

TREM2/DAP12 functions have been fully elucidated so far, NHD might be an

interesting example of how primary microglial dysfunction can damage the CNS

thus emerging as the prototype of a primary microglial disorder of the CNS. In

light of this, microglia would have been expected to be the source of proteins for

our research. However, due to obvious ethical considerations, access to these brain

cells from living subjects under investigation was practically not available. To

overcome this limitation, lymphobastoid B-cells have been used as a valid

alternative to microglia. The rationale for this choice was the similarity in the

expression of certain genes between lymphobastoid cells and microglia. In fact,

although microglia and lymphocytes B do not share the same progenitor (they are

generated from common myeloid progenitor and common lymphoid progenitor,

respectively), both are antigen-presenting-cells (APC) and both express TREM2.

TREM 2 expression in lymphocytes B had never been shown before and was the

preliminary step of this work. Thus, cellular RNA from each sample was reverse

transcripted and the resulting complementary DNA was submitted to conven-

tional PCR amplification. An aliquot of each PCR reaction sample was then

loaded on 1.5% agarose gel electrophoresis to visualize the products by staining

with ethidium bromide. As shown in Fig. S1, the appearance of a clear band (see

lanes 2 to 8, in which samples from wild type homozygote II3, representative of all

controls, and all patients have been loaded) in correspondence of the 250 bp DNA

ladder (lane 9) and the positive control band (Hela cells, lane 1), confirmed the

presence of this protein in Lymphoblastoid B-cells.

Based on these data, the proteomic profiles of lymphoblastoid B-cells from an

entire Italian family made of seven components (six NHD patients and one

healthy individual) have been performed. Five additional healthy subjects were
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analyzed as controls. The family pedigree and the demographic data of these

individuals, which include gender; age and phenotype, are shown in panels A and

B, respectively, of Figure 1.

Two-dimensional map of Lymphoblastoid-B cells proteins

2-DE analyses of Lymphoblastoid B-cells from each of the twelve individuals were

performed in triplicate. The three gels for each single subject were scanned and

interpreted with the software indicated in the experimental section. The next step

was the creation of a ‘‘Match Set’’ to compare all gels of a single group and to

match the spots present. By using this match set, a synthetic image (Master Gel)

was created that contained qualitative and quantitative data relative to all spots.

The master gels from each group (wild type, wt; heterozygotes, He, and

homozygotes, Ho) showed such a high similarity between protein patterns that

they could easily be matched to each other. This facilitated the correlation of gels

Figure 1. Pedigree of the Italian family considered in this study (Panel A). Demographic table showing
the characteristics of subjects investigated (Panel B).

doi:10.1371/journal.pone.0110073.g001
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and the creation of a Higher Match Set and a virtual image indicated as Higher

Master Gel (HMG) that contained all the common and uncommon spots between

groups of comparison. This Higher Match Set allowed to determine the presence

or absence of spots and the intensity values of common ones that could be

submitted to statistical analysis. This approach showed a high level of

reproducibility inside each group; typically, a mean of 907¡41 protein spots were

detected in coomassie stained gels of the controls; 886¡38 for heterozygotes and

897¡39 for homozygotes. The HMG image, comprehensive of all matched spots

derived from master gels of three groups analyzed, is shown in Figure 2.

Differentially expressed proteins

Spot quantities of all gels were normalized to remove non-expression related

variations in spot intensity and data were exported as clipboard for further

statistical analysis. The raw amount of each protein in a gel was divided by the

total quantity of all proteins (spots) that were included in that gel. The results

were evaluated in terms of spot optical density (OD). Statistical analysis of

PDQuest data allowed to assess differences in protein abundance on a protein-by-

protein basis. According to guidelines for differential proteomic research27, only

spots that showed a change in density at p,0.05 (by nonparametric Wilcoxon

test) among groups were considered to be ‘‘differentially expressed’’ in the three

groups of subjects. This term was used here in the sense of differential protein

abundance determined by several processes including changes in protein

biosynthesis and modification or degradation. By using these criteria, 21 spots

(indicated by arrows with numbers and letters in HMG of Figure 2) out of the

896¡32 spots, differed by the ratio indicated above and were selected by the

statistical program as spots having significant changes in intensity between

lymphoblastoid B-cells of He/Ho and wt cells. All of them were common to the

three groups of subjects investigated.

To highlight differences in spot density among groups, the region of each real

stained gel in which spot of interest (indicated by an arrow) is positioned, was

zoomed. By horizontally aligning a single magnified gel view (representative of all

others) for each group, the set of panels shown in Figure 3 (panels A and B) was

generated. For a better visual inspection of spot density variances for each

individual, a graphical representation was reported aside of each horizontal set of

panels.

Identification of proteins under altered spots was obviously the only way to

answer the immediate question of whether these spots could contain any potential

diagnostic biomarker of NHD.

Proteins under 8 spots indicated by letters a to h were identified by gel-

matching while those under spots arbitrarily indicated by numbers 1 to 13, by LC-

MS.
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Identification of proteins in spots a–h

The good matching (in terms of pI and Mr values) between spots a to h in our

map of Figure 2 and spots observed in previously published human skin fibroblast

maps, whose protein content was identified [26, 27], allowed to assign tentatively

the identity to these proteins. This resulted in the list of proteins shown in Table 1.

Figure 2. Two-dimensional electrophoretic map of proteins in Lymphoblastoid B-cells from individuals belonging to the family described in
Figure 1. The virtual image reported here (Higher Master Gel, HMG), results from the correlation of master gels from each group of subjects and contains all
the common and uncommon spots among groups of comparison. Spots differentially expressed among groups of subjects have been labeled by arrows with
letters and numbers. Proteins contained in altered spots indicated by letters (a to h) were identified by gel-matching; those in spots arbitrarily indicated by
numbers (1 to 13), by LC-MS/MS. For additional experimental details, see the text.

doi:10.1371/journal.pone.0110073.g002
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Figure 3. The zoomed region of each real stained gel in which altered spot (indicated by an arrow) is positioned, is shown in this figure. A single
magnified gel view (representative of all others) for each group was horizontally aligned to highlight differences in spot density among groups. Aside of each
horizontal set of panels, a graphical representation of changes was also reported. Spots a to h are shown in panel A; spots 1 to 13 are shown in panel B.

doi:10.1371/journal.pone.0110073.g003

Table 1. List of proteins identified by Gel Matching.

