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Breast milk is rich in sialic acids (SA), which are commonly combined with

milk oligosaccharides and glycoconjugates. As a functional nutrient component,

SA-containing milk components have received increasing attention in recent years.

Sialylated human milk oligosaccharides (HMOs) have been demonstrated to promote the

growth andmetabolism of beneficial gut microbiota in infants, bringing positive outcomes

to intestinal health and immune function. They also exhibit antiviral and bacteriostatic

activities in the intestinal mucosa of new-borns, thereby inhibiting the adhesion of

pathogens to host cells. These properties play a pivotal role in regulating the intestinal

microbial ecosystem and preventing the occurrence of neonatal inflammatory diseases.

In addition, some recent studies also support the promoting effects of sialylated HMOs

on neonatal bone and brain development. In addition to HMOs, sialylated glycoproteins

and glycolipids are abundant in milk, and are also critical to neonatal health. This article

reviews the current research progress in the regulation of sialylated milk oligosaccharides

and glycoconjugates on neonatal gut microbiota and health.
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INTRODUCTION

Sialic acid (SA), known as N-acetylneuraminic acid (Neu5Ac), was originally isolated from bovine
mandibular salivary gland mucin by a scientist named Blix. It is a negatively charged acidic
monosaccharide containing nine carbon atoms, with a free carboxyl group at the anomeric carbon
C2, and an N-acetyl group at C5 (1–3). More than 50 forms of SA have been found in nature, of
which more than 15 have been identified in humans (4). SA is an essential functional sugar with
multiple known roles (Figure 1), which are crucial for infant health, promoting the development
of the brain and nervous system, and enhancing immunity. SA can also increase the absorption
of minerals and vitamins in the intestinal tract and promote bone development (5). SA also
demonstrates pharmaceutical value due to its anti-adhesion, antiviral, and anti-cancer properties,
and plays a vital role in red stabilization and prevent blood component aggregation by its negative
charge and hydrophilicity. SA also affects fertilization and plays an important role in biological
recognition and diseases (2).
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FIGURE 1 | The physiological function of sialic acid (SA).

SA is very abundant in human milk, as ∼70–83% of all SA
are bound to human milk oligosaccharides (HMOs), 14–28% are
bound to glycoproteins, and 0.2–0.4% to glycolipids, whereas
the free form of SA is only 2–3% in human milk (6, 7). Recent
studies showed that HMOs play an essential role in regulating
neonatal intestinal microecology. Among these HMOs, ∼10–
30% of oligosaccharides are sialylated (6, 8). In addition to
HMOs, sialylated glycoproteins and glycolipids in milk are also
abundant and critical to neonatal health (6), they were found
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DSLNT, disialyllacto-N-tetraose; SLN, sialyllactosamine; 3’-S-3-FL, 3’-sialyl-3-
fucosyllactose; FUT2, fucosyltransferase-2; GDM, gestational diabetes mellitus;
RSV, respiratory syncytial virus; AI, avian influenza; GBS, Group B Streptococcus;
SCFAs, short chain fatty acids; SiabB2, exo-α-sialidase gene; NanH1 and
NanH2, sialidase encoding genes; DMOs, donkey milk oligosaccharides; EGFR,
epidermal growth factor receptor; EGF, epidermal growth factor; GDNF, glial-
derived neurotrophic factor; PolySia, Polysialic acid; CREB, cAMP responsive
element-binding protein; GPR35, G-protein coupled receptor 35; S-BMO,
sialylated bovine milk oligosaccharides; mIns, myo-inositol; Glx, glutamate
+ glutamine; NAA, N-acetylaspartate; SI, scyllo-Inositol; KO, knockout;
NEC, necrotizing enterocolitis; ETEC, enterotoxigenic Escherichia coli; EPEC,
enteropathogenic Escherichia coli; UPEC, uropathogenic Escherichia coli; LF,
lactoferrin; sIgA, secretory immunoglobulin A; HLF, human lactoferrin; BLF,
bovine lactoferrin; Tregs, T regulatory cells; GMP, glycomacropeptide; OPN,
Osteopontin; BSSL, Bile salt-stimulated lipase;MFGM,milk fat globulemembrane;
GAs, gangliosides; GM3, monosialoganglioside 3; GD3, disialoganglioside 3;
HPLC, high performance liquid chromatography; HPAEC, high-performance
anion-exchange chromatography; PAD, pulsed amperometry detection; LC-
MS, liquid chromatography with mass spectrometry; MRM, multiple reaction
monitoring; CE, capillary electrophoresis; NMR, nuclear magnetic resonance;
nano-LC-chip-TOF, nano-liquid chromatography-chip-time of flight; HILIC,
hydrophilic interaction chromatography; MS, mass spectrometry; SPE, solid-phase
extraction; ESI-CID-MS/MS, Collision-induced dissociation tandem ESI-MS.

regulate intestinal microbial ecosystem and prevent development
of neonatal diseases by promoting probiotic growth and
metabolism, inhibiting pathogen adhesion, inducing intestinal
epithelial differentiation, promoting intestinal maturation, and
optimizing immune function (6, 7, 9–11). Some recent studies
also support the promoting effects of sialylated milk components
on neonatal bone and brain development (12, 13).

Given the important role of intestinal gut microbes in infant
nutrition and health, as well as the development of immune
system, this article reviews the research progress in the regulation
of sialylated milk oligosaccharides and glycoconjugates on
neonatal gut microbiota and health. Although some of their
effects on neonatal health have been reviewed in the past,
the content has been incomplete and most of the discussion
has focused on sialylated oligosaccharides. Here we focused
on the regulation of sialylated milk components on neonatal
gut microbiota, and updated new related researches for better
understanding the important role of sialylated milk components
in improving neonatal physiology and health through regulating
neonatal gut microbiota.

THE SIALYLATED COMPONENTS IN MILK

The Structures of Sialylated Milk
Components
The Structures of Sialylated Milk Oligosaccharides
Human milk oligosaccharide is the most common solid
component in breast milk, which is the third most abundant
breast milk component, after lactose and lipids (14). It comprises
D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine
(GlcNAc), L-fucose (Fuc), and Neu5Ac. So far, more than 200
HMO structures have been identified. These HMOs range from
3 to 32 monosaccharides in size and indigestible by the host
(15). HMOs are divided into acidic and neutral oligosaccharides.
Acidic oligosaccharides contain SA molecules, while neutral
oligosaccharides do not (7). Neu5Ac is the only form of SA found
in human milk, while milk of other mammals may also contain
N-glycolylneuraminic acid (Neu5Gc)-bound oligosaccharides
(16). Sialylated HMOs are mainly composed of 3′-sialyllactose
(3′-SL), 6′-sialyllactose (6′-SL), LS-tetra-saccharide a (LSTa),
LS-tetra-saccharide b (LSTb), LS-tera-saccharide c (LSTc),
and disialyllacto-N-tetraose (DSLNT) (17, 18) (Figure 2A),
and the concentration of them is about 1,000–3,300 mg/L in
the colostrum and droped to about 135–2,150 mg/L in the
matured human milk (Table 1). Among all sialylated HMOs,
the content of sialyllactose (SL) is the highest, with an estimated
concentration of 170–500µg/mL for 6′-SL in mature breast milk
(6, 22–24). SL play important roles in neonatal gut maturation,
prevention of pathogen invasion, immune regulation, and
prebiotic function (33).

