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It is well established that the hormone leptin circulates in the plasma in amounts proportional to body fat content and it regulates
food intake and body weight via its actions in the hypothalamus. However, numerous studies have shown that leptin receptors
are widely expressed throughout the CNS and evidence is growing that leptin plays a role in modulating a variety of neuronal
processes. In particular, recent studies have highlighted a potential cognitive enhancing role for leptin as it regulates diverse aspects
of hippocampal synaptic function that are thought to underlie learning and memory processes including glutamate receptor
trafficking, dendritic morphology, and activity-dependent synaptic plasticity. Characterisation of the novel actions of leptin in
limbic brain regions is providing valuable insights into leptin’s role in higher cognitive functions in health and disease.

1. Introduction

The hormone leptin plays a pivotal role in regulating a
number of hypothalamic driven functions including energy
homeostasis, reproductive function, and bone formation.
However, recent studies have demonstrated that leptin has
widespread action in the CNS, and evidence is growing
that leptin has the capacity to modulate higher brain func-
tions. Indeed, leptin has a marked effect on hippocampal-
dependent function and in particular learning and memory
processes. In addition, dysfunctions in the leptin system have
recently been linked to neurodegenerative disorders such
as Alzheimer’s disease. Here we review the evidence that
leptin is a potential cognitive enhancer and also examine
the possibility of utilising leptin replacement therapy in the
treatment of Alzheimer’s disease.

2. Leptin

The endocrine hormone leptin is principally, but not exclu-
sively, derived from white adipose tissue. The circulating
levels of this hormone vary during the day, but are mainly
determined by body fat content and also feeding status [1, 2].
Leptin enters the brain via saturable transport across the
blood brain barrier [3]. Additionally, leptin may be released

locally within the CNS as there is evidence for expression of
leptin mRNA and protein in specific neuronal populations
[4]. It is well documented that leptin plays a pivotal role in
the regulation of food intake and body weight via signaling
information about the status of fat stores to leptin receptors
expressed on specific hypothalamic nuclei. However, leptin
receptors are also widely expressed throughout the CNS
with high levels detected in many brain regions involved
in higher cognitive processes including the hippocampus,
cortex, and amygdala. Moreover, growing evidence indicates
that leptin is a pleiotropic hormone that exhibits diverse
central actions including its ability to regulate hippocampal
synaptic plasticity [5] and to play a role in mood disorders
such as depression [6].

2.1. Leptin Receptors. Leptin mediates its biological effects
via activation of the leptin receptor (ObR) which is encoded
by the diabetes (db) gene [7]. Alternative splicing of the db
gene results in the generation of six leptin receptor isoforms
(ObRa-f) with identical N-terminal binding domains but
distinct C-terminal regions and signaling capacity. ObRbis,
the long form of the receptor, and the main signaling
competent isoform as key motifs required for signaling are
contained within its extended C-terminal domain. ObRs
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display the greatest homology with the class I cytokine recep-
tor superfamily [7]: receptors that lack intrinsic tyrosine
kinase activity but signal via association with janus tyrosine
kinases (JAKs). Indeed ObR activation results in the phos-
phorylation of JAK2 which subsequently promotes the asso-
ciation with and activation of various signaling molecules
including PI 3-kinase (phosphoinositide 3-kinase), Ras-Raf-
MAPK (mitogen activated protein kinase), and STAT3(signal
transducer and activator of transcription).