Spot accession Protein Name
MW Theoretical/
Experimental*

pI Theoretical/
Experimental*

a 21264428 Heat-Shock Protein 70 74/75–76 5,9/6.8

b 130348 Phosphoglycerate mutase 1 29/32 6,7/7.2

c 119339 Alpha-enolase 37/44–45 5,9/7.0

d 113606 Fructose-bisphosphate aldolase A 39/41–42 8,4/7.6

e 120649 Glyceraldehyde-3-phosphate
dehydrogenase

36/33–34 8.6/8.4

f 44888310 Pyridoxal phosphate phosphatase 32/29–30 6.1/6.9

g 46397333 b Actin 42/44–45 5.3/5.6

h 1706278 Cystatin-B 11/10–11 6.9/7.2

*Experimental values have been determined from the mobility of protein spots.

doi:10.1371/journal.pone.0110073.t001

Proteomics of Nasu-Hakola Disease

PLOS ONE | DOI:10.1371/journal.pone.0110073 December 3, 2014 12 / 34



Identification of proteins in spots 1–13

The poor matching of spots 1–13 in Figure 2 with those of maps indicated above

forced us to assign their identity by LC-MS/MS. Spots were carefully excised from

the gel; destained; digested with trypsin and peptide mixtures submitted to

nanoLC-MS/MS following the procedure detailed in the experimental section.

After searching the MS fragmentation data against the databases indicated, a

confident identification was obtained for all of the queried proteins.

Unambiguous identification was achieved also in cases in which spot of interest

(i.e. spot 6) contained small amounts of interfering components which co-

migrated with major protein. For each protein identified, detailed identification

data, including protein and gene names, accession number, uniprot ID, pI and

molecular mass (theoretical); sequest score; spectral count and unique peptides

identified; are shown in Table 2. Additional information concerning the primary

sequence of all peptides identified for each of these proteins is shown in Table S1.

Validation of proteins identified

To achieve the unambiguous identification of proteins under spots a to h and to

answer the question about robustness of interpretation, gel spots were excised and

submitted to the procedure indicated above. Not surprisingly, the results (shown

in Table S2) confirmed the correct attribution of proteins. Our data, while

suggesting that the process of spot assignment was unambiguous, indicated that

these 2-DE maps, although prepared and analyzed non-consecutively, could be

considered quite reproducible.

Proteins, whose antibodies were available in the laboratory (spots a, e, g, 1, 6, 9,

11, 12), were transferred onto PVDF membranes and incubated with the

monoclonal antibodies indicated in the experimental section, followed by anti-

rabbit antibody. Although not included among the altered proteins, we

transferred also vimentin (expected to be under spot z). It was used as a sort of

‘‘internal standard’’ to obtain a further confirmation of the reproducibility of our

map. The results of western blotting experiments are shown in Figure S3.

Functional classification of differentially expressed proteins

Functional annotation of the altered proteins identified was carried out by

categorizing these proteins into different groups based on Gene Ontology terms.

As noted by GO, a significant proportion (around 50%) of these proteins were

classified as having catalytic activity, in particular enzymes involved in metabolism

of glucose. Also proteins involved in regulation were well-represented (around

40%). Cytoskeletal and transport proteins were present in small proportion

(about 5% each).
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Discussion

Based on the similarity of clinical characteristics between Nasu-Hakola disease

and other neuronal disorders, it cannot be expected that the former may be

differentially diagnosed on the basis of patient’s symptoms only. In fact, failing the

precise interpretation of NHD symptoms, patients are likely to go unrecognized

and analyses at a molecular level are mandatory for a correct diagnosis of this

pathology. In light of this, the identification of potential protein markers of the

disease would indeed provide a novel context for a better understanding of the

molecular mechanisms by which pathological events occur. Obviously, addressing

this issue depends much on the ability to identify those proteins that are thought

to be involved in these events. Under the assumption that changes in specific

functional proteins play a key role in the pathogenesis of NHD, the objective of

this study was thus to design a protocol aimed at identifying proteins that may be

changed in this disease. 2-DE coupled to nano LC-MS/MS was the strategy that

allowed, for the first time, to produce the proteomic profiles of lymphoblastoid B-

cells from six individuals (four heterozygotes and two homozygotes) affected by

this inherited rare disorder. By comparing protein patterns from these subjects

with that of an healthy control of the same family, a number of spots which

displayed altered expression could be observed. As by the graphical representation

of spot variances shown in Fig. 3 (panels A and B), optical density of six spots

(spots a; f; h and 1; 2 and 10 in figure 3) was increased in He and Ho compared to

wt and that of eleven spots (spots b; d; e; g and 3; 4; 7–9; 12 and 13 in figure 3)

Table 2. List of proteins identified by LC-MS/MS.

Spot
No. Protein name

Gene
name

GI
Accession UniProt ID pI

Thr.
MW (kDa) Score SpC Peptides

Unique
Peptides

1 Ubiquitin carboxy-terminal hydrolase L1 UCHL1 4185720 P09936 5,45 23,01 52,00 11 2 2

2 T-complex protein 1 subunit e CCT5 194381764 P48643 8,50 32,03 46,68 12 2 2

3 D(3,5)- D(2,4)-dienoyl-CoA
isomerase, mitochondrial precursor

ECH1 70995211 Q13011 8,00 35,79 50,49 11 6 5

4 L-isoaspartyl/D-aspartyl O-
methyltransferase

PCMT1 180637 P22061 6,52 24,70 57,37 13 1 1

5 Coproporphyrinogen oxidase CPOX 433888 P36551 7,12 40,28 246,17 57 7 7

6 Heterogeneous nuclear
ribonucleoprotein H

HNRNPH1 48145673 P31943 6,18 49,10 171,58 37 6 6

7 T-complex protein 1 subunit c CCT3 63162572 P49368 6,49 60,50 74,73 17 5 5

8 Density-regulated protein DENR 4755083 O43583 5,96 26,50 57,81 12 3 3

9 Elongation factor 1 d EEF1D 38522 P29692 5,06 31,20 30,34 5 1 1

10 Complex intermediate-associated
protein 30, mitochondrial

NDUFAF1 49574510 Q9Y375 7,64 37,71 10,54 2 1 1

11 Alcohol dehydrogenase [NADP(+)] AKR1A1 5174391 P14550 6,79 36,50 235,96 50 4 4

12 Phosphoglycerate kinase 1 PGK1 4505763 P00558 8,10 44,60 68,27 14 6 6

13 Voltage-dependent anion-selective
channel protein 2

VDAC2 48146045 P45880 7,20 30,40 37,72 7 2 2

doi:10.1371/journal.pone.0110073.t002
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was decreased. An oscillation pattern of changes (down-up-down or up-down-

up) was observed for spots c and 6 and for spots 4 and 11, respectively.

