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Abstract
Background and Aim: Various deep learning models, based on convolutional neural
network (CNN), have been shown to improve the detection of early esophageal neo-
plasia in Barrett’s esophagus. Vision transformer (ViT), derived from natural language
processing, has emerged as the new state-of-the-art for image recognition, out-
performing predecessors such as CNN. This pilot study explores the use of ViT to
classify the presence or absence of early esophageal neoplasia in endoscopic images
of Barrett’s esophagus.
Methods: A BO dataset of 1918 images of Barrett’s esophagus from 267 unique
patients was used. The images were classified as dysplastic (D-BO) or non-dysplastic
(ND-BO). A pretrained vision transformer model, ViTBase16, was used to develop
our classifier models. Three ViT models were developed for comparison based on
imaging modality: white-light imaging (WLI), narrow-band imaging (NBI), and com-
bined modalities. Performance of each model was evaluated based on accuracy, sensi-
tivity, specificity, confusion matrices, and receiver operating characteristic curves.
Results: The ViT models demonstrated the following performance: WLI-ViT
(Accuracy: 92%, Sensitivity: 82%, Specificity: 95%), NBI-ViT (Accuracy: 99%, Sen-
sitivity: 97%, Specificity: 99%), and combined modalities-ViT (Accuracy: 93%, Sen-
sitivity: 87%, Specificity: 95%). Combined modalities-ViT showed greater accuracy
(94% vs 90%) and sensitivity (80% vs 70%) compared with WLI-ViT when classify-
ing WLI images on a subgroup testing set.
Conclusion: ViT exhibited high accuracy in classifying the presence or absence of
EON in endoscopic images of Barrett’s esophagus. ViT has the potential to be widely
applicable to other endoscopic diagnoses of gastrointestinal diseases.

Introduction
Barrett’s esophagus (BO) is a metaplastic alteration of the normal
esophagus epithelium, predisposing to the development of esoph-
ageal adenocarcinoma (OAC).1 International guidelines recom-
mend endoscopic surveillance to detect early esophageal
neoplasia (EON), the presence of dysplasia or intramucosal
OAC, at a curable stage before its progression to advanced OAC
for which the 5-year overall survival rate is at a dismal 17%.2–4

Despite advanced imaging modalities such as narrow-band imag-
ing (NBI), an average of 25% of EON remained missed.5

A recent systematic review and meta-analysis demon-
strated that artificial intelligence (AI) can improve the accuracy
of detecting EON, with high accuracy, sensitivity and specificity
of 0.94 (95% CI: 0.92–0.96), 90.3% (95% CI: 87.1–92.7%) and

84.4% (95% CI: 80.2–87.9%), respectively among the included
studies.6 These results are above the threshold targets (sensitivity
of more than 90%, specificity of more than 80%) recommended
by the American Society for Gastrointestinal Endoscopy
(ASGE).7 Current published AI models for Barrett’s surveillance
employ a popular AI method known as convolutional neural net-
works (CNNs) to train their models.8–14 CNN extracts feature
methodically from pixels of an image by undergoing repeated
convolution and pooling processes to achieve accurate perfor-
mance in disease detection and diagnosis.15

Vision transformer (ViT) has recently emerged as the cur-
rent state-of-the-art in machine learning for image recognition.16

First, an image is split into patches (also known as tokens) before
being fed into the Transformer Encoder. The encoder has an
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“attention-based” network that assigns weights to tokens based
on their key features in relation to the image. An image is subse-
quently classified based on the calculated probabilities of the
image’s tokens.16 ViT models have been shown to outperform
CNN models by fourfold in terms of computational efficiency
and accuracy.16,17 Given the novelty of ViT, it has not yet been
used to train AI models for Barrett’s surveillance. Therefore, we
embarked on the development of ViT-based models to explore
their performances at detecting EON in BO using both white-
light imaging (WLI) and NBI.

Methods

Ethics. This research was approved by the Human Research
Ethics Committee (Central Adelaide Local Health Network refer-
ence number: 16179).

Setting. Study data were obtained from a BO database
from the Lyell McEwin Hospital (LMH), a large tertiary referral
centr for the management of BO in Australia, spanning the
period from 2008 to 2022. The study was performed in collabo-
ration with the Australian Institute for Machine Learning at the
University of Adelaide, Australia, and the Centre for Vision,
Speech and Signal Processing at the University of Surrey,
United Kingdom.

Phase 1: Development and classification BO
dataset. Endoscopic images were retrospectively collected and
de-identified from sequential patients in the BO database, con-
sisting of 23 197 endoscopic images from 550 patients. Endos-
copy procedures were performed on a wide range of Olympus
endoscopes (Models: GIF-160, GIF-Q160, GIF-Q160Z, GIF-
H180, GIF-H180J, GIF-XP180N, GIF-Q180, GIF-HQ190, GIF-
EZ1500).