2.2. Leptin Regulation of Hippocampal Synaptic Plasticity.
The hippocampal formation is an area of the brain that
plays a pivotal role in learning and memory. Indeed, both
long-term potentiation (LTP) and long-term depression
(LTD), which are activity-dependent forms of synaptic
plasticity that result in persistent alterations in excitatory
synaptic strength, and which are thought to underlie certain
aspects of learning and memory, are evident in this brain
region. Moreover, N-methyl-D-aspartate (NMDA) receptor-
dependent LTP induced in the hippocampal CA1 region has
been implicated in spatial learning and memory. Several lines
of evidence indicate that many growth factors and hormones,
including insulin [8, 9] and leptin [10]; have the ability
to modulate hippocampal synaptic plasticity. Indeed, leptin
insensitive obese rodents (fa/fa rats and db/db mice) display
deficits in hippocampal LTP and long-term depression (LTD;
[11]). Leptin insensitivity also results in impairments in
spatial learning and memory tasks performed in the Morris
water maze [11, 12]. Furthermore, rodent performance in
spatial memory tasks is significantly enhanced after direct
administration of leptin into the CA1 region of the hip-
pocampus, whereas leptin administration into the dentate
gyrus increases the magnitude of LTP [13]. At the cellular
level, leptin promotes conversion of short-term potentiation
(STP) into LTP, and it facilitates the induction of LTP in acute
hippocampal slices [13, 14].

2.3. Leptin Regulates NMDA Receptor Function. It is well
established that the synaptic activation of NMDA receptors
coupled with a postsynaptic rise in intracellular Ca2+ is
crucial for the induction of LTP at hippocampal CA1
synapses [15]. Moreover, the ability of hormones to influ-
ence the magnitude of LTP predominantly results from
modification of NMDA receptor function. Indeed, leptin
facilitation of NMDA responses underlies its effects on
hippocampal LTP as this hormone enhances both NMDA
receptor-dependent synaptic currents in slices and Ca2+

influx via NMDA receptor channels in cultured neurons [14].
Studies in Xenopus oocytes expressing recombinant NMDA
receptors indicate that leptin receptor-driven signalling is
required for enhancement of NMDA receptor-mediated
currents by leptin. Furthermore, leptin increased maximal
NMDA receptor-mediated currents without altering channel
kinetics, suggesting that leptin increases the number of
functional NMDA receptor channels by boosting NMDA
receptor trafficking to the cell membrane.

In contrast to α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) receptors that readily move to and
away from synapses as well as laterally within the plasma

membrane [16, 17], NMDA receptors were viewed, until
fairly recently, as static entities. However, there is growing
evidence that the molecular identity and number of synaptic
NMDA receptors can be modulated in an activity-dependent
manner and in response to sensory experience [18]. For
instance, the induction of LTP at adult hippocampal CA1
synapses is accompanied by an increase in NMDA receptor
surface expression [19]. In addition, hormones such as
insulin and the extracellular matrix protein reelin have been
shown to modify NMDA receptor trafficking processes [20,
21]. NMDA receptors are heteromeric assemblies of NR1 and
NR2 subunits, with or without an NR3 subunit, and the NR2
subunits determine the biophysical and pharmacological
properties of NMDA receptors [22]. The expression and
localization of NR2 subunits changes during development.
Moreover the polarity of hippocampal synaptic plasticity
depends on NMDAR subunit composition at different
developmental stages. In adult hippocampus NR2A subunits
underlie LTP whereas NR2B subunits are implicated in
LTD [23]. In contrast, NR2A and NR2B underlie LTP, and
LTD is NR2B independent in juvenile hippocampus [24].
Recent studies indicate that the intracellular C-terminal
region of NR2 subunits plays a central role in controlling
trafficking of NMDA receptors. Moreover, phosphorylation
and palmitoylation of NR2C-terminal domains are also
key events regulating NMDA receptor trafficking [25, 26].
Previous studies have shown that leptin has the ability to
increase NR1/NR2A-mediated currents in Xenopus oocytes;
an effect that is likely to be due to increased trafficking of
NMDA receptors to the plasma membrane [5]. However no
studies to date have examined if leptin alters the trafficking
of other NR2 subunits, and thus it remains to be established
if this hormone regulates NMDA receptors in an NR2-
dependent manner.