The major question was, obviously, whether the change in expression of these

proteins was in response to specific physiological conditions. If so, this was indeed

an important proof of principle that the information contained in lymphoblastoid

B-cells was able to reflect the health state of an organism.

Proteins with catalytic activity

It should be emphasized that five, out of the 21 altered proteins identified in our

study, were glycolytic enzymes and, what is more, they were the same enzymes

indicated in previous proteomic studies as being somehow involved in

neurodegenerative disorders different from NHD [29–34]. These included

phosphoglycerate kinase 1 (PGK-1, spot 12); fructose bisphosphate aldolase A

(aldolase A, spot d); phosphoglycerate mutase (PGM, spot b); glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, spot e) and a-enolase (spot c). Interestingly,

in most cases, the expression level of these proteins in our patients (He and Ho)

strongly correlated with the data of the literature for other neurodegenerative

disorders [29–34].

For example, the proteomic profile obtained by Martinez et al. [29] from

frontal cortex homogenates of patients with progressive supranuclear palsy (PSP),

a neurodegenerative disorder characterized by neuronal loss and gliosis, resulted

in the discovery of PGK-1 and aldolase A as targets of oxidation in oxidative

stress. They proposed that the down-regulation of these enzymes might account

for impaired energy metabolism in this disease. Being aldolase A (a glycolytic

enzyme catalyzing the conversion of fructose bisphosphate into glyceraldehyde-3-

phosphate dehydrogenase and dihydroxyacetone phosphate) present in neurons

and astrocytes, and PGK-1 mainly in astrocytes, these findings support neurons

and astrocytes as targets of oxidative damage in PSP. PGK-1 was described as

being oxidized also in the frontal cortex of patients with Alzheimer’s disease (AD)

[30, 31], and in transgenic mice with Alzheimer plaque pathology [32].

Experimental models of AD following injection of amyloid b1–42 peptide into rat

brain [33] and in rat primary neural cells following amyloid b1–42–induced

oxidative damage [34] have also evidenced the oxidation of several proteins

related to glycolysis and glycogenesis. We can speculate that the evident down-

regulation of PGK-1 (spot 12 in figure 3; 1.8-fold compared to control) and of

Aldolase A (spot d in figure 3; 1.5-fold compared to control) in our patients may

be responsible for impaired glucose metabolism resulting in the accumulation of

glycolytic intermediates. Obviously these preliminary data do not allow to

understand whether the role played by oxidative stress in the pathogenesis of

NHD is similar to that demonstrated in other neurodegenerative disorders.

Nevertheless, knowledge of the level of key proteins provides useful information

for further investigations needed to clarify the mechanisms involved.

Likewise, also PGM (spot b in figure 3), an enzyme that catalyzes the

interconversion of 3-phosphoglycerate and 2-phosphoglycerate in glycolysis and
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gluconeogenesis, was down-regulated (about 1. 6-fold compared to control) in He

and Ho. Interestingly, PGM was among the proteins that were found to be under-

expressed in a proteomic study performed on human brain (white and gray

matter) from patients affected by corticobasal degeneration (CBD), an adult-onset

progressive disorder [35]. Other proteins that were differentially expressed

between CBD and non-demented comparison group included alcohol dehydro-

genase; ubiquitin carboxyl-terminal hydrolase L1 (UCH L1) and L-isoaspartyl/D-

aspartyl O-methyltransferase (PIMT) [35].

While not being glycolytic enzymes, UCH L1 and PIMT deserve our attention

in this context. Emphasis should be placed, in particular, on UCH L1, one of the

most abundant proteins in the brain, that was apparently down-regulated in CBD

brain. By hydrolyzing a peptide bond at the C-terminal glycine of ubiquitin, this

thiol protease is involved both in the processing of ubiquitin precursors and of

ubiquitinated proteins. Given its function, UCH L1 was reported to be essential

for brain function and required for normal synaptic and cognitive functions [36].

Down-regulation and oxidative modification of this enzyme were observed by

other authors also in the brain of individuals with AD and Parkinson’s disease

[30, 37–39]. More recently, a proteomic study revealed that the amount of UCH

L1 was 2-fold decreased in hippocampus of zinc-deficient rats compared to

controls [40]. This enzyme (spot 1 in figure 3) was found to be strongly up-

regulated (about 3.2-fold compared to control) in our patients. This finding,

while being in contrast with most data from the literature cited above, was in good

agreement with the proteomic data obtained by Sultana et al [41] who

determined, in hippocampus of AD patients, a 1.31-fold increase for this enzyme.

These conflicting results could be tentatively explained by considering the time-

course of NHD development. Although no evidence is currently supporting a

direct relationship between UCH L1 and this neurodegenerative disorder, these

changes provide new insights into the expression level of UCH L1 that could be

promising in the search for sensitive and specific biomarkers of the disease.

L-isoaspartyl/D-aspartyl O-methyltransferase (PIMT) is a widely expressed

protein-repair enzyme that restores isomerized or racemized aspartyl residues to

their normal configuration. Generation of these residues was implicated in protein

inactivation, autoimmunity and aggregation. In fact, it has been observed that the

spontaneous formation in proteins (under physiological conditions) of atypical

Asp residues (D-Asp and D, L-isoAsp) from L-Asp and L-Asn residues, can

interfere with protein activity and lead to disruption of cellular function. Thus,

the repair of atypical Asp residues by PIMT may function as a conformational

switch in the regulation of cellular processes such as signal transduction [42].

