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ABSTRACT Aspergillus luchuensis is used for the production of awamori and shochu,
which are traditional Japanese distilled alcoholic beverages. Here, we determined
the chromosome-level genome sequence of A. luchuensis RIB2601.

The black koji fungus Aspergillus luchuensis is used for the production of awamori and
shochu, which are traditional distilled alcoholic beverages indigenous to Japan (1–3).

A. luchuensis was originally used to produce awamori in Okinawa, Japan’s southernmost
prefecture; then, it was used to produce shochu (4). The black koji fungus plays an important
role in supplying glycoside hydrolases for decomposing starch contained in the ingredients
of awamori and shochu during the fermentation process (1–4). In addition, it excretes a large
amount of citric acid, which can prevent the growth of contaminating microbes during fer-
mentation (1–4).

Currently, the genome sequence of A. luchuensis NBRC 4314 (RIB2604) is available (5);
however, there are a variety of strains of the black koji fungus (1–3). We previously studied
an amylolytic enzyme-overproducing mutant of A. luchuensis RIB2601 (6); therefore, we
sequenced the genome of RIB2601. Strain RIB2601 was cultivated in yeast extract-peptone-
dextrose medium (2% [wt/vol] glucose, 1% [wt/vol] yeast extract, and 2% [wt/vol] peptone)
overnight. Then, the retrieved mycelia were subjected to DNA extraction using DNAs-ici!-F
(Rizo, Inc., Tsukuba, Japan). The genomic DNA of RIB2601 was sequenced with coverages of
37- and 336-fold using Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq
2000 instruments, respectively. ONT and Illumina sequencing libraries were prepared using
the ligation 1D (SQK-LSK109) and Illumina TruSeq DNA sample prep kits, respectively. The
ONT reads and Illumina reads were used for de novo assembly and error correction, respec-
tively. The ONT reads were assembled using Canu v2.0 (7); then, the initial assembly and
trimmed corrected ONT reads were reassembled using Flye v2.8-b1674 (8). The final assem-
bly was polished using medaka v1.0.3 (9) with ONT reads, Pilon v1.23 (10) with ONT reads,
and Pilon v1.23 (10) with Illumina reads. The genome sequence of RIB2601 was assembled
into nine contigs, which consist of eight chromosomes and one mitochondrial DNA. In addi-
tion, we found telomeres on both ends of each chromosome sequence, thus indicating that
we successfully sequenced the nearly complete genome sequence of RIB2601. Genome
annotation of the obtained chromosomal contigs and mitochondrial contig was performed
using the Funannotate v1.8.1 pipeline (11) and MFannot v1.1 (12), respectively. Gene predic-
tion was performed using SNAP v2006-07-28 (13), AUGUSTUS v3.3.3 (14), GlimmerHMM
v3.0.4 (15), and GeneMark-ES v4.61_lic (16) via the Funannotate v1.8.1 pipeline (11). For the
analysis, transcriptome sequencing (RNA-seq) reads of strain RIB2601 (6) (Sequence Read

CitationMori K, Kadooka C, Nishitani A, Okutsu
K, Yoshizaki Y, Takamine K, Tashiro K, Goto M,
Tamaki H, Futagami T. 2021. Chromosome-
level genome sequence of the black koji
fungus Aspergillus luchuensis RIB2601. Microbiol
Resour Announc 10:e00384-21. https://doi.org/
10.1128/MRA.00384-21.

Editor Jason E. Stajich, University of California,
Riverside

Copyright © 2021 Mori et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Taiki Futagami,
futagami@agri.kagoshima-u.ac.jp.

* Present address: Chihiro Kadooka,
Department of Applied Microbial Technology,
Faculty of Biotechnology and Life Science, Sojo
University, Kumamoto, Japan.

Received 14 April 2021
Accepted 29 June 2021
Published 22 July 2021

Volume 10 Issue 29 e00384-21 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0002-4613-1300
https://doi.org/10.1128/MRA.00384-21
https://doi.org/10.1128/MRA.00384-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00384-21&domain=pdf&date_stamp=2021-7-22


Archive [SRA] accession numbers SRX2414184 to SRX2414186) were de novo assembled
using Trinity v2.8.5 (17) and used for gene prediction with the sequence alignment tool
HISAT v2.2.0 (18). The proteins were annotated using MEROPS v12.0 (19), UniProt v2020_05
(20), MIBiG v1.4 (21), Pfam v33.1 (22), and dbCAN2 v9.0 (23) (based on CAZy database v7/
30/2020 [24]) with sequence alignment tools such as DIAMOND v2.0.6 (25) and HMMER
v3.3.2 (26). The annotation was also performed using InterProScan v5.47-82.0 (27), eggNOG-
mapper v1.0.3 (28) (for the EggNOG v4.5 database [29]), antiSMASH v5.1.2 (30), SignalP v4.1
(31), Phobius v1.01 (32), tRNAscan-SE v2.0.7 (33), and Barrnap v0.9 (34). The RIB2601 genome
includes 35,508,746bp with a GC content of 48.8% and is comprised of 11,553 predicted
coding sequences and 287 tRNAs. The genome completeness was assessed using BUSCO
v5.1.2 with the ascomycota_odb10 data set (35), resulting in 98.9% complete and single-copy,
0.2% complete and duplicate-copy, 0.3% fragmented-copy, and 0.6% missing benchmarking
universal single-copy orthologs (BUSCOs). The details for each replicon are summarized in
Table 1. The chromosome-level genome sequence will aid in subsequent genomics research
of black koji fungi.

Data availability. The nucleotide sequences of the A. luchuensis RIB2601 chromosomes
and mitochondria have been deposited at DDBJ/ENA/GenBank under accession numbers
AP024434 to AP024442. The raw sequence reads were deposited in the SRA under accession
numbers DRX251232 and DRX251231.
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