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Abstract
Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and
carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture.
Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of
carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood
through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water
relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its suscep-
tibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decom-
position. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified.
Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture
properties. Quantification and localization of capillary and cell wall water – especially in the over-hygroscopic range – is
considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various
methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence,
combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights
and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations.

Key points
• Susceptibility to wood-decay fungi is closely linked to their physiological needs.
• Content, state and distribution of moisture in wood are keys for fungal activity.
• Quantification and localization of capillary and cell wall water in wood is needed.
• New methodological approaches are expected to provide new insights

Keywords Brown rot . Durability . Fungi . Minimum moisture threshold . Physiological limit . Pile test . Soft rot . Sorption .

White rot .Wood decomposition .Wood-decay fungi .Wood-water interactions

Introduction

Wood is the largest pool of above-ground terrestrial carbon,
and fungi dominate the recycling of this sequestered carbon
(Zhang et al. 2019a, b). Wood-decaying fungi have tradition-
ally been assigned to three major groups referring to the mac-
roscopic and microscopic degradation pattern they form in
wood, i.e. brown-rot, white-rot and soft-rot decay. However,
based on genome comparison, Riley et al. (2014) found ‘a
continuum rather than a dichotomy between the white-rot
and brown-rot modes of wood decay’, where brown-rot fungi
are a polyphyletic group evolved from at least seven white-rot
lineages (Floudas et al. 2012; Hibbett and Donoghue 2001;
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Zhang et al. 2019c). But the terms brown-, white- and soft-rot
are still widely used because they are providing information
about general decay mechanisms.

Since brown-rot fungi have a lower repertoire of known
enzymes than white-rot fungi (Riley et al. 2014), brown-rot
fungi have historically been less studied than white-rot fungi.
The details about brown-rot mechanisms are still under dis-
cussion, but it is generally agreed that brown-rot fungi use a
two-step oxidative-enzymatic mechanism (Wei et al. 2010;
Korripally et al. 2013; Arantes and Goodell 2014; Zhang
et al. 2016), and efforts are now done to reveal more about
the mechanisms (e.g. Goodell et al. 2017; Presley and
Schilling 2017; Zhang and Schilling 2017; Castaño et al.
2018; Presley et al. 2018; Wu et al. 2018; 2019; Zhang et al.
2019a, b, c). Brown-rot fungi prefer conifers and degrade
hemicellulose and cellulose while leaving a modified
(brown) lignin-rich residue behind (Cowling 1961; Filley
et al. 2002; Pandey and Pitman 2003; Arantes and Goodell
2014). Even if brown-rot fungi lack > 60% of the genes
known to be involved in white rot, they degrade wood at a
higher rate than white-rot fungi in monocultures in laboratory
(Castaño et al. 2018). In general, brown-rot fungi have greater
effects on the elastomechanical properties of wood thanwhite-
rot fungi (Winandy and Morell 1993).

Complete lignin degradation is mainly known for
white-rot fungi, but there are also instances of brown-rot
fungi degrading significant portions of lignin such as
Gloeophyllum trabeum (Kaffenberger and Schilling
2013). Since lignin is a recalcitrant material, white-rot
decay and the enzymes involved have been explored in
more detail, lately with focus on biorefinery utilization.
White-rot fungi prefer deciduous trees and use powerful
oxidative and hydrolytic enzymes that gradually degrade
cellulose while lignin is completely mineralized, leaving
lighter coloured (white) cellulose behind (Riley et al.
2014). The major lignin-degrading enzyme systems of
white-rot fungi include lignin peroxidase, manganese per-
oxidase, versatile peroxidase and laccase (Manavalan
et al. 2015).

While brown and white rot is caused by basidiomycetes,
soft-rot is caused by ascomycetes and fungi imperfecti. Soft-
rot fungi primarily degrade hemicelluloses and cellulose; lig-
nin degradation is less extensive than by white-rot fungi. The
decomposition process can lead to formation of cavities inside
the cell wall and sometimes a discoloration and cracking pat-
tern like that of brown-rot fungi (Manavalan et al. 2015). At
advanced stages of decay, the lignin-rich middle lamella is left
behind as a skeleton of the wood structure with low strength
properties (Daniel and Nilsson 1997; Kim and Singh 2000).
Soft rot tends to occur in environments where basidiomycetes
are restricted by factors such as low aeration, high moisture
levels or high temperatures (Goodell et al. 2008; Manavalan
et al. 2015).

Wood will also get attacked by blue stain and mould,
but they are regarded mainly as an aesthetical issue since
they primarily use the easily available nutrients (sugars)
in the wood and do not degrade the structural biopoly-
mers. Moulds only cause superficial discoloration while
the dark-coloured hyphae of blue-stain fungi give dark
discolouration of the sapwood. Blue-stain fungi degrade
the pit membranes, and this causes increased water per-
meability. Beyond that, moulds can become an indoor
problem with respect to allergic reactions of inhabitants
against their spores (Crook and Burton 2010).

The degradation of the different wood constituents
such as hemicelluloses, cellulose, and lignin are partly
enzymatic, partly oxidative and still not entirely under-
stood, but differ between decay types and partly also
between fungal species. However, moisture has been rec-
ognized as a key parameter and governing factor for
fungal growth and decomposition of wood. It has long
been agreed that liquid water (i.e. capillary water) is a
prerequisite to allow extracellular transport of fungal
metabolites and subsequent breakdown of cell wall
components.