Isomerized/racemized Asp residues have been shown to be increased in amyloid-

beta (Ab) peptides purified from the brain tissue of patients with Alzheimer’s

disease (AD). Because isomerization/racemization of Ab peptides enhances the

aggregation process in vitro, this posttranslational modification is believed to be a

pathogenic factor in the onset of sporadic cases of AD [42]. Working on mice,

Yamamoto et al. [43] have also shown that deficiency of protein methylation leads

to fatal progressive epileptic disease. Desrosiers and Fanelus [44] have reported
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that PIMT expression appears to decline during aging. The finding that PIMT is

highly expressed in various stages of tissues (including embryonic and neonatal

brains), suggests that this enzyme, in addition to the repair of aged proteins, may

have roles in the brain and in other tissues. The down-regulation (around 2-fold

compared to control) of this protein (spot 4 in figure 3) in He and Ho subjects of

our study could reflect the changes that certainly take place in the brain (and/or in

other tissues) of these individuals and we think it can be suggestive for the

forthcoming studies of PIMT in NHD.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme

with multiple functions, including a role as intracellular sensor of oxidative stress

during early apoptosis. A large body of evidence, in fact, suggests that this enzyme

is differentially affected in vivo in accordance with the degree of oxidative stress

associated to neurodegenerative disorders. For example, abnormal expression and

nuclear accumulation of this protein have been described in postmortem tissues

from patients with several neurodegenerative diseases [45]. A decrease in protein

level was found in brain of AD [41, 46] as well as in brain of transgenic mice [47]

and in mice with amyotrophic lateral sclerosis [48]. Also in the frontal cortex of

Lewy Body diseased patients [49] and in T-lymphocytes of Parkinson’s patients

under dopaminergic therapies [50] the GAPDH levels were significantly different

from those of controls. a-enolase, (the enzyme which interconverts 2-

phosphoglycerate and phosphoenolpyruvate in glycolysis) is another target of

oxidation in the frontal cortex. Its oxidation was described, among others, in

patients with mild cognitive impairment and in advanced AD [41, 51]. The down-

regulation of GAPDH (spot e in figure 3) in He and Ho (around 1.8-fold change

compared to control) was in agreement with data from the literature and the

oscillation pattern of changes of a-enolase (spot c in figure 3), although rather

confusing (down-up-down), was coincident with results recently obtained by

Takano et al.. on AD model mice [52]. In fact, they observed that, while the

amount of a-enolase was decreased in AD mice compared to controls, it

significantly increased in the hippocampus of mice with amyloid deposition.

Thus, the amyloid deposit was apparently responsible for the enhancement of the

expression of energy metabolic proteins.

Taken together, all these data confirm, if necessary, that oxidative stress and

damage are common molecular mechanisms at work in a variety of

neurodegenerative disorders, including NHD. Nevertheless, it also appears that

inhibition of glycolytic enzyme activities is a mere avenue by which these

pathologies affect neuronal cell development and survival.

The amount of alcohol dehydrogenase (spot 11 in figure 3) was 1,1-fold higher

in He and under-expressed in Ho (about 2.3-fold change compared to control).

Numerous data in the literature [53–55] indicate that the interaction between

amyloid-beta (Ab) peptide-binding alcohol dehydrogenase (ABAD) and Ab is an

important mechanism involved in Ab-mediated mitochondrial and neuronal

perturbation. Inhibition of this interaction, in fact, was shown to significantly

reduce mitochondrial Ab accumulation [56]. Given its role, protection of the

function of this specific target within the cell could be a route for preventing Ab
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assemblies associated with synaptic failure and consequent mitochondrial

dysfunction.

The up-regulation (about 3.60-fold change compared to control) of pyridoxal-

5-phosphate phosphatase (PLPP) (spot f in figure 3), an enzyme that catalyzes the

dephosphorylation of pyridoxal-5-phosphate, was in agreement with data

obtained by Furukawa et al.. [57] on limbic forebrain of SAMP10 mouse, a model

of age-related cerebral degeneration. Being PLPP one of the proteins known to be

involved in brain cytoskeleton formation, and associated with acute and chronic

neurodegenerative conditions, increased levels of this enzyme in their model were

associated with aging. It has also been reported [58] that PLPP/chronophin-

mediated actin dynamics may play an important role in the changes of

morphological properties and excitability of the epileptic hippocampus.

Cytoskeletal proteins and chaperones

Interaction of Ab with b-actin, one of the major cytoskeletal proteins in neurons,

was shown to enhance the neurotoxicity induced by tau-mediated actin filament

formation. Moreover, as indicated above, the dynamics of b-actin assembly are

involved in many aspects of cell motility, vesicle transport and membrane

turnover. To elucidate the pathological effects of Ab oligomers on hippocampus,

Takano et al. [52] performed proteomic studies on AD model mice. Interestingly,

while three out of the four spots containing b-actin showed a significant increase

of this protein compared to controls, the level of the fourth was unchanged. By

contrast, b-actin (spot g in figure 3) was found to be under-expressed (about 2.5-

fold compared to control) in He and Ho of our study. This finding is of particular

interest in the light of previous results obtained by Chen et al. [35]. Working on

human brain from patients with CBD, they in fact observed an up-regulation of

cofilin-1. However, being cofilins essential regulators of actin filament turnover,

their increase implies an acceleration in actin filament depolymerization.

Obviously, only the finding in He/Ho maps of over-expressed cofilin spot would

confirm this hypothesis. Although the presence in our maps of additional b-actin

spots cannot be excluded, the fact that they have not been selected by the

statistical program means that no significant changes in intensity between control

and patients could be observed.

The work of Takano et al. [52] also showed that Ab oligomers might contribute

to change the expression of heat shock protein 70 (Hsp70), a family of

mammalian Hsps. These proteins not only work as chaperones to prevent protein

misfolding and aggregation, but are also required to facilitate the transfer of

misfolded proteins to proteasome for degradation [59]. In particular, the Hsp70

family includes both Hsc70 and Hsp70, the former being a cognate protein of the

latter. Conflicting data are reported in the literature about the expression of

Hsp70 in neurodegenerative disorders. In fact, while the above cited report of

Takano et al. [52] described a significant decrease of this protein in hippocampus

of AD model mouse, other studies indicate its up-regulation in hippocampus,

inferior parietal lobe and cerebellum of subjects with mild cognitive impairment
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[60]. Elevated synthesis and accumulation of Hsp70 have been also observed in

AD brain by Perez et al.. [61]. Our results are in agreement with these data. The

over-expression (about 2-fold compared to control) of Hsp70 (spot a in figure 3)

in He and Ho maps seems to suggest an increased need of neural protection from

stress by assisting cellular protein folding.