2.4. Leptin Promotes Trafficking of GluR2-Lacking AMPA
Receptors to Synapses. Previous studies indicate that appli-
cation of leptin to juvenile (2-3 weeks old) hippocampal
slices results in a transient depression of excitatory synaptic
transmission [14, 27]. Conversely, leptin evokes a robust
enhancement of excitatory synaptic transmission in adult
hippocampus, and this effect persists after leptin washout
[28]. Activation of leptin receptors is necessary for the leptin-
driven increase in excitatory synaptic strength as leptin
was without effect in slices from leptin-insensitive Zucker
fa/fa rats, but a robust effect of leptin was observed in
age-matched Zucker lean animals. In addition, the leptin
increase in synaptic transmission was not associated with
any significant change in PPR or CV indicating a likely
postsynaptic expression mechanism. It is well documented
that NMDA receptor activation is pivotal for LTP induction
[29], and activation of NMDA receptors underlies the ability
of leptin to facilitate LTP induction, reverse established LTP,
and promote changes in dendritic morphology [14, 29, 30].
Similarly, leptin failed to increase excitatory synaptic strength
in slices perfused with the NMDA receptor antagonist D-
AP5, indicating the involvement of an NMDA receptor-
dependent process. Moreover, in two pathway experiments
leptin had no effect when stimulation was stopped whereas
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leptin significantly increased synaptic transmission in the
control pathway indicating that the synaptic activation of
NMDA receptors was required.

It is known that NMDA receptor activation underlies the
trafficking of AMPA receptors to hippocampal synapses dur-
ing LTP [31], and that changes in the subunit composition
of synaptic AMPA receptors are linked to activity-dependent
changes in synaptic efficacy [3]. AMPA receptors are het-
erotetrameric ion channels composed of GluR1-4 subunits.
GluR2-lacking AMPA receptors are more important for
hippocampal LTP than GluR2-containing AMPA receptors,
due to their permeability to Ca2+ which in turn allows for
the activation of specific intracellular signalling pathways
required for long-term changes in synaptic efficacy [32, 33].
Neurons within the hippocampus predominantly express
functional GluR2-containing AMPA receptors until times of
increased synaptic activity, when the membrane localized
complement alters to include more GluR2-lacking AMPA
receptors. Recent studies indicate that alterations in AMPA
receptor trafficking processes also contribute to the increase
in synaptic efficacy induced by leptin. Indeed, in studies
examining the rectification properties of synaptic currents,
the leptin-driven increase in synaptic transmission was
accompanied by an increase in AMPA receptor rectification
indicating that an increase in the synaptic density of GluR2-
lacking AMPA receptors underlies this effect. Moreover,
application of philanthotoxin resulted in reversal of the
leptin-driven increase in synaptic transmission which is also
consistent with an increase in the GluR2-lacking AMPA
receptors underlying the increase in synaptic efficacy induced
by leptin. In parallel studies, the effects of leptin on the cell
surface expression of GluR1 and GluR2 in acute hippocam-
pal slices and hippocampal cultures were examined using
biotinylation assays and immunocytochemistry, respectively
[28]. In adult hippocampal slices leptin enhanced GluR1,
but not GluR2, surface expression. Conversely leptin failed
to alter the surface expression of either GluR1 or GluR2 in
slices from younger animals (3-4 week old). Furthermore,
in dual immunolabeling experiments leptin was circa 50fold
more potent at increasing GluR1 relative to GluR2 surface
expression in hippocampal cultures. The ability of leptin
to increase GluR1 surface expression involves promotion of
GluR1 exocytosis as the effects of leptin were blocked by
inhibitors of exocytosis, namely, NEM (N-ethylmaleimide-
sensitive fusion protein) and brefeldin A. Consistent with
this, the leptin-dependent enhancement of excitatory synap-
tic transmission in adult hippocampal slices was prevented
following whole cell dialysis with exocytotic (NEM and
brefeldin A), but not endocytotic (bafilomycin), inhibitors.