Wood is porous and hygroscopic; it can take up water in
liquid and gaseous form, and water is released from wood
through evaporation following a given water vapour pressure
gradient. Woodmoisture content (MC) is not the mass fraction
of water, but rather the ratio of water mass (total mass of water
in the wood) to wood mass (the dry mass of the wood alone).
Therefore, MC of over 100% is possible if the mass of the
water is greater than the mass of the wood itself. MC and
wood-water interactions affect several wood properties impor-
tant for applied purposes like strength and stiffness properties
(Tiemann 1906), dimensional stability (Stamm 1959), biolog-
ical degradation (Schmidt 2006) and fastener corrosion
(Zelinka and Rammer 2009; Jakes et al. 2013).

Different models exist to describe absorption and de-
sorption processes as well as different moisture states when
wood is in equilibrium with the ambient air. In contrast,
wood in outdoor applications undergoes frequent changes
of wetting and drying, and sorption of water in the vapour
phase can be easily overruled by liquid water uptake due
to precipitation or condensation. During the last three de-
cades, the perception of wood-moisture-relationships
changed significantly and so did the view on moisture-
induced properties. Among the latter is the susceptibility
of wood to fungal decay. Many new insights on the mode
of fungal action and the effect of moisture during wood
decay were derived from studies with chemically and ther-
mally modified wood. This paper reviews the state of the
art of wood-water relationships and their role for decom-
position by wood-destroying fungi. These are complex in-
terrelationships not yet fully understood, and current
knowledge gaps are therefore identified.
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Physiological needs of wood-decay fungi

Historic insight

The process of wood infestation by decay fungi can be divided
into different phases. The authors suggest the following: (1) spore
arrival, (2) spore germination, (3) mycelial growth, (4) wood me-
tabolism, (5) autolysis of fungal hyphae and (6) formation of
fruiting bodies and sporulation. It is assumed that the requirements
regarding moisture and other physico-chemical parameters (e.g.
pH, temperature, nutrients) differ between the six phases. But the
six phases of fungal infestation will overlap in the wood substrate
because of spatial colonization, and the required physico-chemical
factors can also overlap between phases of wood decomposition.
Most relevant for wood in service – especially in above-ground
situations – and therefore in the focus of wood pathologists are the
phases of spore germination, mycelial growth and metabolization
of wooden cell walls. Wood exposed in soil contact is often in
direct contact with fully developed fungal mycelium, and the
phases of spore arrival and spore germination is only relevant
for the transition zone between soil and air.

In the following, a chronological synopsis is given on
methods, thresholds and experimental limitations regarding
the moisture requirements for fungal growth and decay in
wood based on a literature review by Brischke et al.
(2018a). Several authors starting in the 1850s performed ex-
periments where wood specimens were subjected to different
climatic conditions, and spore germination or mycelial growth
were monitored (Zeller 1920). Moisture requirements were
often in the focus (e.g. Münch 1909; Wehmer 1914). Since
then, thresholds for fungal growth and decay of wood were
sought in numerous research works, where the experimental
set-ups differed in external moisture supply and the way of
infecting the wood specimens, and consequently, various min-
imum moisture thresholds (MMThr) were determined for dif-
ferent combinations of wood and fungal species.

Among the first, Zeller (1920) reported on the relationship
between relative humidity (RH) and spore germination of
wood-destroying fungi and found that the percentage of ger-
minating spores of the brown-rot Lenzites saepiaria (syn.
Gloeophyllum sepiarium) escalated above 90% RH, i.e. below
the fibre saturation point (FSP), which he considered to be at
95% RH. It is important to keep in mind in the following that
the terminology regarding the FSP is not consistent in litera-
ture and refers to different moisture states. For more discus-
sion see the ‘Cell wall saturation’ section below. Butin (1962)
reported about germination experiments with spores of the
ascomycete Cryptodiaporthe populea at varying vapour pres-
sure, and the results aligned with the basidiomycete findings
by Zeller (1920). Ascospores on malt agar germinated at 20
°C between 100 and 89% RH and conidia between 100 and
95.5% RH. However, the application of spores on wooden
substrates at a given moisture content (MC) is challenging.

Usually, for this purpose, spores are dispersed in water, and
an aqueous spore suspension is sprayed or otherwise applied
on the wood surface, which inevitably leads to a superficial
increment in moisture. The latter can be reversed by rapid re-
drying. However, it is also challenging to produce viable
spores in sterile laboratory conditions. Alternatively, spores
can be allowed to drop from fruiting bodies directly on wood
samples as reported by Zeller (1920), but the method bears a
high risk of contamination by non-target organisms such as
mould fungi and bacteria.

It has been frequently shown that fungal spores were able to
germinate at RH below 95% (Gottlieb 1950) corresponding to
wood MC below fibre saturation. One might hypothesize that
this also allows for the colonization of the wood substrate with
fungal mycelium, but to the authors knowledge, evidence from
experimental studies is still lacking. Other factors such as pH,
oxygen content, volatile organic compounds and temperature
are likely affecting both the germination of spores (Zeller
1920; Gottlieb 1950; Merrill 1970; Viitanen 1994) and the
formation of mycelium, but their effects are not necessarily
the same. Wood protection systems will obviously also alter
the wood substrate by adding chemicals that are toxic for the
fungi and/or by changing the wood-water properties.

Minimum moisture thresholds (MMThr)

An extensive chronology of experimental studies to determine
the moisture requirements for mycelial growth and wood de-
composition by different wood-destroying basidiomycetes
has been provided by Brischke et al. (2018a). A brief and
updated summary is provided below. An overview of corre-
sponding MMThr values is given in Table 1.