The Structures of Sialylated Milk Glycoconjugates

Sialylated Glycoproteins in Milk
Researchers estimated that up to 70% of human milk proteins
are glycosylated, and these proteins help shape the intestines
and immune system of developing infants (34). The most
abundant human milk glycoproteins include lactoferrin
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FIGURE 2 | The sialylated structures in breast milk (7, 17–20). (Monosaccharide key is shown at the bottom of the figure.) (A) Sialylated HMOs: lactose can be

fucosylated or sialylated in different linkages to generate trisaccharides, such as 3′-SL and 6′-SL; The elongated chains can be sialylated by α2–3 or α2–6 linkages at

the terminal positions forming structural isomers, such as DSLNT and LST. (B) Sialylated N-glycans of glycoproteins: The two most common structures in human milk

N-glycome are presented; Asn-asparagine. (C) Sialylated O-glycans of glycoproteins; Ser-serine, Thr-threonine. (D) Gangliosides: In Svennerholm nomenclature, the

capital letter “G” is used to denote the core saccharide of the “Ganglio” series, followed by the capital letters (M, D, T, Q) to indicate the total number of sialic acids.

The following Arabic numerals (1–4) denote the length of the neutral core (21).

(LF, 17% of total protein), α-lactalbumin (17%), secretory
immunoglobulin A (sIgA, 11%), and κ-casein (9%). The
antipathogenic effects of human milk glycoproteins, such as
LF, κ-casein, sIgA can be partly attributed to their sialylated
glycan moieties (27).

Lactoferrin (LF)
LF is a highly sialylated iron-binding glycoprotein, which is
the most abundant glycoprotein (80 KDa) in human milk,
accounting for 1/4 of the total protein in human milk (35).
Its concentration is highest in colostrum approximately

9.7 g/L and declines to 2–3 g/L in humans’ mature milk
(Table 1). LF concentration in mature bovine milk is 0.03
g/L−0.1 g/L, about 1/10 of that in human milk (28). Human
lactoferrin (HLF) exhibits three potential N-glycosylation sites
(Asn137, Asn478, and Asn623) (36, 37). In contrast, bovine
lactoferrin (BLF) exhibits five (Asn233, Asn281, Asn368,
Asn476, and Asn545). Alternatively, murine LF exhibits
only one potential N-glycosylation site: Asn476. Glycans
attached through N-glycosidic bonds may contribute to the
functional activity of LF (38, 39). Researchers reported that
HLF possesses multiple sialylated or fucosylated N-glycans
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TABLE 1 | The concentrations of sialylated oligosaccharides and glycoconjugates in human milk.

Structures Concentration in human milk (mg/L) References

Colostrum Transitional Mature

Total Sialylated HMO 1,000–3,300 n.a. 135–2,150 (6)

6′-SL 250–1,300 n.a. 170–500 (6, 22–24)

3′-SL 90–350 n.a. 170 - 500 (6, 22–24)

DSLNT 78–2,500* (25)

LSTa/b n.a. 104 ± 46 31 ± 25 (26)

LSTc n.a. 488 ± 224 11 ± 8 (26)

6′-SLN n.a. 15 ± 15 5 ± 1 (26)

Total protein 8,000–10,000 n.a. 7,000–8,000 (27)

LF 9,700 n.a. 2,000–3,000 (28)

SIgA 6.51–1,359.61* (29)

Mucins 729 ± 75* (30)

κ-casein 450 ± 80 n.a. 1,050 ± 280 (31)

OPN 178.0 ± 17.9 n.a. 48.3 ± 10.2 (32)

BSSL 100–200* (30)

Total GA n.a. 21.18 ± 11.46 20.18 ± 9.75 (26)

GM3 n.a. 9.47 ± 8.37 18.62 ± 9.69 (26)

GD3 n.a. 11.71 ± 9.46 1.57 ± 2.24 (26)

n.a. = Data not available. *The stages of breast milk samples were not indicated.

Values (mg/L) are means ± standard deviation.

(Figure 2B), which exhibit highly branched complexes or hybrid
or both (40).

κ-casein
κ-casein is another major glycoprotein in human milk, especially
rich in the matured human milk (Table 1). It possesses seven O-
glycosylation sites at its C-terminal (27). Its carbohydrate content
is 40–60%, while bovine κ-casein carbohydrates are only ∼10%
(41). Compared with bovine κ-casein, the glycan part of human
κ-casein is rich in SA (6).

Secretory Immunoglobulin A (sIgA)
SIgA is a heavily glycosylated protein, built from
“fucose, galactose, SA, and mannose residues.” Moreover,
monosaccharides, namely, GlcNAc is missing (42, 43). SIgA
exhibits both N-linked and O-linked glycans (Figure 2C). More
than 75% of the N-glycans in the J chain are sialylated, while
<15% of the N-glycans in the H chain are sialylated (43). SIgA
accounts for 80–90% of all immunoglobulins in human milk,
with the highest concentrations found in premature mothers’
colostrum and breast milk (Table 1).

Mucin
Mucin is an acidic glycoprotein with high molecular weight,
ranging in size from 200 KDa to 2,000 KDa. Lactadherin
is a mucin-related sialylated glycoprotein in the milk fat
globule membrane (MFGM), which includes five N-linked
glycosylation sites.

Osteopontin (OPN)
OPN is an acidic glycosylated protein with rich SA (44), which
is found in high levels in breast milk (Table 1) but in low levels
in milk and infant formula, and is an important immunoactive
protein in breast milk. The glycosylation of OPN was dominated
by O-glycan. Studies have shown that OPN plays an important
role in improving immunity, promoting intestinal health and
promoting cognitive development in infancy (45).

Bile Salt-Stimulated Lipase (BSSL)
BSSL is a highly glycosylated protein in human milk, with
10 potential O-linked glycosylation sites at the C-terminus of
the protein, heavily decorated with carbohydrates including
galactose, glucosamine, fucose, galactosamine and SA in molar
ratios of 3:2:1:1:0.3, respectively (27). The concentration of
BSSL in colostrum of GDM mothers was lower than that of
normal mothers. BSSL helps infants digest fat early in life, and
its levels are associated with breastfeeding (46). Purification
and characterization of recombinant human bile salt-stimulated
lipase expressed in milk of transgenic cloned cows (27).

Sialylated Glycolipids in Milk
Glycolipids of human milk are divided into neutral glycolipids-
without SA and acidic glycolipids-containing SA (such as
gangliosides). Gangliosides (GAs) are the most abundant
in human milk glycolipids (Table 1) (47–50). Many types
of GAs exist in breast milk, such as GD3, GM3, GM2,
GM1a, GM1b, GD1a, GD1b, GT1b and GQ1b, among which
monosialoganglioside 3 (GM3) and disialoganglioside 3 (GD3)
are key (51) (Figure 2D). In breast milk, the content and
distribution of GAs change during lactation and vary between
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individuals. GD3 is the most abundant GA in colostrum, whereas
GM3 is the main GA in mature milk (27). Milk GAs seem to
prevent the adhesion of pathogens and improved the intestinal
ecology of new-borns. GM3 is a receptor analog of intestinal cells,
which can resist pathogens, such as enterotoxigenic and EPEC,
and it has a protective role against infections (52).