2.5. Role of PTEN in Leptin-Driven AMPA Receptor Trafficking
to Synapses. Previous studies have demonstrated that PI 3-
kinase, an enzyme that phosphorylates PtdIns(4,5)P2 into
PtdIns(3,4,5,)P3, plays a pivotal role in leptin-driven signal-
ing in the hippocampus [10]. PI 3-kinase is also implicated
in NMDA receptor-dependent AMPA receptor trafficking
to synapses during hippocampal LTP [31]. Similarly a PI
3-kinase-driven process underlies the effects of leptin as

the increase in GluR1 surface expression was correlated
with enhanced levels of PtdIns(3,4,5,)P3 immunostaining,
suggesting that an increase in PtdIns(3,4,5,)P3 levels under-
lies leptin-driven alterations in AMPA receptor trafficking.
Additionally blockade of PI 3-kinase signaling with either
wortmannin or LY294002 prevented both the increase in
excitatory synaptic transmission and GluR1 surface expres-
sion induced by leptin. In support of a possible role for
PtdIns(3,4,5,)P3, enhanced PtdIns(3,4,5,)P3 synthesis results
in significant enhancement of AMPA, but not NMDA,
receptor-mediated synaptic transmission [34]. Although
these findings suggest the involvement of a PI 3-kinase-
dependent process, PtdIns(3,4,5,)P3 levels are also regulated
by the phosphatase PTEN as it antagonizes PI 3-kinase
activity by catalysing the conversion of PtdIns(3,4,5,)P3 to
PtdIns(4,5)P2 [35]. Moreover PTEN has been identified as
a key signaling pathway activated by hypothalamic leptin
receptors, and leptin receptor activation of KATP channels
involves phosphorylation and subsequent inhibition of
PTEN [36, 37]. In support of a role for PTEN, exposure of
hippocampal slices to leptin increased the phosphorylation
of PTEN and this effect was absent in slices from Zucker
fa/fa animals indicating the involvement of a leptin receptor-
driven process. Furthermore, the increase in GluR1 surface
expression induced by leptin was coupled with an increase
in P366-PTEN immunostaining in hippocampal cultures
[28]. Previous studies have shown that CK2 phosphorylates
PTEN at the threonine 366 site [38]. In agreement with
these studies, the ability of leptin to increase GluR1 sur-
face expression, P366-PTEN phosphorylation and excitatory
synaptic transmission were all blocked by casein kinase2
(CK2) inhibition. This in turn supports the notion that CK2
phosphorylation and subsequent inhibition of PTEN under-
lies leptin-driven alterations in AMPA receptor trafficking
and excitatory synaptic strength.

GluR1 surface expression was also significantly increased
in neurons transfected with dominant-negative PTEN
mutants (C124S or G129E). However, the ability of leptin
to increase GluR1 surface expression was occluded in cells
expressing the PTEN mutants, suggesting that analogous
mechanisms underlie both processes. Leptin also increased
the amplitude but not the frequency of mEPSCs, an effect
attributable to insertion of GluR2-lacking AMPA receptors
as it was reversed by addition of philanthotoxin. In contrast
leptin failed to alter mEPSC amplitude in neurons trans-
fected with the PTEN mutants. Thus inhibition of PTEN not
only increases the functional expression of GluR1 subunits
at hippocampal synapses but it also prevents the trafficking
of GluR1 subunits by leptin. Similarly, pharmacological
inhibition of PTEN with the phosphatase inhibitor bisper-
oxovanadium (bpV; [39]) resulted in a persistent increase in
excitatory synaptic transmission in hippocampal slices, and
it increased trafficking of GluR1 to hippocampal synapses.
In addition, leptin failed to enhance synaptic transmission
or alter AMPA receptor trafficking in the presence of bpV,
which further supports the notion that leptin increases the
synaptic expression of GluR1 via inhibition of PTEN and
subsequent increase in PtdIns(3,4,5,)P3 levels. However it
is not exactly known how elevations in PtdIns(3,4,5,)P3
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levels modify AMPA receptor trafficking processes. Recent
studies have shown that the availability of PtdIns(3,4,5,)P3

is pivotal for sustaining AMPA receptor clustering and
synaptic function at hippocampal synapses [34]. As inositol
lipids are important regulators of the actin cytoskeleton,
PtdIns(3,4,5,)P3 may influence AMPA receptor trafficking
by rearranging the actin cytoskeleton [40]. Alternatively,
PtdIns(3,4,5,)P3 may stimulate the activation of the protein
kinase, Akt, which in turn may phosphorylate and sub-
sequently inhibit glycogen synthase kinase 3 (GSK-3). In
support of this possibility, Akt-driven inhibition of GSK-3
underlies AMPA receptor insertion after hippocampal LTP
[41]. The ability of leptin to rapidly alter AMPA and NMDA
receptor trafficking processes and evoke persistent changes
in excitatory strength provides further evidence to support a
role for this hormone as a potential cognitive enhancer. The
leptin receptor-driven alterations in hippocampal synaptic
function are likely to play an important role not only in
normal brain function, but also in CNS-driven diseases
associated with leptin dysfunction.