Other chaperon proteins have been found to be altered in NHD. In fact,

chaperonin containing t-complex polypeptide 1 (TCP1) subunit e (spot 2 in

figure 3) and subunit c (spot 7 in figure 3) were found to be up-regulated (around

3.2-fold compared to control) and down-regulated (about 4.6-fold compared to

control), respectively. These data, if confirmed, may be of great interest. In fact,

given that these chaperones have very similar roles in limiting the accumulation of

misfolded proteins, one would have expected to observe the same behaviour for

both subunits of TCP1. On the contrary, the expression level of subunit e was

strongly increased and that of subunit c strongly decreased. Data of the literature

appear contradictory. In fact, while TCP1 e did not show any significant

expressional change in AD brain [62], it was found increased in hippocampus of

adolescent rats after excessive alcohol consumption [63]. On the other hand,

proteomic analyses of S-nitrosylation of cysteine residues by NO has shown a

large increase of TCP1 c S-nitrosylation in neuroblastoma cells [64]. An

imbalance of this process has also been linked to neurodegeneration through the

impairment of pro-survival proteins [64].

Other proteins

Elongation factor 1, subunit s (spot 9 in figure 3), a protein that has been

suggested to be implicated in the pathogenesis of neurodegenerative disorders,

was found to be under-expressed (around 3-fold compared to control) in He and

Ho of our study. Intriguingly, this protein was found to be up-regulated in mouse

hippocampal HT22 cells treated with ochratoxin A (OTA) [65], a naturally

occurring mycotoxin (produced by Aspergillus ochraceus and Penicillum

verrucosum) that is found in a variety of plant food products such as cereals. The

proteome response to OTA-induced cytotoxicity, included, among others, the

alteration of elongation factor 1, subunit s. Since reactive oxygen species (ROS)

were detected in OTA-treated cells, the authors concluded that altered protein

expression profile after OTA treatment was related to the generation of these

species. In a recent report [66] it has been shown that elongation factor 1, subunit

s may inhibit in vitro and in vivo the activity of SIAH-1, an ubiquitin ligase, thus

acting as a negative regulator of this activity. The possible role played by enoyl-

CoA isomerase (spot 3 in figure 3) and coproporphyrinogen oxidase (spot 5 in

figure 3) in NHD should be further investigated. The former is a mitochondrial

enzyme involved in the degradation of unsaturated fatty acids by beta-oxidation

[67]. Hydrophobic interactions between proteins and lipids or fatty acids have

been well documented. It is known, in fact, that fatty acids have various effects on

enzymatic activities of glycolytic enzymes [68–70]. The finding of this enzyme

may add biochemical information on the involvement of metabolites with
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isoprenoid chain in NHD. Coproporphyrinogen oxidase is a key enzyme in heme

biosynthesis whose partial enzymatic deficiency was found to be responsible for

episodes of severe photosensitivity [71]. The former was under-expressed (around

1.8-fold changes compared to control) in He and Ho, while the latter had an up-

down oscillation pattern of changes.

Heterogeneous nuclear ribonucleoprotein A1 is the best-known member of the

hnRNPs family that has an important role in RNA metabolism and, by playing key

roles in neuronal functioning and its depletion, is involved in several

neurodegenerative disorders including AD; ALS; spinal muscular atrophy and

fronto-temporal lobar degeneration [72]. The oscillation pattern of changes

(down-up-down) did not allow us to have a clear picture of its real expression

level in NHD patients. Given its importance, a precise determination of its

expression level will constitute the core of future efforts.

Cystatins are cysteine-protease inhibitors implicated in various disease states,

including neurodegenerative conditions [73]. It has been reported that

dysregulation of cystatin B-cathepsin B signaling may serve as a critical

mechanism coupling oxidative stress to neuronal degeneration in progressive

myoclonus epilepsy [74]. Cystatin B (spot h in figure 3) was found to be up

regulated (about 2.6-fold compared to control) in He and Ho. However, despite

the belief that cystatin B is important for neurodegeneration, contrasting results

have appeared in the literature and it is not clear, at the moment, whether low or

high levels of cystatin B are beneficial for the brain [75].

Voltage-dependent anion-selective channel 1 (VDAC1) is one of the three

isoforms of VDACs, known as mitochondrial porins. Together with isoform 2,

VDAC1 forms pores in the biolipid layers of the mitochondrial outer membrane,

thus being responsible for the characteristic permeability of this membrane [76].

Other important functions in the cell include regulation of calcium and ATP

transport and of apoptosis signaling [77–79]. These functions have been found to

be altered in cells from patients with neurodegenerative and mitochondrial

diseases, leading to mitochondrial dysfunctions [80, 81] which have been

identified as early events in AD pathogenesis, although their underlying

mechanisms are not completely understood. Mitochondria dysfunction and

oxidative stress have been extensively reported and the precise molecular link

between mitochondrial dysfunction and AD pathogenesis was recently described

[82]. Conflicting results have been reported in the literature concerning the level

of VDAC 1 in human or mice brain tissues. In fact, the proteomic analysis of Yoo

et al. [83] showed that total VDAC 1 was significantly decreased in frontal cortex

and thalamus of post-mortem brain regions of patients with AD. By contrast, it

was found over-expressed in the hippocampus of amyloidogenic AD transgenic

mice models and in postmortem brain tissue from AD patients at an advanced

stage of disease progression [84, 85].

In our study VDAC1 (spot 13 in figure 3) was under-expressed (about 1,6-fold

change compared to control) in He and Ho. Emerging research has revealed that

VDAC1 may be also found in the plasma membrane [86] in which it may
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represent a target for treatment of a range of conditions including neurodegen-

erative and mitochondrial diseases and possibly aging.

At this time the role of density-regulated protein (spot 8 in figure 3) and

complex intermediate-associated protein 30 (spot 10 in figure 3) in NHD remains

poorly understood. Nevertheless their identification may open new avenues for

better understanding of mechanisms involved in the development of this disorder.