Several experiments to determine MMThr for fungal
growth and decay were performed using saturated salt solu-
tions to establish well-defined climates and monocultures of
wood-destroying fungi. Bavendamm and Reichelt (1938)
conducted fungal growth tests on malt agar with wood saw
dust and small wood blocks at different RH between 81.5 and
99% in small jars. Sodium chloride solutions of different con-
centration were used to obtain defined climates. Wood speci-
mens were infested using pre-inoculated saw dust. After 4
months of exposure, more than 2% mass loss (ML) was de-
tected on blocks stored at only 85.6% RH, but the MC after
incubation was not determined. Theden (1941) determined the
MMThr for new infection through mycelium, progress of de-
cay in already incubated samples and reactivation of decay in
infected, dried, and remoistened samples. The MMThr for
onset of fungal decay was achieved at 98.2% RH for different
test fungi. The higher theML by fungal decay, the higher was
the MC after incubation, which Theden (1941) explained by
the production of water during the biochemical degradation of
wood. In summary, Theden (1941) did not determine a
MMThr below fibre saturation, even though decay started at
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RH below 100%. Similar discrepancies between target MC
and actual MC after incubation were reported by Ammer
(1963), who used pre-inoculated specimens and stored them
in screw-top jars above different saturated salt solutions.
Ammer (1963) examined Norway spruce (Picea abies) sap-
wood and determined at 85% RH anMMThr of 19% for fun-
gal decay, which was approximately 7% points below its FSP.
In a similar set-up, Saito et al. (2012) exposed specimens
made from Japanese red pine (Pinus densiflora) in small ves-
sels with even smaller containers filled with different saturated
salt solutions. In contrast to the above-cited studies, no decay
was observed at MC below fibre saturation.

In a different approach, a wide range of wood MC was
generated by piling wood specimens in Erlenmeyer flasks
where the bottom of the piles was exposed to malt agar
inoculated with fungal mycelium serving as nutrition and
water source at the same time (Schmidt et al. 1996;
Huckfeldt et al. 2005; Huckfeldt and Schmidt 2006;
Stienen et al. 2014; Meyer and Brischke 2015; Meyer
et al. 2015b). The test fungus stopped growing upwards
where moisture was insufficient, and ML decreased with
the pile height. Within all the above-mentioned studies
using the piling method, the MMThr were below FSP
(Table 1), partly remarkably far below FSP. For instance,
Meyer et al. (2015b) found a lower moisture limit for decay
(ML = 2.2%) of beech wood by the white-rot Trametes
versicolor of only 15.4% MC. However, the malt agar at
the bottom of the pile served as an external moisture and
nutrition source. The fungus is able to transport water and
likely nutrition from the agar pile upwards through myceli-
um and strains, which can barely reflect the real-life situa-
tion for decay fungi on wood exposed above ground. In
contrast, a permanent source of water and nutrients is avail-
able when wood is exposed in soil. Hence, Höpken (2015)
modified the pile test method to examine the ability of de-
cay fungi to transport water. Capillary water transport in the
pile was interrupted by stainless steel washers between the
wood specimens, and tests were conducted with and with-
out malt agar. Höpken (2015) clearly showed that different
fungi could actively transport water within the piles.

Brischke et al. (2017) determined MMThr in different ex-
periments without an external moisture source. These tests
referred to the experimental set-up suggested by Ammer
(1963) using different saturated salt solutions and to the pile
tests conducted by Meyer and Brischke (2015), but omitting
malt agar as nutrition and moisture source. The MMThr for
T. versicolor that caused significant ML on beech was
achieved at 96% RH, i.e. at 25.3%MC, when specimens were
conditioned above saturated salt solutions and deionized wa-
ter, respectively, before inoculation with basidiomycete my-
celium. Piled Norway spruce specimens showed significant
ML already at 16.3% MC caused by T. versicolor without
external supply of liquid water.

Vanpachtenbeke (2019) abstained from the use of any pre-
infection with decay fungi and exposed wood specimens at
given climates for several months. In so-called fungal control
units (FCU), wood samples were exposed to high humidity
(25 °C, 97% RH). In a second set-up, two modules (25 °C,
97% RH and 5 °C/80% RH) were separated by mineral wool
and a wind barrier. The vapour pressure gradient between the
modules allowed for interstitial condensation and thus
moistening of the wood specimens. However, in both FCU,
no fungal decay occurred during 3, 9, and 12 months of
exposure, respectively.

Vanpachtenbeke (2019) also studied fungal decay in wood
specimens with different initialMC at different RH compared
to specimens incubated at 100% RH. The effect of RH onML
became evident, but it was also shown that within a few days
even at low RH (e.g. 43%) the MC increased rapidly above
FSP which can be attributed to active moisture transport from
the malt agar by the brown-rot fungus C. puteana.

To determine themoisture requirements of wood and decay
fungi is challenging. Besides the various limitations with fun-
gal experiments and the difficulties to determine wood MC
accurately, it appeared that the most challenging task is the
interpretation of the test results. Rather often, the origin and
the exact location of water in wood stay unclear. The latter is
closely related to the relationship between air humidity and
the equilibrium moisture content (EMC) of wood. However,
different physico-chemical processes are involved in wetting
and drying of wood. Hence, the moisture requirements of
decay fungi cannot be reduced to static wood MC values but
need to be seen in the context of dynamic processes including
adsorption, diffusion, capillary condensation, desorption, and
active moisture transport by the fungus itself. Usually, only an
average wood MC (global MC) is measured, and MC gradi-
ents between different locations in wood (localMC) are barely
accounted for (Meyer et al. 2015a). Finally, fungal degrada-
tion of wood itself supplies moisture.