3. Leptin and Aging

Several lines of evidence support the notion that the effec-
tiveness of metabolic hormonal systems declines with age
and that impaired energy metabolism not only accelerates
the aging process but also increases the susceptibility to neu-
ronal degeneration [42]. Numerous studies have examined
how insulin signaling in the CNS is altered during aging, but
our understanding of how the leptin system changes with
age is limited. A recent study comparing the effects of leptin
on excitatory synaptic transmission in hippocampal slices
from 3-4 month- and 12–14 month-old animals found that
the responsiveness of hippocampal CA1 neurons to leptin
declines with age [43]. In accordance with previous studies
[28], leptin resulted in a persistent increase in the efficacy
of hippocampal excitatory synaptic transmission (leptin-
induced LTP) at 12–14 months, however, the magnitude of
increase was significantly less at this age compared to 3-
4 months. It is known that the magnitude of hippocampal
LTP attenuates with age and this has been linked to reduced
activation of NMDA receptors during the induction of LTP
[44, 45]. It is feasible that a reduction in NMDA receptor
activation contributes to the fall in the magnitude of leptin-
induced LTP with age, as the ability of leptin to induce
LTP also requires the synaptic activation of NMDA receptors
and leptin-induced LTP and synaptically induced LTP share
similar expression mechanisms [43]. Indeed, the magnitudes
of LTP induced by leptin and high frequency stimulation
were analogous in both adult and aged hippocampus, and
synaptically induced LTP occluded the persistent increase in
synaptic transmission induced by leptin and vice versa [43].
Although this study provides good evidence for a decline in
hippocampal leptin function with age, it is not yet clear if the
ability of leptin to modulate other CNS functions is altered
during the aging process.

4. Leptin and Alzheimer’s Disease

As life expectancy is increasing steadily, the prevalence of
age-related neurodegenerative disorders such as AD is also
increasing. Our understanding of the cellular changes that
occur in the early stages of AD has advanced significantly
in recent years, but it is still extremely difficult to uncover
these early aberrant changes in a clinical setting. It is known
that various factors can enhance the risk of developing
AD including lifestyle and diet. Moreover, several studies
have highlighted an association between midlife obesity and
the incidence of AD, however, the mechanisms underlying
this association are unclear. A number of studies have
proposed that leptin dysfunction provides a link between
obesity and AD [46]. Indeed, it is known that obesity
is triggered by elevated leptin levels and the subsequent
development of leptin resistance. In support of a possible
link between obesity and AD, the circulating levels of leptin
are significantly lower than normal in AD patients [47]. In
addition, recent studies have shown that individuals with
higher leptin levels have a much lower risk of developing AD
[48, 49]. Moreover, leptin levels are also significantly reduced
in murine models (APPSwe; PSIM146V) of AD [50].

Previous studies have indicated that leptin has neuropro-
tective and antiapoptotic properties as it protects neurons
from a variety of neurotoxic agents including TNFα, ferrous
iron (Fe2+), and 6-OHDA [51–53]. Recent studies also
support a neuroprotective role for leptin against ischaemic
episodes [54]. These findings have important implications
for the role of leptin in neurodegenerative disorders, as
ischaemic incidents (such as cerebral thrombosis or stroke)
have been shown to increase the incidence of sporadic AD
by as much as 10-fold [55, 56]. Leptin has also been shown
to have proliferative effects on neurones [57] increasing
hippocampal volume and neuronal progenitor number, as
well as reducing neurodegeneration caused by AD-related
mutations [57]. Several studies have shown that leptin has
neurotrophic actions in the CNS, however, this may be
restricted to specific neuronal populations as leptin promotes
neurite outgrowth in cerebellar purkinje, but not granule
cells [58]. Further support for a neurotrophic role comes
from a study by Yamada et al. [59] that demonstrated that
leptin could alter cognitive state by reducing depression mea-
sured as a function of despair response in mice. Furthermore,
leptin increased the levels of BDNF in the hippocampus,
resulting in direct and inverse effects on the depressed state
of the mice [59]. These findings lend additional support to
the notion that leptin treatment could be beneficial in AD
which is associated with neurodegeneration and cognitive
impairments such as depression and dementia.