Inclusion criteria: Images of the esophagus and gastro-
esophageal junction containing Barrett’s esophagus were
included, with biopsies confirming BO as defined by the pres-
ence of intestinal metaplasia, with the presence of mucin-
containing goblet cells.2 The BO dataset was classified based on
imaging modality (WLI or NBI) and the presence of EON, with
dysplastic BO and non-dysplastic BO labelled as D-BO and ND-
BO, respectively.

Exclusion criteria: Images of Barett’s esophagus con-
taining low-grade or indeterminate dysplasia were excluded from
the study due to significant interobserver variability between
pathologists. This decision was made due to the challenges
in establishing a consistent histological ground truth for such
cases.

To determine data ground truth, images were selected by
three gastroenterology fellows (J.T., A.B., and E.A.) and verified
by two expert gastroenterologists (R.S. and M.A.C.). Where
there was interobserver disagreement, a consensus was achieved
by discussion between expert gastroenterologists (R.S. and
M.A.C.). Respective histopathology reports were obtained to
confirm the presence (dysplastic) or absence (nondysplastic) of
neoplasia. An independent histopathology assessment was sought
where there were equivocal results, and consensus was reached
after discussion by two pathologists.

Phase 2: Training of AI models
Defining training and testing dataset. The BO dataset was
split to ensure that images in the testing dataset (10%) were from
unique patients, independent of the training dataset (90%), as
shown in Figure 1. Three datasets were defined for comparison
based on modalities: WLI, NBI, and combined (WLI and NBI).
We included a combined modalities dataset to evaluate whether
vision transformers (ViT) can handle mixed modalities effec-
tively, as WLI and NBI images differ significantly in appearance.
WLI provides a broad view with natural color representation,
while NBI enhances vascular and mucosal patterns using specific
wavelengths of light.

Model architectures. A pretrained Vision Transformer model,
ViTBase16, was used as the base model. ViTBase 16 is equipped
with 12 transformer layers and approximately 86 million learn-
able parameters.16 This model was pretrained on ImageNet1K
dataset, a collection of 1.2 million labeled real-world nonmedical
images, enabling deep learning networks to acquire fundamental
discriminative features, which can be subsequently used to
enhance model performance and efficiency.18

Data augmentation. Data augmentation was performed using
offline and online methods to expand the dataset to improve the
generalizability of our model. During the offline augmentation
phase, the class with a smaller number of images in each dataset
was augmented using random horizontal or vertical flip and ran-
dom affine transformations. Additionally, a set of online augmen-
tations was applied to further enhance the variability of the
training data. These augmentations included color jitter, random
histogram equalization, random sharpness adjustments,
random image resizing, random rotation, and random perspective
transformations. Each online augmentation technique was applied
with specific probabilities of occurrence, valuing 0.1, 0.2, 0.2,
0.3, 0.2, and 0.2, respectively.

Training. The ViTBase16 model underwent an extension of its
classification head by incorporating three additional linear layers.
These layers consisted of 512, 128, and 2 neurons, respectively,
to reduce dimensionality for binary classification and accompa-
nied by rectified linear unit (ReLU) activations and dropout
layers in between. During the fine-tuning process, the classifica-
tion head and the 12th encoder layer of the ViT model were fine-
tuned for 50, 40, and 80 epochs on WLI, NBI, and combined
modalities datasets, respectively.19 Among the various combina-
tions tested, we observed that employing Cross Entropy loss and
Adam optimizer with a learning rate of 0.001 and a batch size of
64 yielded better results. All the experiments were conducted on
an NVIDIA GeForce RTX 4090 GPU having 24 GB memory.

Outcomes and statistical analysis. The primary out-
come of this study is to assess the accuracy of using ViT models
to classify the presence or absence of EON on the following
imaging modalities: WLI, NBI, and combined modalities.

The secondary outcome is to compare the performance of
the combined modalities model against WLI and NBI models
individually. For this comparison, the WLI and NBI subgroup
testing datasets were filtered to ensure that they do not include
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endoscopic images of patients used in the training datasets for
both the single and combined modalities models.

Diagnostic accuracy for each model will be determined by
sensitivity, specificity, precision, confusion matrix, and receiver
operating characteristic (ROC) curve analysis. Precision mea-
sures the accuracy of the positive predictions made by the AI
models. It is defined as the ratio of true positives to the total
number of true positives predictions. The ROC curve analysis
plots the true-positive rate (sensitivity) against the false-positive
rate (1-specificity), showing the trade-off between the true-
positive rate and false-positive rate, to evaluate the performance
of the AI models.