Research often focussed on the question whether fungal
decay can be initiated below fibre saturation or in other words
whether capillary water in the cell lumens or other larger voids
in the cell wall is needed for fungal decay. However, the
definition of fibre saturation is somewhat diffuse and changed
a lot during recent years and so did the understanding of
wood-water relationships.

Wood-water relationships

The interrelationship between wood and water has been sub-
ject to research for more than a century, and scientific litera-
ture on the topic was reviewed at irregular intervals (e. g.
Venkateswaran 1970; Skaar 1988; Hartley et al. 1992;
Engelund et al. 2013; Thybring et al. 2019). Established
models and theories were critically and controversially
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discussed (Fredriksson and Thybring 2018, 2019; Zelinka
et al. 2018) coming along with new methods and techniques
for analysing sorption processes and localizing water inside
wood tissues and within the cell wall.

Plaza (2019) reviewed recent experimental assessment of
the molecular-scale interactions between wood and water,
including infrared spectroscopy methods, neutron scattering
and nuclear magnetic relaxometry experiments. Much of the
experiments have used extracted or derived polymers. Since at
molecular level, polymers might not be comparable to the in
situ wood polymers in native wood, Plaza (2019) states that
‘More experimental studies that probe the unmodified wood
as a whole are still needed’.

Cell wall saturation (CWS)

Green wood contains water-saturated cell walls and lumens
which can be filled to different extents with liquid water, water
vapour or both. During drying, cell lumens release liquid wa-
ter, and cell walls arrive in the transition between a saturated
and an unsaturated state, i.e. the so-called ‘fibre saturation
point (FSP)’ or ‘fibre saturation state’. The term as such is
somewhat misleading since fibres are not saturated with water,
but the cell wall is. ‘Cell wall saturation (CWS)’ would there-
fore better describe the phenomena attributed with this partic-
ular state. Such a state can be reached only theoretically. More
likely, adsorption and desorption are temporarily and spatially
ongoing processes which never attain to an equilibrium.
However, among the first, Tiemann (1906) defined the FSP
as the moisture content (MC) when lumens are empty of liquid
water, cell walls begin to dry and strength begins to decrease.
As previously stated by Engelund et al. (2013), this definition
is problematic, since the three criteria are not fulfilled at the
same MC (e.g. Stamm 1971), and fibre saturation is not a
steady state (e.g. Hernández and Bizoň 2007).

The FSP can also be defined through the climatic conditions
needed to achieve complete saturation of the cell walls, which
should happen in equilibrium with air at 100% RH.
Experimentally, this is hardly ever reached since minimal devi-
ations in temperature can lead either to condensation or a drop
inRH (Fredriksson 2019). Therefore, Popper andNiemz (2009)
used the Hailwood-Horrobin model (Hailwood and Horrobin
1946) for computing FSP values of more than 30 different
wood species to avoid conditioning of wood samples at 100%
RH. Hoffmeyer et al. (2011) suggested an EMC at a matric
water potential of − 0.1 MPa corresponding to 99.93% RH.

Wood is occasionally stored above deionized water at 20
°C to achieve full saturation of the cell walls corresponding to
what is often named FSP (e.g. Meyer and Brischke 2015;
Meyer et al. 2015b; Brischke et al. 2017, 2018a). As reported
by Hunter (1995) and Fredriksson (2019), this might be incor-
rect since very small changes in temperature would either
lower the RH or induce condensation, where the latter likely

occurs not inside conditioned wood samples, but at the outer
boundary of the conditioning room. Nevertheless, the EMC of
seven different European-grown wood species was between
23 and 39% when stored above deionized water until constant
weight in a study reported by Meyer and Brischke (2015).
This coincides with early findings by Zeller (1920) who re-
ported about 21 and 36% EMC above deionized water at 25
°C. Such findings support the theory of Fredriksson and
Thybring (2019) that cell wall saturation (syn. fibre saturation)
occurs at RH levels as high as those where capillary water is
present in adjacent cell lumens. In other words, it is suggested
that conditioning wood above deionized water does not lead to
full cell wall saturation, while at the same time, capillary water
is already present, and therefore the wood MC can be in a
range between approximately 20 and 40%.

Based on Engelund et al. (2013) will a FSP definition
based on changes in strength properties (FSP around 30%)
or a definition based on ‘the amount of water contained within
the saturated cell wall’ (FSP around 40%) result in a differ-
ence of about 10%. The question is why the last 10% MC do
not affect the physical properties of the cell wall as much as
the first 30% MC. The explanation provided was that below
30%MC new water molecules break different H-bonds in the
wood cell polymer, while from about 30% to 40%, new water
molecules are incorporated without breaking any cell wall
polymer H-bonds. Regardless of how FSP is defined, the
FSP can also vary based on the method used. More details
about experimental techniques for characterizing water in
wood covering the range from dry to fully water-saturated is
found in the review by Thybring et al. (2017).

Fredriksson (2019) claimed that other techniques than
those commonly used in the hygroscopic range are needed
to achieve RH higher than 95–97% and suggested, for in-
stance, the pressure plate technique, the pressure membrane
technique, centrifuge techniques or hanging water columns.
The MC of wood in the over-hygroscopic range (i.e. above
95% RH) was well correlated with the water potential and was
up to 200% as reported by Cloutier and Fortin (1991),
Tremblay et al. (1996) and Almeida and Hernández (2007).
Also, Hunter (1995) reported about wood MC well above
100% between fibre saturation at 99.9% and 100% RH.