It is well established that two key pathological hallmarks
of AD are the formation of amyloid plaques, due to the build-
up and accumulation of β-amyloid (Aβ) and neurofibrillary
tangles resulting from hyperphosphorylation of tau. Thus it
is feasible that leptin limits the toxic effects of Aβ in neurons.
Indeed, leptin is reported to attenuate Aβ levels in neurons
by inhibiting β-secretase activity and thereby reducing Aβ
production [60]. Furthermore, leptin promotes ApoE-driven
uptake of Aβ into neurons [60]. Leptin also has the capacity
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to alter the levels of hyperphosphorylated tau as leptin
reduces the accumulation of phosphorylated tau in neuronal
cells [61] and it limits phosphorylation of tau by inhibiting
GSK3β [61]. Treatment of murine models of AD with leptin
also resulted in significant reductions in the levels of both Aβ
and phosphorylated tau compared to vehicle-treated lit-
termates [62]. In addition to ameliorating AD pathology,
treatment of CRND8 transgenic mice with leptin resulted in
enhanced performance in novel object recognition tests as
well as contextual and cued fear conditioning [63]. In
SAMP8 mice, with elevated Aβ levels, administration of
leptin improved memory processing in the T-maze foot-
shock avoidance and step-down inhibitory avoidance tests
[63]. Thus together these findings indicate that leptin has the
ability to not only reduce the toxic accumulation of Aβ and
phosphorylated tau but it also improves memory in murine
models of AD.

Although numerous studies indicate that leptin markedly
influences CNS function in rodent models, to be an effective
therapeutic agent in CNS-driven disease leptin must have the
capacity to modulate human brain function. Recent clinical
studies have shown that treatment of three adults, with con-
genital leptin deficiency, with physiological doses of leptin
resulted in significant and persistent elevations in grey matter
volume in specific regions of the brain including the cere-
bellum and anterior cingulated gyrus [64]. Another study
found evidence that leptin replacement therapy influences
cognitive function, as treatment of a five-year-old boy with
congenital leptin deficiency not only restored normal body
weight and glycemic control, but also significantly improved
neurocognitive skills [65].

5. Conclusions

Evidence is accumulating that the hormone leptin has
widespread actions in the brain and it has the ability to
regulate numerous CNS functions. In particular, evidence is
accumulating that leptin plays a pivotal role in modulating
higher cognitive functions such as learning and memory.
Indeed, recent studies indicate that leptin is a potential
cognitive enhancer as it rapidly alters glutamate receptor
trafficking processes and in turn the efficacy of hippocampal
excitatory synaptic transmission. However, the effects of
leptin on hippocampal synaptic function markedly decline
with age. Obesity in humans is closely associated with devel-
opment of type II diabetes, and it is well documented that
cognitive deficits are prevalent in diabetics. As obesity and
obesity-linked disorders such as type II diabetes are asso-
ciated with resistance to leptin, it is feasible that leptin
dysfunction plays a role in cognitive impairments in these
individuals. In addition, recent studies have linked dysfunc-
tions in the leptin system with the development of neu-
rodegenerative disorders such as Alzheimer’s disease. More-
over, growing evidence indicates that leptin prevents the
toxic accumulation of Aβ and phosphorylated tau in neu-
rons, and it has the ability to improve performance in various
memory tasks in murine AD models. These findings, coupled
with the already established safety of leptin in humans, make
this hormone or related leptin-mimetics novel therapeutic

candidates for the treatment of neurodegenerative disorders
like AD.
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