Factors Affect the Levels of Sialylated
Components in Milk
Sialylated oligosaccharides are a crucial component of HMOs,
especially in the early stages of breast feeding, as they account
for 20–30% of the total HMOs, and keep decreasing along
with the extension of lactation process (53). The composition
and concentration of HMOs vary among individual mothers
and change during different lactation stages (54–56). The
variation among different mothers is in part due to the
genetic polymorphisms in fucosyltransferase-2 (FUT2) and
FUT3, which encode the Secretor and Lewis genes, respectively.
The polymorphisms in these genes altered the activities of
fucosyltranserase and thus lead to distinct fucosylation patterns
of HMOs (54, 55, 57, 58). However, the levels of sialylated
HMOs were also found affected by mothers’ secretor status. Xu
et al. reported a higher content of sialylated HMOs in milk
of non-secretor compared to milk of secretor mothers, they
found that the sialylation level of secretory mothers is 26%
lower than that of non-secretory mothers on the 120th day after
birth (56, 59), while others found no difference (60, 61). In
a study on the effects of breast milk oligosaccharides on iron
and galactose oligosaccharide interventions in Kenyan infants,
researchers found no significant anthropometric difference at
baseline between infants of secretory and non-secretory mothers
(61). Another study on stunted infants in Malawi found that
non-secretory mothers of severely stunted infants exhibited
lower concentrations of sialylated and fucosylated breast milk
HMOs than those of non-secretory mothers of healthy infants
(29). In addition to genetic factors, environmental factors such
as geographic location and maternal nutritional status may
also influence HMO concentration and composition (62–64).
Preterm milk is another factor to affect HMOs concentration
and composition. Alteration in concentration of sialylatedHMOs
were found in preterm milk, in particular the concentration
of 3′-SL was elevated (65). Interestingly, HMOs were also
detected in the serum of pregnant women and with increasing
concentrations along with pregnancy (65). In a prospective
longitudinal cohort study including 87 overweight or obese
women, Jantscher-Krennand et al. (66) found that the sialylated
HMOs, including 3′-SL and 3′-sialyllactosamine (3′-SLN), in
serum of the pregnant women, were positively associated with
fasting glucose level, suggesting that metabolism alterations
during pregnancy may also affect HMOs pattern, and this
influence may last till lactation to affect the infants. A previous
study of our group (67) using mouse models with high-fat diet
and streptozotocin-induced gestational diabetes mellitus (GDM)
found that, there was a decreasing pattern in the concentration
of milk oligosaccharides of GDM mice compared with that of
the control mice, but with no significant statistic differences.

TABLE 2 | The key technologies and methods for investigating sialylated

oligosaccharides and glycoconjugates in milk.

Technologies and methods References

Milk oligosaccharides

High performance liquid chromatography, HPLC (69)

High-performance anion-exchange chromatography, HPAEC (70)

Pulsed amperometry detection, HPAE-PAD (61)

Liquid chromatography with mass spectrometry and multiple

reaction monitoring, LC-MS/MS-MRM

(71)

Capillary electrophoresis, CE (72)

Nuclear magnetic resonance, NMR (73)

Nano-liquid chromatography-chip-time of flight,

Nano-LC-chip-TOF

(74)

Hydrophilic interaction chromatography, ESI-CID-MS/MS (75, 76)

Collision-induced dissociation tandem ESI-MS,

SPE-HILIC-MS

(75, 76)

Milk glycoconjugates

Mass spectrometry, MS (43)

HPLC (43)

LC-ESI-MS/MS (43)

Nano-LC-chip-TOF (43, 52)

HPLC-MS (77, 78)

However, themilk of GDMmaternal mice contained significantly
higher concentrations of fucosylated and sialylated N-glycans
than the control mice. The alteration in milk glycobiome of
GDM mice had direct effects on the intestinal microbiome of
the offspring, which in turn affected their immune responses.
Given this study is based on mouse models, which differs largely
from human samples, future studies in the feature of HMOs
of GDM mothers, as well as the pattern of glycoconjugates in
human milk are urgently needed and will lay a foundation for
the development of specific nutritional care for the GDM infants.
In addition to HMOs, the levels of milk protein and lipids can
also be affected by many maternal factors, including smoking,
BMI, birth route, pregnancy weight gain, and energy intake
during lactation. For example, Aksan et al. (68) have detected
significant correlations between body weight, length, and head
circumference, respectively, and OPN levels after one (r = 0.442,
p= < 0.001; r =−0.284, p= < 0.001; r =−0.392, p= < 0.001)
and 3 months (r = 0.501, p = < 0.001; r = −0.450, p = < 0.001;
r =−0.498, p= < 0.001) of lactation.

Technologies and Methods of Investigating
Sialylated Milk Components
The key technologies and methods of investigating sialylated
oligosaccharides and glycocomplex in recent years are
summarized in Table 2. The most common analytical
method used to quantify HMOs were high performance liquid
chromatography (HPLC) (69) with fluorescence detection and
high-performance anion-exchange chromatography (HPAEC)
(70) with pulsed amperometry detection (PAD) (61). Other
methods involved LC-MS (liquid chromatography with mass
spectrometry)/MRM (multiple reaction monitoring) (71),
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CE (capillary electrophoresis) (72), NMR (nuclear magnetic
resonance) (73), and nano-LC-chip-TOF (time of flight)
(74) were also used to precisely detect the concentration
and structures of the milk oligosaccharides. But for a long
period, detection of acid milk oligosaccharides has been
a technical problem. In recent years, Yan et al. (75, 76)
developted a new method of solid-phase extraction (SPE) with
hydrophilic interaction chromatography (HILIC) followed
by mass spectrometry (MS) identification for the analysis of
sialylated milk oligosaccharides. Collision-induced dissociation
tandem ESI-MS (ESI-CID-MS/MS) is then used for sequence
and sialic acid α2-3/α2-6 linkage analysis. For the detection of
glycoconjugates in milk, the LC-MS method (43) was generally
adopted. For example, the most common analytical methods for
N-Glycans or O-Glycans were MS, HPLC, LC-ESI-MS/MS and
Nano-LC-chip-TOF (43, 52). The ganglioside in breast milk was
normally determined by HPLC-MS (77, 78).

EFFECTS OF SIALYLATED MILK
COMPONENTS ON NEONATAL GUT
MICROBIOTA AND HEALTH

Anti-infection
The Anti-infection Function of Sialylated Milk

Oligosaccharides
The intestinal epithelium cells are covered by a large number of
glycoproteins such as mucins. The glycans on these glycoproteins
are major components of the gastrointestinal mucosa, and
provide essential nutrients and ligands to induce host signaling to
defense the invasion of pathological microorganisms and regulate
the commensal microbiota. SA-containing glycans were found
ubiquitously expressed by gastrointestinal epithelial cells (79–81).
As the infection receptors, specific sugar residues, particularly
sulfated or sialylated glycans on the mucosal surface can be
recognized by many viruses. HMOs were found to prevent
the colonization of viral pathogens through two proposed
mechanisms. Firstly, as the structures of HMOs share homology
with glycans on epithelial cell surface, they can prevent the
early cellular attachment as soluble decoy receptors for virus
or pathogens. For example, the sialic acid-α2,6 galactose (SA-
α2,6Gal) epitope was found to be a receptor for human influenza
virus (79) and the sialic acid-α2,3 galactose (SA-α2,3Gal) is a
receptor for coxackievirus A24 (80). Another way is that HMOs
bind to epithelial cell surface receptors to block viral adhesions
(82). Therefore, supplement of SA-linked HMOs from mother’s
milk can protect intestinal cells of the infants from many viral
infections, including influenza, rotavirus (83) and the respiratory
syncytial virus (RSV). For example, an in vitro hemagglutination
inhibition assessment of 3′-SL and 6′-SL against thirteen avian
influenza (AI) viruses showed that 3′-SL can inhibit almost all
subtypes of the tested AI viruses, whereas 6′-SL only exhibited
anti-virus activity against few strains such as H1N1, H1N2, and
H3N2. Further in vivo study found that administration of 3′-
SL to H9N2-infected chickens resulted in elimination of the
virus within 24 h post infection (84). The underlying mechanism
is their ability to bind to haemagglutinin (HA) glycoprotein