Fredriksson and Thybring (2019) used a novel combina-
tion of experimental techniques (i.e. pressure plate and differ-
ential scanning calorimetry) to separate total sorption hyster-
esis into hysteresis in cell wall water and capillary water, re-
spectively, in the whole moisture range. They found that
‘sorption hysteresis in wood cell walls exists in the whole
moisture range. The cell walls were not saturated with water
until the whole wood specimen was saturated which contra-
dicts the long-held dogma that cell walls are saturated before
significant amounts of capillary water are present in wood’.
Consequently, CWSmight be considered as a quasi-stationary
state, since drying and moistening of wood are processes
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going on in parallel. Wood conditioned at such high RH pro-
vides plenty of condensation nucleoli, which explains that
condensation can happen significantly below CWS.
Seemingly, the water vapour pressure gradients are barely
high enough to stimulate condensation to an extent that cor-
responds with a wood MC of 100% and higher as suggested
by Fredriksson (2019) who referred to estimates based on the
pore structure of Norway spruce (Fredriksson and Johannsson
2016).

The definitions in literature of maximum amount of water
in the wood cell wall are manifold and partly contradictory.
The authors consider CWS as a state of wood when cell walls
are completely saturated with water, i.e. cell wall water, and
the cell walls are swollen at their maximum. When this hap-
pens, pores already start to get filled with capillary water.
Consequently, the maximum amount of cell wall water in
wood is not reached in the absence of capillary water. The
latter is important for interpreting data from experiments re-
garding the physiological needs of decay fungi.

Sorption isotherms

Sorption experiments have been frequently conducted in con-
ditioning chambers with a constant climate defined by tem-
perature (T) and RH of the air. In conventional conditioning
chambers both, T and RH are subject to oscillation which is a
limitation of the method (Thybring et al. 2019). More stable
conditions can be achieved when exposing wood samples
above different saturated salt solutions (e.g. Ammer 1963;
Peralta 2007; Saito et al. 2012; Brischke et al. 2017), salt
solutions of different concentration (Bavendamm and
Reichelt 1938; Theden 1941) or sulphuric acid at different
concentrations (Zeller 1920) at a constant temperature.
Alternatively, vacuum balances of various kinds were used
for determining sorption isotherms, and today, automated
continuous-flow sorption balances are frequently used for
measuring sorption isotherms and for studying sorption kinet-
ics (Thybring et al. 2019). The latter technique is also known
as ‘dynamic vapour sorption (DVS)’, but limited to very small
samples with a mass in the milligramme range.

Fredriksson and co-workers highlighted the importance of
the so-called super-hygroscopic or over-hygroscopic range
(Fredriksson and Johansson 2016; Fredriksson and Thybring
2018; Fredriksson 2019) where wood takes up a substantial
amount of water in a narrow RH range due to uptake by cap-
illary condensation in the macro-voids, i.e. cell lumens and pit
chambers. In contrast, in the hygroscopic range (i.e. between 0
and about 30% MC), wood absorbs water molecules in cell
walls, which interact with hydroxyl groups and is bound by
hydrogen bonds (Fredriksson 2019). The over-hygroscopic
moisture range is the moisture range exceeding 95–98% RH
and is sometimes also called ‘capillary moisture range’ (e.g.
Nilsson et al. 2018).

Murr and Lackner (2018) found that grain size and grain
layer thickness influenced the initial sorption kinetics, with the
latter showing a larger impact. This confirmed the notion of a
transport-limited initial mass increase, possibly due to water
vapour diffusion to the sorption sites. Long-term behaviour
was less affected and was attributed to the ‘concept of a relax-
ation and reorganisation dominated long-time behaviour’;
Murr (2019) confirmed that water vapour transport influenced
the sorption kinetics of small sample sizes and concluded that
this result need to be considered in modelling and interpreta-
tion of water vapour sorption experiments.

Similar to other porous materials, wood exhibits sorption
hysteresis. At a given climate, the EMC of wood is not neces-
sarily the same, since it depends on the moisture history
(Fredriksson and Thybring 2018, 2019). Usually, the MC is
higher during desorption compared to absorption, where the
amplitude of the hysteresis strongly depends on the respective
ambient climate. For interpretation of experimental data on the
physiological needs of decay fungi, it is therefore essential to
know the moisture history of the samples and to assure that
theoretical EMC values are either based on absorption or de-
sorption but never on different moistening or drying regimes.
Hysteresis is more pronounced at high RH (Fredriksson and
Thybring 2019) and therefore particularly important for the
interpretation of MMThr values. However, in most studies,
specimens were used to determine MMThr values, which
underwent absorption.