The complete list of up- and down-regulated proteins found in altered spots of

our study, together with the values of their oscillation in expression level; their

significance and the changes of the same proteins taken from the literature have

been summarized in Table 3.

Functional evaluation of data

The results discussed above, while providing a new and larger context for future

studies on the pathogenesis of NHD, do not clarify yet whether the proteins

observed to be differentially expressed between controls and patients are specific

of NHD or not. A number of these proteins in fact intersects with a variety of

neurodegenerative disorders, including AD; PD; ALS and others. In particular, the

fact that several altered proteins are linked to glycolysis could support the idea

that the general decrease of energy metabolism due to the reduced metabolic rate

of glucose may be a feature of NHD, at least as far as the neurodegenerative aspect

is concerned. Unfortunately the fact that, to maintain its functions, brain needs an

enormous amount of energy compared with other tissues, is not such a surprising

facet. In fact, that changes in these proteins may lead to major alterations in the

energy pathways, thus affecting ATP production, was shown also for

neurodegenerative diseases previously mentioned. In the light of our results it

seems plausible to state that, in patients examined. the disturbed basal metabolic

pathways, in the whole, are consistent with their previous, well-documented

cognitive changes and clinical manifestations [17]. Thus, while clinical

observations demonstrated abnormal cerebral cortex in these patients, the

functional ones confirm that neurodegenerative processes extend beyond the basal

ganglia. Obviously it remains largely a matter of speculation whether these

glycolysis-related proteins contribute to the primary pathogenesis of the disorder,

thus being specific biomarkers, or are a consequence of the disease process.

Studies using postmortem brains of patients or microglia-like cells [87] in place of

lymphoblastoid cells, might be a clue to understand better the biological basis of

NHD. Nevertheless, in an effort to answer this question and to delineate the

pathways these proteins could be involved in, the GeneMANIA algorithm (http://

www.genemania.org) [88] was utilized in a function prediction setting. As shown

in the gene map of Figure 4, new genes (circles in grey), that are functionally

associated with those encoding deregulated proteins (circles in black) used to

generate the map, were evidenced. From among these genes, at least three

represent additional promising candidates involved in impaired glucose

metabolism. We hypothesized that these proteins had not been identified in our

study due to their low abundance. One of these is GPI that encodes a dimeric
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enzyme catalyzing the reversible isomerization of glucose-6-phosphate and

fructose-6-phosphate. Outside the cell, this protein functions as a neurotrophic

factor for spinal and sensory neurons. GPI deficiency can be associated with

neurological impairment [89]. TPI 1 encodes a protein with a well-characterized

role in glycolysis, catalyzing the isomerization of dihydroxyacetone phosphate to

glyceraldehyde-3-phosphate. Although still poorly understood, a progressive

neurodegenerative condition was shown to result from the deficiency of this

enzyme [90]. The LDHA gene encodes lactate dehydrogenase-A which is a subunit

of the lactate dehydrogenase enzyme. Being this enzyme important in providing

energy for the body, its deficiency may determine a break-down in muscle tissue

[91]. Finally, MIF gene encodes a key, regulatory cytokine which acts within both

the innate and adaptive immune responses. Altered MIF regulation is considered

important for acquiring chronic inflammation following an innate immune

response. Recently, interest has increased in the role of MIF in the development of

central nervous system tumors [92]. Moreover, giving GeneMANIA TREM2/

DAP12 as query entry, the pathway in which these two genes are involved was also

Table 3. Up- and down-regulated proteins found in altered spots of our study, together with the values of their oscillation in expression level.

Spot Protein Fold Change Reference

identified (2/+)

wt vs He/wt vs Ho

a Heat Shock Protein 270 +1.44a/+2.5a 58,59

b Phosphoglycerate mutase 1 21.35b/22.04b 33

c a-enolase +2.35a/+1.6a 50

d Fructose bis-phosphate aldolase A 21.55b/21.54b 27–32

e Glyceraldheyde-3 phosphate dehydrogenase 21.75b/21.83b 39; 44–48

f Pyridoxal phosphate phosphatase +2.80a/+4.42a 55

g b-actin 21.75b/23.59b 33

h Cystatin B +2.22a/+3.12a 70

1 Ubiquitin carboxy-terminal Hydrolase L1 +3.18a/+3.31a 34–39

2 T-complex protein 1 subunit c +3.28a/+3,27a 60; 61

3 -dienoyl CoA isomerase 21.46b/22.19b 67

4 L-isoaspartyl/D-aspartyl O-methyl transferase 22.05b/21.95b 41; 42

5 Coproporphyrinogen oxidase +1.06a/21.64b 71

6 Heterogeneous nuclear ribonucleoprotein A1 21.43b/+1.49a 72

7 T-complex protein 1subunit e 22.88b/26.54b 62

8 Density-regulated protein 22.22b/26.39b –

9 Elongation factor 1 23.25b/23.02b 63

10 Complex intermediate-associated protein 30 23.03b/22.61b –

11 Alcohol dehydrogenaseNADP +1.18a/22.57b 51–54

12 Phosphoglicerate kinase 1 21.39b/22.27b 27–32

13 Voltage-dependent anion-selective channel protein 1 21.40b/21.74b 78–80

Reference numbers refer to reports previously published describing alterations of these proteins in different neurodegenerative diseases.
ap.0.05; bp,0.05.

doi:10.1371/journal.pone.0110073.t003
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explored. From among the several genes which appeared to be in relation with to

the two query genes, to make the research easier, only those genes which were

well-integrated with the osteoclast pathway were selected. This approach led to the

identification of a higher-order multimeric receptor complex containing TREM2,

DAP12, plexin-A1 (PLXNA1) and semaphorine 6D (SEMA6D) [1]. In this

complex, PLXNA1 was shown to act as co-receptor for SEMA6D, thus making the

transmission of the signal to the membrane receptor TREM2 possible. DAP12 was

shown to establish interesting physical and pathway interactions also with signal-

regulatory protein beta 1 (SIRPB1), an immunoglobulin-like cell surface receptor

that participates in the recruitment of SYK (spleen tyrosine kinase), a tyrosine

kinase that activates a Ca++ cascade that leads to the nuclear gene activation [94].