spikes of the influenza virus (85). Another study had proved
that the combination of 3′-SL and 6′-SL was more effective
than single application of each of them in binding to VP8∗

in a porcine rotavirus model. SA-containing HMO was also
shown to inhibit rotavirus infectivity in vitro (86); however,
both acidic and neutral HMOs were able to decreased NSP4
replication during acute rotavirus infectionin situ. Laucirica et
al. (87) demonstrated that sialylated oligosaccharides can reduce
the infectivity of human rotavirus, and they were considered
as possible components to inhibit cholera toxin. The rabbit
intestinal loop method was used to observe the effect of SL
on cholera toxin-induced diarrhea. The results showed that SL
was related to the inhibitory activity of milk against cholera
toxin (88). In addition, application of 3′-SL has been shown to
significantly decrease the cytokine level and RSV viral in airway
epithelia (89).

Similar to the anti-virus activities, different sialylated HMOs
can also selectively inhibit bacterial pathogens adhesion to
sialylated receptors on the intestinal epithelium by direct
binding (10). For example, sialylated HMOs have a strong
inhibitory effect on hemagglutination induced by enterotoxigenic
Escherichia coli (ETEC) and uropathogenic Escherichia coli
(UPEC) (90). 3′-SL was found to bind to Helicobacter pylori
and enteropathogenic Escherichia coli (EPEC) to inhibit their
adhesion to human intestinal cells (HT-29, Caco-2) (38, 39, 91).
Angeloni et al. (91) found that in vitro, 3′-SL reduced the
expression of sialyltransferases ST3Gal1, ST3Gal2, and ST3Gal4,
resulting in reduced glycosylation on the surface of Caco2 cells,
thus reducing 50% reduction of EPEC adhesion. Further the
study (92) found that 3′-SL also had an inhibitory effect on
Salmonella fyrisby. 6′-SL has anti-adhesion effect on Escherichia
coli O119, but on Salmonella fyris. And 6-SL has been shown to
effectively inhibit pneumocyte invasion Pseudomonas aeruginosa
strains. Acidic HMO components have an inhibitory effect on
pathogens expressing specific fimbrial types, such as Escherichia
coli expressing P and CFA fimbriae (92). In addition to
Escherichia coli, Streptococcus agalactiae (Group B Streptococcus,
GBS) is another leading cause of invasive bacterial infections in
infants. Studies found that HMOs may function as an alternative
substrate to modify a GBS component by impairing growth
kinetics (93). A recent study demonstrated that sialylated variants
of lacto-N-tetraose exert antimicrobial and antibiofilm action
against GBS by increasing cellular permeability (94).

The Anti-infection Function of Sialylated Milk

Glycoconjugates
The major sialylated glycopriteins in milk also possess the
ability to inhibit the infection of both pathogenic bacteria
and virus. LF is an antibacterial agent with a bacteriostatic
effect on the neonatal intestinal mucosa. Its iron-chelating
properties can prevent various pathogen growth dependent on
iron proliferation (95, 96). The basis of these mechanisms of
action is mainly attributed to the protein trunk; however, the
N or O-glycans attached on LF protein may play a vital role.
For instants, the SA residue on BLF was found to directly bind
to Ca2+ ions that otherwise seem to stabilize LPS on the outer
membrane of bacteria, and the SA portion of HLF can act in
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a similar manner. In addition, LF can act as a decoy to bind
to a variety of microbial pathogens, causing these pathogens
to deviate from receptor sites on the surface of host cells (27).
LF inhibits the adhesion of intestinal enteric to eukaryotic cell
lines (96) and the adhesion inhibition of microorganisms to host
cells. It exhibits direct cytotoxicity to bacteria, viruses, and fungi
(97). Sialylated glycans of human milk κ-casein was found can
inhibit the combination of Streptococcus mutans GS-5 to saliva-
coated hydroxyapatite (98). After entering the intestine, κ-casein
is cleaved by proteases to form glycomacropeptide (GMP), which
exhibits antimicrobial properties. Casein GMP is the C-terminal
part of κ-casein and locates on the 106–109th amino acid. GMP is
present in both human and bovinemilk (96, 99). κ-casein exhibits
multifaceted protective effects on intestinal infection in infants.
Researchers reported (27) that the probiotic effect of GMP may
be because it contains Neu5Ac. For example, researchers showed
that GMP with SA in bovine κ-casein can inhibit the adhesion
of enterohemorrhagic Escherichia coli and Salmonella enteritis to
Caco-2 cells. Further, κ-casein can inhibit pathogens’ adhesion
to the surface of gut cells in infants. Researchers reported
(100) that GMP can inhibit splenocyte proliferation induced by
concanavalin A and phytohemagglutinin. After neuraminidase
digestion, GMP loses its inhibitory activity on mitogen-induced
splenocyte proliferation, indicating that SA is the key to this
phenomenon. However, after GMP digestion with trypsin and
Streptomyces protease, the inhibitory effect was enhanced,
indicating that the peptide chain was also involved. Together,
studies suggest that κ-casein is crucial for protecting the infant
intestinal tract. O-glycans of sIgA can bind to microorganisms,
thereby inhibiting pathogens from adhering to the intestinal
epithelium (101). Further, sIgA glycans containing SA can be
used as bait to prevent pathogenic bacteria from binding to their
glycosylated targets on the intestinal mucosa’s surface (30, 101).
sIgA can effectively inhibit the adhesion of S-fimbrial Escherichia
coli by the specific interaction between sialylated N-and O-linked
glycans and bacterial adhesins, thus, protecting new-borns from
sepsis and meningitis caused by these pathogens (43, 101, 102).
Also, the sIgA glycan plays a structural and functional role.
For instance, sIgA is resistant to proteolytic digestion in the
gut due to its glycan moiety attachment. Therefore, sIgA plays
a vital role in protecting new-borns from pathogenic infection
and promoting intestinal homeostasis. The antipathogenicity
properties of lactadherin in human infants are mainly related to
the prevention of rotavirus infection (27, 47). Sialylated glycans
of milk mucins can bind to rotavirus and inhibit its replication
both in vitro and in vivo (98). Mucin 1 and 4 are two key
mucins identified in human MFGM, which can interact with
microorganisms (27). The most researched mechanism is that
the SA portion of mucin 1 interacts with pathogens, inhibiting
pathogens’ ability to bind to their sugar chain receptors on
the surface of infant host cells. Therefore, mucin 1 exhibits
an essential role in innate immune resistance against invasive
microorganisms (30, 47). SA is one of the components of
intestinal mucin glycans. When mucin is sialylated in the
intestine, its molecular structure is more stable. It cannot be easily
degraded by bacteria. In contrast, probiotics can increase the
synthesis and secretion of mucin to improve intestinal mucosa’s

biological barrier function (103). Ruminococcus gnavus is human
intestinal symbiotic bacteria, which can degrade mucin. Also,
Ruminococcus gnavus ATCC 29149 binds to gut mucus through
SA mediation (104). Presently, few studies exist on sialylated
mucin in breast milk; therefore, its effect on infant intestinal
microecology needs to be further studied in the future.