Accessibility of sorption sites and localization
of water

Hydroxyl groups (OH groups) are the predominant sorption
sites for water molecules in wood. The amount of OH groups
in hemicelluloses is twice as high as in lignin and four times
higher compared to cellulose fibrils (Thybring et al. 2017).
One approach to determine accessible OH groups in wood
(in the hygroscopic range) is gravimetrically by hydrogen-
deuterium exchange (Morrison 1960; Sepall and Mason
1961). The concept is initial drying, deuterium oxide (D2O)
conditioning and final drying; deuterium oxide causes hydro-
gen on accessible OH groups to be exchanged with deuterium
(heavy water), and the number of exchanged OH groups can
be determined from change in mass. Beck et al. (2018a) re-
ported that the OH accessibility (measured by deuterium ex-
change) in Pinus radiata earlywood stayed almost constant
(6.5–8 mmol/g) during decay up to 50% ML caused by
Rhodonia placenta. This might seem illogical since hemicel-
lulose is degraded first by brown-rot fungi. It was hypothe-
sized that new OH groups were exposed by (1) the opening of
the cellulose micro-fibrils and (2) the modification of lignin by
hydroxyl radicals from Fenton chemistry.
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Numerous insights on wood-water relationships and fungal
decay potential were derived from studies on thermally and
chemically modified wood. In this regard, it has been shown
that water was excluded from acetylated wood cell walls due
to both direct substitution of OH groups leading to less prima-
ry sorption sites for water molecules and steric hindrance of
unmodified OH groups by the bulky acetyl groups
(Papadopoulos and Hill 2003; Popescu et al. 2014; Beck
et al. 2017). In acetylated wood with an average weight per-
cent gain (WPG) of 21.4%, Beck et al. (2018a) found that
onset of substantial ML was preceded by a deacetylation
phase. OH accessibility before decay was lower than for un-
modified wood. Initiation of decay tended to increase the OH
accessibility, and the reason is most likely due to oxidative
degradation and deacetylation. At later stages of decay, the
OH accessibility decreased again, probably due to residual
acetyl groups on lignin. During the decay process, the acety-
lated samples never reached the OH levels found in unmodi-
fied wood.

Before and after brown-rot decay (R. placenta), wood-
water relations were determined with low-field nuclear
magnetic resonance (LFNMR) relaxometry. LFNMR can
provide insights into wood-water chemical interactions as
well as information about the distribution of water within
the macro-void structure of the wood anatomy in the over-
hygroscopic range. In acetylated wood decayed by brown
rot, the behaviour of the cell wall wood-water relations (i.e.
LFNMR T2 relaxation of water populations) corresponded
well with the deacetylation observed by chemical charac-
terization. Acetylation causes the water to become more
mobile due to its reduced affinity for the acetylated cell
wall, but the total amount of water within the cell wall is
reduced (Beck et al. 2018b). Like acetylation, furfurylation
was shown to reduce the amount of water within the cell
wall determined with LFNMR (Thygesen and Elder 2009)
However, in contrast to acetylation, furfurylation did not
change the interaction of water with the cell wall surface.
In the over-hygroscopic region furfurylated wood took up
more water than untreated wood (voids and cracks during
treatment). The same Pinus radiata material and test
design as in Beck et al. (2017, 2018a, b) was used for
furfurylated wood (Beck et al. 2019). OH accessibility in
sound, furfurylated samples did not change with increasing
WPG, suggesting little cross-linking occurs between the
furfuryl polymer and the wood cell wall. OH accessibility
in furfurylated wood samples at 32.1% WPG increased
significantly after initiation of decay. This increase was
attributed to opening of crystalline cellulose regions and
formation of new OH groups in lignin and the furfural
polymer due to oxidative alterations. The OH accessibility
in sound furfurylated wood was lower than in unmodified
wood, but after initiation of decay, it was slightly higher
than in unmodified decayed wood (around 9 mmol/g).

Attempts to visualize capillary water in wood were made
by Li et al. (2013) who used X-ray computed tomography and
monitored water uptake processes in solid wood and different
wood-based products. Similarly, De Ligne et al. (2019) ob-
served density changes of small Scots pine sapwood blocks
during decay by C. puteana with the help of X-ray CT. They
hypothesized that different processes such as moisture uptake,
moisture production by the fungus andML due to fungal deg-
radation caused density changes but struggled to ‘untangle
these factors’. In many other studies (Watanabe et al. 2012;
Lindgren et al. 2016; Hall 2019) micro-CT scanners were used
to visualize and quantify wood moisture as well as its spatial
distribution, for instance, during drying. However, to the best
knowledge of the authors, micro-CT techniques have not yet
been successfully applied to distinguish between bound and
capillary water in wood during sorption or decay processes on
cell and cell wall level.

Transport processes in wood in the absence
of capillary water

Fungal decay alters the sorption and electrical conductivity of
wood, and an increase of accessible OH groups at initiation of
decay is suggested to be linked to a change of electrical conduc-
tivity. More OH groups could contribute to a percolating net-
work. The analysis by Zelinka et al. (2008) ‘indicates that elec-
trical conduction in wood can be explained by percolation theory
and that there exists a continuous path of Type II water in wood
at wc, which is below the traditional fiber saturation point’.
Thybring et al. (2017) suggested that an ion transport in wood
is linked with the formation of a continuous network of cell wall
water, and limiting cell wall moisture, e.g. chemical modifica-
tion, ‘might prevent the formation of such a network, hereby
disrupting the physical pathways for transport of solutes’. Jakes
et al. (2013) observed that the onset ofmetal corrosion and fungal
decay in wood occurred before capillary water is formed in cav-
ities and aqueous chemical transport would be possible. The
percolation threshold when hemicelluloses undergo glass transi-
tion is likely far below the traditional FSP, i.e. around 16%MC
according to Zelinka et al. (2008) and Jakes et al. (2019).

Brischke et al. (2018b) found that brown rot and white rot
reduced the sorption of wood and lowered its electrical resis-
tance in the hygroscopic range. Decayed specimens showed a
MC well above fibre saturation and an increased electrical
resistance compared to undecayed wood at a given MC as
long as the fungal mycelium penetrating the wood blocks
was alive. The hyphae network itself served apparently as an
additional pathway for ions and water. When brown-rot
decayed specimens were dried and re-wetted, they showed
an elevated electrical resistance beyond cell wall saturation.
In white-rot decayed specimens, the resistance was reduced at
a given MC.
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Oven-drying of the specimens led to a breakdown of the
gelatinous extracellular matrix (ECM) formed by the fungus
(Kirker et al. 2017). Afterwards, changes in electrical conduc-
tivity became apparent but were the consequence of the re-
spective degradation patterns of brown- and white-rot fungi.
During active fungal infestation, the fungi-induced changes of
the cell wall chemistry are overruled by the presence of liquid
water, not only in cell wall voids but also in the cell lumens.