SYK is an important player present in the cell cytoplasm that regulates different

Figure 4. Gene network analysis obtained by navigating through the differentially expressed energy
metabolic proteins identified in this study by using the GeneMANIA algorithm. Circles in black evidence
genes encoding deregulated proteins used to generate the map and circles in grey evidence new genes that
are functionally associated with the formers.

doi:10.1371/journal.pone.0110073.g004
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biological processes including innate and adaptive immunity, cellular adhesion,

osteoclast maturation and vascular development. To activate the SYK protein, the

ITAM (Immunoreceptor Tyrosine-based Activation Motif) tyrosine residues

present on the DAP12 receptor must be phosphorylated by SRC family kinases.

This step is followed by the recruitment and activation of SYK thanks to

interaction between -SH2 domain on SYK and the ITAM domain on the receptor.

By exploiting KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.

kegg.jp/) Pathway, an osteoclast pathway map was found (see Fig. 5) from which

it is easy to understand how the activation of SYK (evidenced by the red dotted

circle) leads to a cascade that ends in the nucleus with the activation of specific

osteoclast genes. All genes activated during this Ca++ dependent cascade are

involved in bone remodeling, bone reabsorption and Ca++ homeostasis. In an

effort to understand whether variations in the expression level of the 21 proteins

that were observed to be over2/down-regulated during our study (HSPA4,

PGAM1, ENO1, ALDOA, GAPDH, PDXP, ACTBL2, CSTB, UCHL1, CCT5,

ECH1, PCMT1, CPOX, HNRNPH1, CCT3, DENR, EEF1D, NDUFAF1, AKR1A1,

PGK1, VDAC2) could be related to a malfunction of the pathway, the genes that

encode for these proteins were included in the osteoclast network made up of 14

genes (SYK, BLNK, PLCG1, PPP3CA, NFATC1, CTSK, ACP5, CALCR, ITGB3,

CAMK4, CREB1, FOS plus TREM2 and DAP12). Given the difficulty to

investigate the resulting network (not shown), due to the high number of genes

inserted in the database, a number of genes that showed no/poor interactions were

taken off from the pathway. As shown in Figure S3, the other genes that showed

interactions with the osteoclast pathway genes, TREM-2 and DAP12, were

maintained and integrated in the system. In particular, the proteins found in our

study that seemed to participate in the system were: EEF1D, GAPDH, PGK1,

HSPA4, AKR1A1, HNRNPH1, CCT5 and CCT3 (evidenced by a red-dotted line

panel). With the aim to validate these results, the STRING (Search Tool for the

Retrieval of Interacting Genes, http://string-db.org) database was applied

indicating as query entry the 12 genes found to be involved in the osteoclast

pathway plus TREM2 and DAP12 genes and the list of genes encoding the 21

altered proteins of this study (Figure S4). This database not only confirmed the

data found with GeneMANIA but also added some new interactions to the system.

As it can be seen in Figure S4, some new genes (in the red dotted-line circle)

including PGAM1, VDAC2, ALDOA, ENO1 and PDXP resulted to be also well

integrated in the osteoclast pathway. In particular 12 proteins (EEF1D, GAPDH,

HSPA4, CCT3, CCT5, ENO1, PDXP, HNRNPH1, ALDOA, PGAM1, VDAC2 and

PGK1), among the 21 proteins identified with the proteomic analysis, seem to be

in relation with the osteoclast pathway. Even more interesting is the finding that

about one half of these proteins (GAPDH, PGK1, PGAM1, ALDOA, ENO1) is

involved in the glycolytic processes. Thus, a correlation between the genes

involved in glycolysis and the genes involved in the osteoclast pathway does exist.

It is, most likely, due to the big amount of ATP required from osteoclasts to

perform correctly their function. Osteoclasts must generate sufficient ATP to carry

on the energy-intense process of bone reabsorption. Bone is the only solid tissue
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in the human body and, as a dynamic tissue, is remodeled by a delicate balance

between bone-forming osteoblasts and bone reabsorbing osteoclasts (95).

Osteoclasts reabsorb bones by creating a subcellular compartment that is

maintained at a low pH value, into which proteolytic enzymes are secreted. In this

way the acidic environment removes the mineral phase. This function, together

with the fact that osteoclasts are motile cells, represents an high demand of ATP

(96). For this reason, as indicated by Kim et al.. [95], metabolic pathways switch

to an accelerated glycolytic and oxidative metabolism at an early stage of

osteoclastogenesis. Another important evidence of the importance of glycolysis in

osteoclasts was reported by Lu et al.. [97] who demonstrated that the E-subunit of

Figure 5. Osteoclast pathway map found in KEGG pathway database. The red dotted circle indicates the cascade activated by SYK.

doi:10.1371/journal.pone.0110073.g005
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the Vacuolar H+-ATPases binds the glycolytic enzyme aldolase and this binding

may provide a basis for coupling glycolysis directly to the ATP-hydrolyzing

proton pump. In osteoclasts, Vacuolar H+-ATPases (large multi-subunit proteins

essential for acidification of intracellular compartments in eukaryotic cells) are

densely packed in specialized domain of the apical plasma membrane where they

acidify an extracellular compartment at the site of attachment to the bone thus

playing an important role for a correct function of cells [98].

Under this scenario the importance of a functional glycolytic pathway during

the osteoclastogenesis and the bone reabsorption becomes clearer. The fact that a

mutation in the TREM2 or DAP12 gene can give rise to a non-functional

membrane protein complex, can lead downstream to an altered intracellular

pathway resulting in alteration of glycolytic gene expression. An altered glycolytic

pathway that, as previously indicated, seems to be fundamental for the correct

work of osteoclast cells, could be considered a key point to understand the

osteodysplasia profile of Nasu-Hakola disease. This result can suggest a new field

of investigation since, until now, there are no signs of proteomic research on the

osteoclasts involved in this disease. Obviously, only performing proteomic

analysis of the proteins expressed in osteoclasts it will be possible to validate this

assumption.

Limitation/strength of the study

The use of lymphoblastoid B-cells in place of micriglia as the source of our data

may represent a limitation of this work. The question of whether results obtained

from these cells could actually reflect possible dysfunction of microglia in Nasu-

Hakola patients was the object of an intense debate inside the research team.