Results

Characteristics of BO dataset. The flowchart of BO
database development and classification is summarized in
Figure 2. From a total of 23 197 endoscopic images from

550 unique patients, 1918 images of Barrett’s esophagus
from 267 unique patients, including 835 WLI images and 1083
NBI images, were clinically validated and classified accordingly.
The WLI dataset contains 287 D-BO images and 548 ND-BO
images from 238 unique patients. The NBI dataset contains
262 D-BO images and 821 ND-BO images from 156 unique
patients.

Training and testing datasets. The WLI training dataset con-
sisted of 269 D-BO and 489 ND-BO images from 166 unique
patients. The WLI testing dataset comprised 18 D-BO and
59 ND-BO images from 72 unique patients.

NBI training dataset consisted of 243 D-BO and 768 ND-
BO images from 109 unique patients. The NBI testing dataset
comprised 19 D-BO and 53 ND-BO images from 47 unique
patients.

The combined modality training dataset consisted of
268 WLI/D-BO, 491 WLI/ND-BO, 241 NBI/D-BO, and

Figure 1 Defining training and testing dataset.

Figure 2 Flowchart of BO database development and classification.
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809 NBI/ND-BO images from 186 unique patients. The com-
bined modality testing dataset comprised 19 WLI/D-BO,
57 WLI/ND-BO, 9 NBI/D-BO, and 12 NBI/ND-BO images from
81 unique patients.

Primary outcomes. Table 1 summarizes the performance of
the three ViT models for the following three comparator datasets:
WLI, NBI, and combined modalities.

White-light imaging-ViT. The WLI-ViT model demonstrated
the following performance: accuracy of 92%, sensitivity of 78%,
and specificity of 97%. Confusion matrices and receiving operat-
ing curves of both models are shown in Figures 3 and 4,
respectively.

Narrow-band imaging-ViT. The NBI-ViT model demon-
strated the following performance: accuracy of 99%, sensitivity

of 94%, and specificity of 100%. Confusion matrices and receiv-
ing operating curves of both models are shown in Figures 3 and
4, respectively.

Combined modalities-ViT. The combined modalities-ViT
model demonstrated the following performance: accuracy of
93%, sensitivity of 86%, and specificity of 96%. Confusion
matrices and receiving operating curves of both models are
shown in Figures 3 and 4, respectively. Table 2 shows examples
of true positives, true negatives, false positives, and false
negatives.

Secondary outcomes
Combined modalities-ViT versus WLI-VIT. The WLI sub-
group testing dataset for this comparison comprised 54 images
from 51 unique patients: 10 D-BO images from 7 patients and
44 ND-BO images from 44 patients. The WLI-ViT model
demonstrated the following performance: accuracy of 90%, sensi-
tivity of 70%, and specificity of 95%. The combined
modalities-ViT model demonstrated the following performance:
accuracy of 94%, sensitivity of 80%, and specificity of 98%.

Combined modalities-ViT versus NBI-ViT. The NBI sub-
group testing dataset for this comparison comprised 18 images
from 16 unique patients: 8 D-BO images from 6 patients and
10 ND-BO images from 10 patients. The NBI-ViT model
demonstrated the following performance: accuracy of 100%,

Table 1 Performance of vision transformer models by imaging modal-
ities: white-light imaging, narrow-band imaging, and combined
modalities

Accuracy Sensitivity Specificity

White-light imaging 92% 78% 97%
Narrow-band imaging 99% 94% 100%
Combined modalities 93% 86% 96%

Figure 3 Performance of vision transformer models—confusion matrices.

Figure 4 Performance of vision transformer models—receiver operating characteristic (ROC) curves.
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sensitivity of 100%, and specificity of 100%. The combined
modalities-ViT model demonstrated the following performance:
accuracy of 94%, sensitivity of 100%, and specificity of 90%.

Discussion
All three ViT models exhibited high accuracies at differentiating
between D-BO and ND-BO. The performances are comparable

Table 2 Combined modalities-ViT model classification: examples of true positive, true negative, false positive, and false negative

Combined modalities-ViT model

True positive

True negative

False positive

False negative
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with the currently published results of existing models for EON
detection, shown in a recent meta-analysis where the overall
accuracy of all included studies was 0.94 (95% CI: 0.92–0.96).
The pooled sensitivity and specificity were 90.3% (95% CI:
87.1–92.7%) and 84.4% (95% CI: 80.2–87.9%), respectively.6

Currently, most published models are predominantly
trained on single imaging modality, with majority being WLI
models.6,14 In clinical practice, the combination of WLI and NBI
has been shown to improve diagnostic accuracies to detect EON
compared with WLI only with random biopsies.20,21 Conse-
quently, there is a need for AI models to support both imaging
modalities. By combining images of NBI and WLI during the
training process, the combined modalities-ViT model was shown
to have a higher accuracy (94% vs 90%) and sensitivity (80% vs
70%) at classifying WLI images compared with the WLI-ViT
model, which was trained on WLI images alone. This could be
attributed to additional characteristics provided by NBI images,
such as the details of mucosal pit patterns and vasculature that
are not readily visible on WLI, or merely due to the larger num-
ber of training data alone in the combined modalities training
dataset. Conversely, combined modalities-ViT appeared to have
a lower accuracy and sensitivity at classifying the NBI subgroup
testing dataset compared with NBI-ViT. However, the small size
of the subgroup NBI testing dataset for this comparison limits
the generalizability of these results.