Promoting the Growth of Beneficial
Bacteria
The Promoting Effects of Sialylated Milk

Oligosaccharides on Beneficial gut Bacteria
Studies have found that sialylated HMOs play an important role
in promoting the growth of beneficial bacteria. For instance,
in an in vitro study by Zhuo et al. (10), to evaluate the
response of individual bacteria to individual components of
HMOS, each of 25 major strains isolated from the human
gut microbiota was cultured with individual major fucosylated
and other sialylated HMOs components. This allowed for an
assessment of the effects of specific HMOs on the growth and
metabolites of individual microorganisms. The results showed
that supplementation with 6′-SL and 3′-SL promoted the growth
of Bifidobacterium lougum, Bacteriodes vulgatus, and Bacteroides
thetaiotaomicron. Among the 25 strains tested, these bacteria
showed higher neuraminidase activity and produced a large
amount of lactate or short-chain fatty acids (SCFAs) or both,
which are beneficial for intestinal health and immune function
in infants and young children (10, 105). An in vivo study also
showed that addition of bovine derived oligosaccharide mixtures
rich in 3′-SL and 6′-SL to infant formula led to changing in
gut microbiota of infants (106). Animal studies showed that SL
can improve intestinal dysbiosis and reduce anxiety through gut-
brain axis (107). Supplementation of formula with SLs can also
modulate gut-associated microbiota in neonatal pigs, which may
have important health benefits for developing newborns (33).

The 6′-SL and 3′-SL in milk are partially hydrolyzed
in the acidic conditions of the infant’s stomach and the
remaining SLs are utilized by intestinal bacteria such as
Bifidobacterium, Lactobacillus and Bacteroides vulgatus.
Kiyohara et al. isolated an exo-α-sialidase gene (SiabB2) from
Bifidobacterium bifidum JCM1254 through expression cloning.
Expression of SiabB2 in Bifidobacterium longum 105-A enabled
this strain to degrade sialylated oligosaccharides present in
human milk, suggesting that SiabB2 plays an essential role in the
catabolism of sialylated HMOs by Bifidobacterium bifidum (108).
Bifidobacterium longum subsp. infantis was found to express
a sialidase that cleaves α2-6 and α2-3 linkages to utilize milk
sialyloligosaccharides. Two-candidate sialidase encoding genes
(NanH1 and NanH2) have been isolated from Bifidobacterium
longum subsp. infantis ATCC15697 (109). Although NanH1 is
the first sialidase-encoding gene that located in a cluster of genes
that specialize in the catabolism of SA, the sialidase NanH2
from Bifidobacterium bifidum strains were found utilize HMO
and degrade milk sialyloligosaccharides on their extracellular
surface, but not NanH1, which suggested that NanH1 may be
active for other sialylated glycans encountered in the infant’s gut
(109). A recent study of the consumption of HMOs by strains of
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Bifidobacterium breve revealed that all of those tested strains can
utilize sialylated lacto-N-tetraose (30). These results indicate that
Bifidobacterium spp. play an important role in the utilization of
sialylated HMOs.

The Promoting Effects of Sialylated Milk

Glycoconjugates on the Growth of Beneficial Bacteria
Researchers have found that the abundance of Bifidobacterium
and Lactobacillus in feces of breast-fed new-born was
significantly correlated with fecal LF level (110). Expression
of enzymes such as Endo-β-N-acetylglucosaminidases by infant-
associated Bifidobacterium spp. was found to help them to release
the complex N-glycans from LF, incubation of the bacterium
with HLF or BLF led to the induction of genes associated to
import and consumption of HMOs, suggesting linked regulatory
mechanisms among these glycans. These findings indicate that
HLF can promote the growth of beneficial bacteria and regulate
intestinal homeostasis in neonates, thereby contributing to
the establishment of a healthy intestinal microbiota profile
(15, 111–114). Studies of κ-casein revealed that the GMP
part of κ-casein can promote the growth of many beneficial
microorganisms in the intestinal tract of infants, including
Bifidobacterium and Lactobacillus bifidum, and thus preventing
the colonization of pathogens (27). Some researchers also
reported that supplementation of GAs in infant formula, with
concentrations similar to those in human milk, can improve
the intestinal ecology of premature infants by increasing the
abundance of Bifidobacterium and reducing the content of
Escherichia coli, suggesting that GAs play a significant role as
prebiotics in the infant gut. In addition to these effects, a number
of studies have also revealed that specific Bifidobacteria are
able to catabolize GAs from milk. For example, Bifidobacterium
infantis and Bifidobacterium bifidum were found to utilize the
two milk GAs, GD3 and GM3, whereas Bifidobacterium breve
did not utilize these GAs (52). And the important role of breast
milk GAs in the establishment of intestinal Bifidobacteria has
also been supported by clinical studies (16).

Promote the Intestinal Maturation and
Mucosal Barrier Function of Neonates
Effects of Sialylated Milk Oligosaccharides on

Intestinal Maturation and Mucosal Barrier Function of

Neonates
The intestinal epithelial cells serve as a physical and
biochemical barrier that separates the microbiota from the
gut epithelium, and this mucosal barrier can as well-facilitate the
communication between microbiota and immune system (115).
The fermentation products of SLs from gut bacteria, especially
from Bifidobacterium spp., are mainly lactate and SCFAs
(10, 116). These products play important role in serving as
nutrients for epithelial cells (117). For example, using adult and
infant human epithelial cell lines and fecal batch cultures, Perdijk
et al.’s study (11) found that, 6′-SL and 3′-SL can induce epithelial
differentiation and wound repair, the effect may correlate with
the upregulation of SCFAs production and increased abundance
of Bacteroides, Ruminococcs obeum, F. prausnitizii.