Jakes et al. (2019) reviewed and applied approaches
established in polymer science as a tool to understanding the
effects of moisture on diffusion in unmodified wood cell
walls. The premise was that ‘the movement of chemicals
through wood cell walls is a diffusion process through a solid
polymer’ and in contrast to previous assumptions of aqueous
pathways. They conclude that both lignin and the amorphous
polysaccharides in wood are likely to have glass transitions.
Glass transition temperatures are affected bymoisture and will
increase when moisture decrease. This is of importance be-
cause diffusion strongly depends on the state of the polymer
(i.e. rigid glassy state or soft rubbery state). The effects of
water sorption and plasticization are not directly proportional,
and water in ‘holes’ does not contribute to plasticization. The
implications regarding fungal decay are not explicitly men-
tioned by Jakes et al. (2019), but several of their findings
can be important to fungal metabolism, for example: (1) the
parallel existence (in time and space) of different proposed
states of water could help explain why fungal decay some-
times seems to start at wood MC below the traditional FSP,
and (2) absorption of water molecules in ‘holes’ and the for-
mation of water clusters might serve as ‘initiation spots’ of
fungal enzymatic activity (provided the enzymes have access)
and ‘may provide avenues for aqueous diffusion of chemicals
through cell walls’. Crucial questions that arise are: (1) Is
wood a miscible blend, a compatible blend, or an immiscible
blend? (i.e. what is the glass transition point of wood cell
walls?), and (2) does fungal decay depend on the glass transi-
tion point of a single component? (i.e. do fungi start to degrade
hemicelluloses as soon as their enzymes can diffuse into
them?). They further highlight a difference in diffusion
through wood polymers vs. typical polymers, the high swell-
ing pressures that can develop in unmodified wood cell walls
and that this pressure should be given attention in future dif-
fusion models.

Quantification of fungal responses

As an alternative to traditional mass and strength loss mea-
surements, the metabolic activity of wood-decay fungi can be
determined by microcalorimetry where the heat production
rate is measured (Xie et al. 1997; Bjurman and Wadsö 2000;
Wadsö et al. 2013; 2017). Bjurman andWadsö (2000) applied
the technique for studying the effect of temperature on fungal

decay. Wadsö et al. (2013) studied the effect of different MC
on fungal metabolism, and Wadsö et al. (2017) aimed on
utilizing isothermal microcalorimetry for determining the du-
rability of different wooden materials against fungal decay.
Calorimetry measurements are very sensitive to small changes
in fungal metabolic activity, and measurements can be con-
ducted continuously. Hence, they are outperformingMLmea-
surements for monitoring fungal decay development. One
limitation of this method, and most other methods with a very
well-controlled environment, is the limited number of samples
allowed for each experimental run, often only one.

DNA-based methods are powerful tools for identification
of wood-decaying organisms and for quantification of fungal
biomass. Profiling of fungal communities related to wood
protection include different materials exposed in experimental
test fields (Råberg et al. 2007, 2009, 2013; Prewitt et al. 2014)
and fence poles (Råberg and Daniel 2009). Profiling of spe-
cies succession during decay of different woodmaterials using
molecular tools is very limited. Råberg et al. (2007) compared
species composition in six German test fields for two preced-
ing years using terminal restriction fragment length polymor-
phism (T-RFLP), cloning and subsequent sequencing (semi-
destructive sampling by drilling). Jacobs et al. (2019) studied
fungal community succession in pine and beech stakes every
half year, over a period of 3 years, using both morphological
methods and DNA analysis (destructive sampling). None of
the studies have taken moisture into account. The challenge of
identification of fungal communities in field samples is that
the analysis requires only a small amount of sample. To rep-
resent even a relatively small field test stake, a high number of
replicates must be taken to get an estimate of the fungal com-
munity. And the fungal community will change over time.
Reproducibility is challenging even within the same test site,
a larger variation will occur between sites because of differ-
ences in inoculum potential, temperature and moisture.
Hence, from an applied aspect, it does not so much focus on
which fungal species decay the wood but on the resistance of
the material against fungal degradation in general.

Methods to quantify fungal biomass in wood samples include
ergosterol or chitin assays (traditional biomass assays, e.g.
Matcham et al. 1985; Schnürer 1993) or DNA quantification
with quantitative real-time PCR (qRT-PCR) (Eikenes et al.
2005). qRT-PCR has the advantage that it can be used for iden-
tification and quantification on species level (species specific
primer) or at group level (e.g. basidiomycete-specific primer).
When compared to chitin and ergosterol, qRT-PCR was shown
to be the most sensitive method both in laboratory (Eikenes et al.
2005) and for field test stakes (Pilgård et al. 2011).