Our NBI-ViT model exhibited a high sensitivity of 94%,
representing the best reported results in the literature, to the best
of our knowledge. NBI is widely employed in Barrett’s surveil-
lance, enhancing the detection of early dysplasia.22 Existing clas-
sification systems such as the Nottingham Classification and the
Asia-Pacific Barrett’s Consortium Classification necessitate
extensive training and experience at specialized tertiary centers, a
gap now addressed by AI models.23 With such high sensitivities,
random biopsies could be averted in the future, a potentially
practice changing advancement in BO surveillance.

This study has three major strengths. First, this is the larg-
est BO dataset in the Asia-Pacific region, consisting of 1918 pre-
augmented images derived from 267 unique patients, all of which
were validated by experts with histological correlation. This
dataset included a large number of unique patients compared
with other published studies, therefore allowing us to perform a
pilot exploratory study on ViT as a classifier tool to detect
EON.6 In a study by de Groof et al., their AI model was trained
using images from 509 unique patients. However, only 95 of
those patients’ images were validated by experts with histological
correlation, while the remaining images were solely validated by
experts.10 Another study reported training their AI model with
over a million BE images, but these images were augmented and
originated from only 161 patients.8 To ensure the generalizability
of our AI models, we included images from a diverse range of
endoscopes spanning over a decade, adding to the breadth and
longevity of our data collection.

Second, this study is the first to utilize ViT in training a
classifier model for EON detection. Additionally, this study rep-
resents one of the earlier attempts to train ViT models on gastro-
intestinal endoscopic images. Our findings are promising, as they
indicate the potential to combine diverse datasets of other endo-
scopic GI lesions, into a larger model using ViT, while
maintaining high accuracy.

Third, this study presents stronger evidence for the effec-
tiveness of a combined modalities model. Previously, only one
study by Hashimoto et al. had trained such a model, but it was a
pilot study based on images from only 65 patients.24 Not only
does the combined modality model improves sensitivity and
overall accuracy on WLI images, but also its ability to seam-
lessly switch between WLI and NBI during endoscopy can
enhance clinical workflow, as endoscopists toggle between these
modes.

Our study has several limitations that should be taken into
consideration. Compared with other published models, our ViT
models were trained exclusively on still images, without incorpo-
rating videos.8,24,25 However, the primary objective of this study
is to explore the use of ViT as a novel classifier tool, therefore
using still images will reduce potential confounders due to
reduced image quality of frames derived from endoscopic videos.
Nonetheless, this pilot model will serve as a foundation for
developing a larger ViT model, trained on both images and
videos from various imaging modalities derived from multiple
centers.

Second, we excluded patients with indeterminate and low-
grade dysplasia from our datasets due to their interobserver vari-
ability in pathological diagnosis.26,27 Additionally, low-grade
and indeterminate dysplasia may not be visually detectable using
WLI and, to a lesser degree, NBI.20 One possible solution would
be to include these lesions in our future models, but their diagno-
sis would need to be verified by at least two pathologists. How-
ever, the challenge of detecting nonvisible indeterminate and
low-grade dysplasia remains. Fortunately, the incidence of devel-
oping high-grade dysplasia or EAC remains low at 1.73 cases
per 100 person-years (95% confidence interval 0.99–2.47).28

Third, our AI models have not been trained to perform
image localization or segmentation. These functions would be
particularly useful for nonexpert endoscopists to assist with iden-
tifying dysplasia with real-time “bounding boxes” or “heat
maps.” However, this limitation could be overcome with the
birth of MedSAM, a state-of-the-art segmentation model trained
on 1.5 million images across 10 imaging modalities and over
30 cancer types, which can be incorporated to our future models
to automatically perform segmentation tasks or to improve the
efficiency our image or video annotation.29

Conclusions
ViT has demonstrated high accuracy in classifying the presence
or absence of EON in endoscopic images of Barrett’s esophagus.
Combined modalities-ViT model, trained on both NBI and WLI
images, showed greater accuracy and sensitivity than the WLI-
ViT model. As large Barrett’s models are developed in the future
or when combined with other gastrointestinal pathologies, ViT
may offer a significant advantage in terms of scalability and
efficiency.
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