In additon to in-direct effects on intestinal barriers through
microbiota-metabolism, SLs have direct effects on intestinal
epithelial cell proliferation and differentiation. As early as
2008, some in vitro studies have suggested that acidic milk
oligosaccharides may inhibit the proliferation of intestinal
epithelial cells and induce differentiation (118, 119). This effect
is mediated via activation of the epidermal growth factor
receptor (EGFR) by interaction of SLs with the carbohydrate
moieties on this receptor (119). In the same year, Kuntz et
al. (9) reported that 6′-SL directly affects the cell dynamics
and promotes epithelial cell differentiation in vitro. A study
(120) of donkey milk oligosaccharides (DMOs) found that
3′-SL and 6′-SL are the primary oligosaccharides in DMOs,
they induce differentiation, promoted apoptosis and inhibited
proliferation of HT-29, Caco-2 and human intestinal epithelial
cells in a concentration-dependent manner, suggesting that
DMOs promote maturation of intestinal epithelial cells. And
theses effect was found associated with activation of the p38
pathway and cell cycle arrest at the G2/M phase. Recently, Yang
et al. (121) explored themolecular and cellular mechanisms by SL
intervention with intestinal maturation in neonatal piglets. They
found that treatment of 3′-SL and 6′-SL to piglets can upregulate
Ki-67 expression in ileum crypts, increase the width of ileum
crypt, and reduce the incidence and severity of diarrhea. Their
results showed that SL intervention upregulated the expression
level of the glial-derived neurotrophic factor (GDNF) in the
ileumof piglets, it also upregulated the mRNA expression level of
ST8Sia IV, which is the key polysialyltransferase in the synthesis
of Polysialic acid (PolySia)-NCAM. PolySia mediates binding to
GDNF, activates Fyn, and increases the expression level of cAMP
responsive element-binding protein (CREB) phosphorylation.
GDNF promotes cell proliferation by upregulating the CREB,
evidenced by the increase in the number and density of Ki-67
positive cells in the crypt. In vivo studies showed that CREB
and its binding protein are required for the survival of intestinal
stem cells, and that overexpression of CREB promotes cell
proliferation. Further, SL intervention can significantly reduce
the incidence and severity of diarrhea in early weaning of piglets.
These results suggest that SL promotes intestinal maturation
of neonatal piglets by up-regulating the synthesis of GDNF,
Polysia and CREB interaction pathways. Another recent study by
Natividad et al. (122) investigated the effects of six industrially
available HMOs (2′-FL, 3′-SL, 6′-SL, LNnT, LNT and DFL) alone
and in different combinations on epithelial barrier function by
using an in vitromodel of two intestinal epithelial cell lines, Caco-
2 and HT29. The results showed tha the six HMOs blend dose-
dependently limited the cytokine-induced FD4 translocation and
decrease the epithelial permeability post challenge. Similarly, 3
and 5 HMO blends including 3′-SL and 6′-SL also conferred a
significant protection against the challenge, which suggested that
different abilities of specific HMOs in regulating the intestinal
barrier and support the potential of complementing available
HMOs combinations to promote intestinal health and protect
against intestinal inflammatory diseases. Another in vivo study
by Holscher et al. (123) also found that individual and combined
treatment with 2′-FL, 3′-SL and 6′-SL inhibited the proliferation
of small intestinal cell lines HT-29 and Caco-2Bbe, while they
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enhanced differentiation of HT-29 and Caco-2Bbe cells. The
combination of inhibition of proliferation and induction of
differentiation suggests that sialylated HMOs may contribute
specifically to the maturation of intestinal epithelial cells (91).
Thus, the underlying mechanisms regarding the effects of
sialylated HMOs on intestinal epithelial cells need to be further
studied. A possible way to explain their effects is the directly
activation of G-protein coupled receptor of cells by sialylated
HMOs and in tern upregulated the signal transduction pathways
downstream (124). Their results showed that one of the pathways
by which HMO activates G-protein coupled receptor 35 (GPR35)
is through a direct interaction of 6′-SL. GPR35 is a receptor that
mediates pain and colitis attenuation. More recently, Tsukahara
et al. (125) reported that the use of GPR35 agonists alleviated
DSS-induced colitis in mice. They found that GPR35 agonists
promoted in vitro intestinal epithelial cell migration, which may
contribute to damage repair in colitis However, lack of GPR35
leads to a worsening outcome in DSS-induced experimental
colitis, suggesting that GPR35 plays an important role in
protecting colon inflammation (126). Another study has shown
that GPR35 promotes the proliferation of intestinal epithelial
cells (127). Therefore, it was proposed that sialylated HMOs may
protect neonatal intestinal health by activating GPR35 through
the interaction of 6′-SL.

Effects of Sialylated Milk Glycoconjugates on

Intestinal Maturation and Mucosal Barrier Function of

Neonates
It has been found that LF can reduce the abundance of Escherichia
coli in colon and promote intestinal maturation, which protects
piglets from early weaning diarrhea by up-regulated intestinal
gene expression of brain-derived neurotrophic factors, ubiquitin
carboxy-terminal hydrolase L1, and alkaline phosphatase activity
(128). In addition, the formula containing BLF was found
enhanced the proliferation, depth and area of jejunal crypt and
the expression of β-catenin mRNA in piglets. The increased
expression of β-catenin indicated that Wnt signal may partially
mediate the stimulating effect of BLF on intestinal cell
proliferation. These findings provide evidence that supporting
the role of LF in neonatal intestinal growth and maturation
(111). OPN is another milk glycocojugates that have been
found to confer protection effects on intestinal maturation and
mucosal barrier function of neonates. Based on the potential
benefits of OPN in early life, the effects of OPN supplementation
on growth, body composition, and intestinal transcriptome in
raspus monkey pups were investigated by comparing different
feeding patterns including breast milk, OPN formula, and regular
formula (129). The results showed that although growth was
similar in each group, the intestinal gene expression pattern
(such as CUX1 and EGFR) was more similar in the breast milk
and OPN formulations groups. In addition, studies have found
that OPN in milk can promote the differentiation of intestinal
epithelial cells (Caco-2), and stimulate intestinal immunity by
upregulating the secretion of IL-18 by intestinal epithelial cells
(Caco-2) (45). The possible mechanism by which OPN promotes
intestinal health may be through changes in the expression of
intestinal genes. For example (129), CUX1 is a protein-encoding

gene whose expression product can bind to DNA to further
regulate gene expression, influence cell morphological changes
and differentiation, and also influence cell life cycle. These
processes are crucial to the growth and development of the gut.

Immune Regulation
The Regulation of Sialylated Milk Oligosaccharides

on Neonatal Immunity
In addition to regulating bacterial growth and inducing intestinal
differentiation, acidic HMOs can affect cytokines’ production
and lymphocyte maturation. Bode et al. (130) found that acidic
fraction of HMOs,mainly 3′-SL and 3′-sialyl-3-fucosyllactose (3′-
S-3-FL) significantly inhibited leukocyte rolling and adhesion in
a concentration-dependent manner, and therefore serve as anti-
inflammatory components to contribute to the lower incidence
of inflammatory diseases in human milk-fed infants. Another
in vitro study (73) showed that acidic HMOs affect cytokine
production and activation of cord blood derived T cells, which
may influence lymphocyte maturation in breast-fed newborns.
They were also found affecting the immune balance of Th1/Th2
by inhibiting the Th2 response of atopic patients, thus regulating
the specific immune response of postnatal allergens (56, 90, 131).

3′-SLmediates anti-inflammatory properties by enhancing the
expression of peptidoglycan recognition protein 3, a pathogen
recognition receptor that has been shown in vitro to modulate
the inflammatory response (6), and therefore reduce the levels of
pro-inflammatory cytokines TNF-α and IL-8 mRNA in Caco-2
cells. It has been showed that supplementation of 3′-SL during
infancy could affect bacterial colonization of the nouse intestine,
and reduce the susceptibility to DSS-induced colitis during
adulthood (132). In this model of colitis, the pro-inflammatory
effect of 3′-SL was the direct stimulation of dendritic cells in
mesenteric lymph nodes through Toll-like receptor 4, resulted
in Th1 and Th17 cells expansion and the overproduction of
pro-inflammatory cytokines (133). Although 3′-SL has a pro-
inflammatory effect in model with DSS-induced colitis, it is
considered to have a protective effect in other aspects (6).

Necrotizing enterocolitis (NEC) is a gut inflammatory
disorder which is one of the leading causes of mortality and
morbidity of preterm infants (134). Recent studies found that
2′-FL and 6′-SL protect the development of NEC in mouse
and pig models by inhibiting the Toll-like receptor 4 signaling
pathway. Most importantly, these findings suggest that the use
of 2′-FL and 6′ -SL, either alone or in combination, may offer
new avenues for prevention of this devastating disease (135). In
addition to SL, studies found that another acidic HMO, with
high structural specificity, namely DSLNT, can reduce NEC in
neonatal rats, and its effect depends on the presence of two SAs
(136). However, because the rat model exhibits its limitations, the
need to confirm whether the results apply to human infants is
paramount. If studies confirm the benefits of DSLNT for human
infants, it will be an effective supplement that can be used to
prevent or treat NEC in formula-fed infants (136). In a newly
published cohort study of premature infants, a total of 80mothers
of preterm infants were sampled to measure DSLNT levels and
found that the mothers of NEC infants had lower concentrations
of DSLNT in their breast milk compared to the control group
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(137). Further sequencing results of infants’ gut microbiota
showed that the relative abundance of beneficial bacteria (such
as Bifidobacterium) was higher in the feces of preterm infants
fed with high levels of DSLNT in breast milk, while the relative
abundance of harmful bacteria represented by Enterobacterium
was lower. These results suggest that DSLNT may be one of the
nutritional strategies to help prevent NEC in premature infants.
Further work is needed to determine whether DSLNT functions
by regulating themicrobiome or by acting directly on the host, for
example by structure-specific receptor-mediated means to alter
immune function and reduce inflammation (137).