Three factors did favor the use of lymphocytes. First, the finding of TREM2

expression in lymphoblastoid B-cells allowed to consider these cells suitable to

identify molecules directly related to NHD. On the other hand, for the ethical

considerations previously mentioned, microglia from living patients (and

controls) involved in the research could not be available and surrogate cells had

necessarily to be chosen for the study to be carried out. Second, lymphoblastoid

B-cells provide continually sufficient biomaterial for proteomic analyses, which is

not possible from direct specimen sampling of patients. The fact that re-sampling

patients will not be required, while avoiding unnecessary discomfort to the

patient, allays concerns of unavailable re-sampling because of patient geographical

location, death or other factors. Third, the presence in the literature of a proteome

map and a database of lymphoblastoid cells, generated by characterizing protein

spots on 2-DE (26, 27), allowed to identify a number of spots by gel-matching.

Thus, despite some inherent limitations, lymphoblastoid cell lines are increasingly

recognized an important resource for genetic and functional research of

neurological disorders. Nevertheless, in a very recent paper, Ohgidani et al. (87)

have shown a novel technique aimed at developing directly induced microglia-like

cells (iMG cells) with a combination of granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-34 from adult human monocytes without
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the use of viruses and genetic engineering. By comparing the levels of expression

of TREM2 and DAP12 in iMG cells from a NHD patient and a healthy control,

while no difference between them was evidenced for the former protein, the latter

was significantly lower expressed in patient. Based on these results they

hypothesized that iGM cells can possibly be utilized for analyzing the underlying

microglial pathophysiology of brain disorders, although further investigations

should be done to validate the closeness of iGM cells to human primary microglial

cells in the brain.

A few words about the number of subjects investigated. It is probably fair to say

that another limitation of the present study is the sample size of individuals

investigated. We would like to note that the prevalence values of NHD in Europe

(as by the Orphanet Report Series, Rare Disease Collection, dated November

2013) [99] is of 0.15/100.000. The prevalence in Japan and Finland, the two

countries in which the majority of patients is confined, is of 0.2/100.000 and 1/

100.000, respectively. The fact that no more than 200 cases have been identified

worldwide, points to NHD as a very rare disease. As by a systematic survey of the

literature, only three families (one of which decided to preserve its incognito)

have been diagnosed for this disorder in Italy, for a total of about 10 to 12 people

[100]. No information about possible additional sporadic cases is available. Thus,

patients analyzed in this report, while being around 3% of total cases in the world,

represent more than 50% of all Italian cases described so far. Moreover, to our

knowledge, that involved in this study is the largest NHD family ever investigated

and the only one for which genetic and radiological analyses of all components

have been performed. In our opinion, the fact that all of patients originate from

the same family, no matter how large the cohort is, makes this set of samples very

uniform and represents a strength of the work although, of course, we are aware

that a high-quality set of samples does not necessarily eliminate the risk of relying

on poor evidence of data.

Conclusions

Aim of this study was to identify protein biomarkers of NHD that could provide a

novel context for facilitating interpretation of disease symptoms. This is the first

attempt that gives just a taste of what is possible at the proteomic scale on NHD.

While resulting in the identification of a good number of proteins differentially

expressed between healthy controls and NHD patients, this pilot work has major

limitations, first of all the tissue examined, that is lymphoblastoid cells. Proteins

identified in these surrogate cells had been previously indicated as being involved

in a variety of neurodegenerative disorders spanning from AD to PD, ALS and

others. It could be argued that, being common to other brain disorders, these

proteins were not very specific to NHD. However, given the similarity between

clinical characteristics of NHD and those of other neuronal disorders, this finding

was not such surprising. The experimental data reported here, while confirming

that some relevant pathways shown to be involved in several brain disorders are,
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most likely, deregulated also in NHD, prove us right. Therefore, it cannot be

expected that this pathology is differentially diagnosed on the basis of patient’s

symptoms only. In terms of altered proteins identified and of their oscillation

pattern of changes, the degree of agreement between our results and those

previously published by other authors on neurodegenerative disorders different

from NHD was even beyond our expectations. Such concordance of data is highly

unlikely to be due to mere chance. Since, in most cases, also these authors used

gel-based techniques (2-DE/MS) as the proteomic procedures to identify target

proteins, this accordance may assess the analytical strength of techniques applied.

In conclusion, our findings allow to speculate that changes in proteins of

glycolisys and gluconeogenesis may lead to major alterations in the energy

pathway metabolism which, on its turn, may explain puzzling symptoms of NHD

patients, common to other brain disorders. In this context, these results may

indeed represent a proof of principle for improving the knowledge of the disease.

Aim of future studies will be understanding whether these alterations in

glycolysis-related proteins are a cause or consequence of the disease process.

Supporting Information

Figure S1. PCR amplification of cDNA from Hela cells (lane 1, positive

control); wild type homozygote II3 (lane 2); all patients considered in this

study (lane 3R8) and 250 bp DNA ladder (lane 9). The arrow indicates the

position of TREM2.

doi:10.1371/journal.pone.0110073.s001 (TIF)

Figure S2. Western blotting on PVDF membrane of spots a, e, g, z (bottom, left

to right) and spots 1, 6, 9, 11, 12 (top, left to right).

doi:10.1371/journal.pone.0110073.s002 (TIF)

Figure S3. Analysis by GeneMANIA of the 35 genes inserted in the database.

The red dotted panel indicates the proteins found in our study that seemed to

participate in the system.

doi:10.1371/journal.pone.0110073.s003 (TIF)

Figure S4. Analysis by STRING database with the 12 genes involved in the

osteoclast pathway plus TREM2 and TYROBP genes and the list of 21 genes

encoding proteins identified in our proteomic analysis. The red dotted circle

indicates five new genes which resulted to be well integrated in the osteoclast

pathway.

doi:10.1371/journal.pone.0110073.s004 (TIF)

Table S1. Primary sequence of all peptides identified for each protein and data

relative to their charge and molecular mass.

doi:10.1371/journal.pone.0110073.s005 (DOCX)

Table S2. Primary sequence of all peptides identified for proteins a to h and

data relative to their molecular mass and isoelectric points.

doi:10.1371/journal.pone.0110073.s006 (DOCX)
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