Unlike the genome, which is roughly fixed, the tran-
scriptome can vary with external environmental conditions.
The transcriptome reflects the genes that are being actively
expressed at any given time. Gene expression studies of un-
treated wood have provided new insight regarding
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basidiomycete decay mechanisms (e.g. Sato et al. 2009;
Martinez et al. 2009; MacDonald et al. 2011, 2012; Van den
Wymelenberg 2009, 2010, 2011; Suzuki et al. 2012; Doria
et al. 2014; Gaskell et al. 2014; Zhang et al. 2016; Zhang
and Schill ing 2017). Gene expression studies on
preservative-treated (e.g. Kang et al. 2009a, b; Tang et al.
2013) and preservative-modified wood are still relatively lim-
ited (Alfredsen and Pilgård 2014; Ringman et al. 2014, 2015;
Alfredsen et al. 2016a, b; Beck et al. 2018b; Skrede et al.
2019; Kölle et al. 2019). To the best knowledge of the authors,
no experiments have been done on gene expression where the
focus was to study the effect of different moisture levels. One
reason is that it would be technically challenging to keep the
wood moisture stable throughout the decay test. But the effect
of moisture on fungal gene expression should, indirectly, have
been captured in the modified wood experiments. Wood mod-
ifications have been claimed to have a non-toxic mode of
action against decay fungi, and the lower EMC is believed to
be the main effect against decay fungi as recently reviewed by
Ringman et al. (2019). According to recent gene expression
studies (Beck et al. 2018a; b; Skrede et al. 2019), the fungus
starts a common decay process in the modified wood but
proceeds at a slower pace. The slower process in modified
wood could be due to reduced access to cell wall polysaccha-
rides and/or lower EMC. The lower EMC will result in re-
duced transport of enzymes or water in an inadequate location
or form. Ringman et al. (2019) review in more detail the role
of water in brown-rot decay of chemically and thermally mod-
ified wood.

Important aspects that should be given more attention in
future gene expression studies of wood-decomposing fungi
are: (1) specimen design and harvest intervals (Zhang et al.
2016; Kölle et al. 2019), (2) substrate/culture conditions (Wu
et al. 2018; 2019), (3) relevant comparison between treat-
ments, (4) how to handle reference genes for accurate normal-
ization (Zhang et al. 2019b) and (5) in situ mRNA hybridiza-
tion rather than bulk sampling (Zhang et al. 2019a). It is worth
to keep in mind that according to Vogel and Marcotte (2012)
∼ 60% of variation in protein concentration cannot be ex-
plained by measuring mRNAs alone. Hence, there is a need
to expand the knowledge of what is secreted, especially for
brown-rot fungi, and using a realistic substrate, i.e. solid wood
(Presley and Schilling 2017; Presley et al. 2018; Wu et al.
2018).

Conclusions

Research on both wood-water relationships and the physio-
logical needs of wood-decaying fungi has been consecutively
performed during the last 150 years. Regardless, the interrela-
tionships between moisture dynamics in wood and its effect
on the activity of decay fungi are still not fully understood.

Fortunately, respective research activities have been intensi-
fied during recent years. From the review of these rather com-
plex interactions, one might conclude the following:

& Understanding the moisture requirements of decay fungi
is key for interpreting wood durability test data, for
analysing the protective mode of action of new wood pro-
tection systems and for accurate modelling of degradation
processes and the resulting service lifetimes of wood
products.

& Because of the assumed non-toxic effect and the change in
MC, studies on fungal decay of modified wood provide
insight regarding the wood-water effect on fungal behav-
iour. In the future, more targeted modifications (e.g.
Digatis et al. 2019) of the cell wall, to increase or decrease
moisture, could provide important new insight.

& Quantification and localization of capillary and cell wall
water – especially in the over-hygroscopic range – is con-
sidered crucial for determining minimum moisture thresh-
olds (MMThr) of wood-decay fungi. In particular, the role
of capillary or loosely bound water in modified wood
necessitates clarification, i.e. it is still not understood
whether decay fungi can utilize capillary water in cell
lumens or larger cell wall voids for metabolizing cell wall
substance. Increased knowledge about the potential trans-
port processes in wood in the absence of capillary water
might add additional pieces to this puzzle.

& Further unknowns are the minimum wood volume that
needs to exceed a certain MMThr and the time needed to
allow for onset of decay under such marginal conditions.
In this respect and for practical purposes, it is also inter-
esting to increase the understanding about the effect of dry
periods on fungal mycelium and its ability to get revital-
ized after re-wetting.

& The limitations of the various methods and experimental set-
ups to investigate wood-water relationships and their role for
fungal decay are manifold. Hence, combining techniques
fromwood science, mycology, biotechnology, and advanced
analytics, such as calorimetry, DVS, DSC, LFNMR, fungal
transcriptome and secretome, microspectroscopy and
chemometrics with sub-cell wall spatial resolution using in-
cubation experiments on solid wood substrate in strictly con-
trolled environments might provide new insights and even-
tually a breakthrough in understanding.

& It is commonly agreed that knowledge about how fungi
sense the dynamic composition of the wood cell wall (incl.
water amount and distribution) and adapt their secretome in
response are still fragmentary. Still, huge efforts are needed
to close the existing gaps in our understanding of fungal
biodegradation. The detailed laboratory studies suggested
might seem irrelevant from an applied perspective. But a
breakthrough on a detailed level will potentially have big
direct implications for different applications. Examples
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include, e.g. targeted blocking of fungal metabolic pathways
for improved wood protection, precision of modelling tools
and new enzymes or enzyme combinations for biorefinery
applications. Regarding the bigger picture, climate change is
the grand challenge of our time. Since more than half of all
biomass on Earth is wood, part of the solution is improved
utilization and longer service life (i.e. carbon storage) and
valorization (i.e. biorefinery applications) of the renewable
wood source as a substitute for more energy-consuming raw
material sources. By unravelling the intricate details about
decomposition of wood by lignocellulolytic fungi, we will
also have tools to better quantify carbon storage and release
both in nature and for wood in service.
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