The Regulation of Sialylated Milk Glycoconjugates on

Neonatal Immunity
It was found that LF intervention in gilts can improve serum
IgA and sIgA levels (36). Clinical trials confirmed that the
potential application of BLF may be used to prevent nosocomial
sepsis and NEC in premature infants (128). T regulatory
cells’ (Tregs) level in preterm infants was lower than that in
full-term infants, and the level of Tregs increased under LF
prevention. Although Treg cells participate in controlling the
intestinal immune response of pathogens and strengthen the
important role of BLF in controlling intestinal homeostasis
(138, 139), however, in a randomized controlled trial of 2,203
infants (112), researchers found that supplementation of LF
did not decrease the incidence rate of NEC or infection. In
another randomized trial of low-birth-weight preterm infants
in Canada (140), still, no clear answer exists to the benefits
of BLF in reducing mortality or morbidity in low birth-weight
infants. Considering the other beneficial effects of LF, these
results of are disappointing; so, further randomized trials and
researches that involves larger population of infants should be
conducted. In terms of inflammation, LF was found to help
reduce of the excessive immune response by blocking various
pro-inflammatory cytokines, such as IL-1 β, IL-6, TNF-α, and
IL-8, and inhibiting the activity of free radicals (97, 112), which
suggested that HLF plays a vital role in balancing the intestinal
microbiota and protection from neonatal inflammatory diseases.

sIgA is a key component in human milk for the regulation of
neonatal immunity.The mother’s milk provides the only source
of sIgA for new-borns in the first month after birth and plays
as the first immune defense line of human (15). It was found
that the glycans on SIgA in breast milk play an important role
in connecting innate and acquired immunity (43). In this study,
Royle et al. found that the O-glycan regions on the heavy (H)
chains and the SC N-glycans of human sIgA have adhesin-
binding glycan epitopes including alpha2-6-linked SAs. These
glycan epitopes provide sIgA with further bacteria-binding sites
in addition to the four Fab-binding sites, thus enabling it to
participate in both innate and adaptive immunity.

In a study measuring the biological activity of cow’s milk
OPN in vivo in a mouse model of OPN knockout (KO) (141),
similar to wild-type mother-fed pups, pups fed by KO mothers
showed inhibitory effects on LPS-induced TNF-α after bovine
OPN supplementation, suggesting anti-inflammatory activity of
milk OPN. The results of clinical trials have shown that infants
fed with OPN-rich formula had less fever than those fed with

standard formula. They had an increased proportion of T cells,
and TNF-α levels weremore similar to those of breast-fed infants,
suggesting that OPN may be involved in the development and
maturation of the infant’s immune system (142). Breast milk
OPN is likely to provide beneficial biological activity for breast-
fed infants. The OPN active protein from milk is not readily
hydrolyzed by the newborn’s gastric juices, so most of the OPN
active protein can enter the intestinal tract and perform further
functions. Animal studies have shown that OPN active protein in
milk can stimulate intestinal development and protect intestinal
tract (129, 143). At present, in vivo studies on the correlation
between OPN active protein and NEC are still very limited. Some
scholars conducted a study on preterm piglets: the experimental
group fed with OPN active protein formula underwent total
parenteral nutrition for 2 days and enteral nutrition for 1.5
days. Results showed that OPN active protein formula feeding
significantly reduced the disease severity of NEC in preterm
piglets compared with conventional formula feeding (144). This
also suggests that OPN active protein may have a potential
protective effect on the occurrence of NEC in premature infants.

Since some studies showed that GAs may be involved in
the activation of T cells and the differentiation of different
lymphocyte subsets, the addition of human breast milk GAs
or other sources of GAs to infant formula may play an
important role in the proliferation, activation, and differentiation
of neonatal immune cells, especially those from the intestinal
tract (52). GAs can passively prevent infection in the form of
“bait” and actively promote the maturity of the infant immune
system by regulating immune cell functions and promoting the
secretion of cytokines. In an animal experiment (145), scientists
observed that in young mice fed GAs-rich milk powder, two
cytokine-secreting cells, lamina propria lymphocytes and Pyle-
collecting lymphoid, developed earlier and more in number than
those in the control group. Another study (146) showed that
young mice feed rich in GAs milk powder demonstrated higher
levels of sIgA, a crucial immune factor in early life, suggesting
better self-protection. In addition to immune protection, GAs are
associated with maintaining immune homeostasis. In the early
stage of life, new-borns are in a state of immune imbalance,
tending to Th2 immunity; that is, it is easy to exhibit excessive
immunity, thereby causing allergic reactions. Presently, GD3
can prevent over-immunity by inhibiting the proliferation of
dendritic cell CD4+ cells (147).

Promote Growth: Bone and Muscle
Development
The Growth Promoting Effects of Sialylated Milk

Oligosaccharides on Neonates
In addition to promote the maturation of intestinal barrier,
sialylated HMOs were also found able to enhance liver, muscle
metabolism by increasing nutrient utilization in undernourished
infants (12, 148). A study in twoMalawian birth cohorts revealed
that the sialylated HMOs are significantly less abundant in
milk (6-month-postpartum) of those Malawian mothers with
severely stunted infants (148). This study also found that the
sialylated bovine milk oligosaccharides (S-BMO) can promote
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the augmentation of lean body mass gain of infants in a
microbiota-dependent manner. Supplementation of S-BMOs to
neonatal mice or gnotobiotic piglets enhanced their ability to
utilize nutrients for anabolism, resulted in alteration of the
bone morphology and metabolism of liver, muscle, and brain.
Another study using mouse models revealed that 3′-SL can
inhibit the degradation of cartilage, and upregulate the CO12a1
production to promote cartilage regeneration, which protects
against osteoarthritic development in mice (149). By adding
purified S-BMO with structures similar to those in human
milk to the diet of young germ-free mice that were colonized
with cultured bacterial strains from a 6-mo-old stunted infant,
Cowardin et al. (12) found an increased femoral trabecular bone
volume and cortical thickness, reduced osteoclasts and their bone
marrow progenitors, and altered regulators of osteoclastogenesis
and mediators of Th2 responses. Compare with the control
mice, the S-BMO treated mice exhibited microbiota-dependent
increase in cecal levels of succinate and in turn activated the tuft
cell signaling pathway that linked to Th2 immune responses. A
prominent fucosylated HMO, 2′-FL, failed to elicit these changes
in bone biology, highlighting the structural specificity of the S-
BMO effects. A mouse model study of collagen-induced arthritis
showed that, 3′-SL could reduce the severity and incidence of
arthritis, inhibit the formation of synovitis and pannus, and
suppress cartilage destruction, which suggested that 3′-SL can
serve as an inhibitor of p65 phosphorylation to ameliorate the
progression of experimental rheumatoid arthritis (150).

The Growth Promoting Effects of Sialylated Milk

Glycoconjugates on Neonates
Studies in infants and animals have proved that milk proteins
significantly influence the growth and body composition of
neonates (151). Human milk immunomodulatory proteins
including LF and sIgA were found time-dependently and
differentially associate with development of infant lean mass
and adiposity during first 1 year of lactation (152). A rat study
by Shama et al. (153) showed that treatment of a human
milk-based protein concentrate contained 101 ± 6 g protein/kg
in total and 5 ± 1 g lactoferrin/kg of milk solids supported
the growth of weanling rats, suggested its potential use for
preterm infants. Wu et al. (154) demonstrated that the formula
containing hydrolyzed whey protein (hydrolyzed whey/intact
casein = 63/37), could support the normal growth of healthy
term infants, to a comparable extent to that of breast-fed infants
during the first 3 months of life. Gridneva et al. investigated
the relationships between infant/maternal body composition
and human milk casein, whey and total protein during the
first 12 months of lactation (155). Their results showed a
differential effect of human milk casein on development of
infant body composition during the first year of life, which
suggested its potential application in improving outcome for
the infants through interventions. Mucin is another source of
a microbiological growth factor present in human milk, in the
year of 1953, study of Tomarelli et al. (156) had proved that
when fed with a basal diet of a composition including mucin
approximating that of human milk resulted in increased growth
of weanling rats. Interestingly, some studies suggested that milk

components such as LF and OPN can form as a complex,
which showed increased bioactivities that may possibly improve
outcomes in formula-fed infants (157). BSSL in breast milk was
also found to facilitate the ability of digestion and absorption of
milk fat and promotes growth of small for gestational age preterm
infants (158, 159).

Promote Brain Development and Cognition
Effects of Sialylated Milk Oligosaccharides on Brain

and Cognition Development of Neonates
The neural cell membranes contain 20 times more SA than
other types of membranes, suggesting that SA plays an important
role in neural structure (160, 161). Therefore, whether SL
has an effective role in promoting neurodevelopment by
altering the concentration of important brain metabolites and
neurotransmitters attracted many research attentions. In the
year of 2016, Jacobi et al. (33) found that both 3′-SL and
6′-SL could increase the ganglisoside (GA) bound SA in the
corpus callosum and cerebellum of piglets. And they can
also enhance T-maze performance, increased expression level
of mRNA glial fibrillary acidic protein gene encoding, and
as well as the expression level of myelin basic protein and
myelin-associated glycoprotein in piglets (121). In the year
of 2019 (161), Wang et al. found a significant increasing
effects of SL supplementation on the absolute levels of myo-
inositol (mIns) and glutamate + glutamine (Glx) in piglets.
They also detected significant positive correlations of brain N-
acetylaspartate (NAA), total NAA, mIns, total choline, total
creatine, scyllo-Inositol (SI) and glutathione with total white
matter volume; Glu and SI with whole brain volume; and SI with
whole brain weight respectively. Sialyllactosamine (SLN) and 3′-
SL intake were closely correlated with the levels of brain Glu,
mlns and Glx in the treatment groups only. This study provided
in vivo evidences that sialylated milk oligosaccharides can affect
neurotransmitters and alter the brain metabolites in piglets.
In a recent study, Hauser et al. (13) explored the long-term
consequences of selectively depriving mice of specific sialylated
HMO during lactation using a gene knockout (KO) mouse
model lacking 6′-SL synthesis-related genes. The study found
that 6′-SL in breast milk is essential for cognitive development.
When observing the microflora function, researchers found
that the number of KEGG pathways that changed in St6Gal1
KO mice during lactation was much greater than that in
adult mice. Thus, suggesting that the composition of St6Gal1
KO demonstrates a strong impact on the establishment of
intestinal microbiota in the early stage of life, especially in
weaning from a milk-based diet to a solid diet. However, further
research is needed to clarify these aspects. Given the emerging
“gut brain axis” and the important role of SL intervention
in neonatal intestinal health and disease prevention, future
studies will need to assess more precise and deeper molecular
mechanisms (124). In addition, study in mice (107) revealed that
supplementation of 6′-SL or 3′-SL can release anxiety during
stressor tests, and prevent the gut dysbiosis resulting from stress,
and help to maintaine normal numbers of doublecortin (DCX)
+ immature neurons. The above results suggested the important
roles of SLs in ameliorating behavioral responses during stressor
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exposure through effects on the microbiota dependent gut-
brain axis.

Effects of Sialylated Milk Glycoconjugates on Brain

and Cognition Development of Neonates
Emerging research in humans, rodents and piglets suggest that
LF and other glycoproteins in milk may play unique roles
in brain development and cognitive functions of infants (35,
162). For example, study of Chen et al. (35) in postnatal
peglets found that LF supplementation can promote early
neurodevelopment and cognition by upregulating the brain-
derived neurotrophin factor (BDNF) signaling pathway and
polysialylation. This study suggested that, as a SA-rich milk
glycoprotein, the sialylated gloycans on LF may contributed
significantly to this effect. A randomized, controlled trial

carried by Li et al. (163) showed that infants receiving
formula supplementated with bovine MFGM and lactoferrin
for 1 year accelerated the neurodevelopmental profile and
improved language subcategories at day 545. Oh et al. (164)
studied the effects of glycated milk casein (Gc) fermented
with Lactobacillus rhamnosus 4B15 (FGc) on the intestinal
microbiota and physiological and behavioral properties in mice
under chronic stress, and their results strongly suggested the
protective effects of FGc targeting of intestinal microbiota for
abnormal brain activity, which is consistent with the view that
FGc plays an important role in regulating stress-related gut-
brain axis disorders. Milk OPN was also found to increase the
brain myelination and cognitive development in mice (165). In
addition to glycoproteins, glycolipids in milk also contribute to
the development of brain and congnition, as complex lipids are

FIGURE 3 | The beneficial effects of sialylated milk components on neonatal health.

Frontiers in Nutrition | www.frontiersin.org 12 November 2021 | Volume 8 | Article 766606

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wang et al. Application of Sialylated Milk Components

important constituents of the central nervous system. Studies
have shown that supplementation with complex milk lipids
(CML) in pregnancy may increase the level of fetal gangliosides
(GA), with the potential to improve cognitive outcomes
(166). For example, Liu et al. (167) have reported that early
supplementation of phospholipids and gangliosides affects brain
and cognitive development in neonatal piglets. A double-blind,
randomized, controlled, parallel group clinical trial in which
infants received the treatment or control product from 2 to 8
weeks of age until 24 weeks of age. Ganglioside supplementation
using complex milk lipids significantly increased the scores for
Hand and Eye coordination IQ, Performance IQ and General
IQ (168).

FUTURE PERSPECTIVES

To sum up, sialylated milk components exert crucial probiotic
and immunomodulatory effects on infant’s gut. They play
an important role in maintaining colonization resistance,
inducing intestinal cell differentiation, promoting intestinal
maturation, reducing inflammation, and promoting neonatal
growth, all of which are considered to demonstrate significant
health benefits to new-borns (Figure 3). As sialylated milk
oligosaccharides and glycans exhibit local biological activities
in the intestines to protect infants, a healthy establishment
of the intestinal microbiota plays a key intermediate role to
broaden the effects of sialylated milk components. However,
most of these studies are based on animal experiments
and in vitro studies, and in particular, the function of the

sialylated glycan parts on milk glycoproteins and glycolipids
on infants remain largely unknown. More supporting evidence
of the beneficial effects of sialylated milk oligosaccharides
and glycans on infant health will greatly promote the
development and utilization of SA-containing microecological
preparations. Their application to milk formula, healthy
maternal and infant food, and medical purposes holds
great potential.
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