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Abstract: Vaccines are an essential component of pandemic preparedness but can be limited due
to challenges in production and logistical implementation. While vaccine candidates were rapidly
developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization
campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are
advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected
low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitu-
tion; simplified supply chain, with reduction of cold chain supply through increased thermostability;
ease of use, reducing the need for healthcare providers; and greater acceptability compared to tra-
ditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future
pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and
save many lives.
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1. Introduction

Many of the great pandemics in the 20th and 21st centuries have been caused either
by an influenza or coronavirus. Many experts have warned that repeated pandemics are
inevitable and likely imminent [1]. Vaccines are an essential component of pandemic pre-
paredness but can be limited due to challenges in production and logistical implementation.
Now, in one year, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to 100 million confirmed
infections and more than 2 million deaths worldwide [2].

The COVID-19 pandemic has overwhelmed both health and economic systems. While
vaccine candidates were rapidly developed against SARS-COV-2, immunization campaigns
remain an obstacle to achieving herd immunity. In previous pandemics, some countries
have had trouble accessing vaccines and other essential health products [3]. Overwhelming
demand, scarce manufacturing capacity, high costs, dependency on cold chain supply, and
lack of global allocation mechanisms have played a role in those delays [3]. Most vaccines
for SARS-CoV-2 are injected using a hypodermic needle and require multiple doses. For
example, authorized vaccines including mRNA-based technology, such as Moderna’s
mRNA-1273, Pfizer/BioNTech’s Comirnaty, and other vaccines like Oxford/AstraZeneca’s
AZD1222, Johnson & Johnson’s Ad26.COV2.S, Sinovac’s CoronaVac, Sinopharm’s BBIBP-
CorV, CanSinoBIO’s Convidecia, Gamaleya’s Sputnik V, BEKTOP’s EpiVacCorona, and
Bharat Biotech’s Covaxin, mostly require two doses administered by specially trained
healthcare providers and have cold chain distribution requirements ranging from −70 ◦C
to 8 ◦C, which presents significant logistical limitations [4–7].
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Given these challenges, in addition to regional protectionism, the implementation of
vaccination programs could be jeopardized. The founding of the COVID-19 Vaccines Global
Access (COVAX) Facility by Gavi, the Coalition for Epidemic Preparedness Innovations
(CEPI), and the World Health Organization (WHO) is an attempt to garner resources
and unite higher- and lower-income countries for a coordinated, rapid, transparent, and
equitable access to COVID-19 vaccines worldwide.

The WHO identified vaccine hesitancy as one of the top ten global health threats in
2019 [8]. Vaccine hesitancy is further magnified by needle-phobia, pain, fear of complica-
tions, and fear of leaving quarantine to a healthcare setting [9]. National surveys during the
COVID-19 pandemic report that roughly 30% of adults are not sure whether they would
be vaccinated and 10% did not intend to be vaccinated [9,10]. The spread of bloodborne
pathogens by needle re-use is also a major concern, along with a shortage of healthcare
providers, especially in developing countries. New and innovative vaccine technology and
delivery mechanisms may assist in addressing these challenges.

As a possible solution for pandemic countermeasures, dissolvable microneedle patches
should be considered as a vaccine delivery method (Figure 1). The patches consist of micron-
scale solid conical structures made of dissolvable excipients on a skin patch backing that
deliver vaccine antigens across the stratum corneum barrier into the viable epidermis
and dermis of the skin. As microneedles are less than one millimeter long, they cause
little or no pain and are strongly preferred over traditional immunization by injection [11].
Further, microneedle patches require no special training to be administered, do not generate
biohazardous sharps waste, and can be formulated for thermostability [11].
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simulate vaccine. A microneedle patch (b) showing the microneedle array, adhesive backing, and non-adhesive tab for 
handling. (c) A microneedle patch being applied to the skin. Images courtesy of (a) Devin McAllister, Georgia Tech, (b) 
Christopher Moore, Georgia Tech, and (c) Rob Felt, Georgia Tech. 

Figure 1. Dissolvable microneedle patch for simplified vaccination. (a) An array of microneedles
containing pink dye to simulate vaccine. A microneedle patch (b) showing the microneedle array,
adhesive backing, and non-adhesive tab for handling. (c) A microneedle patch being applied to the
skin. Images courtesy of (a) Devin McAllister, Georgia Tech, (b) Christopher Moore, Georgia Tech,
and (c) Rob Felt, Georgia Tech.
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This paper examines the potential ways that microneedle patches may overcome
limitations in traditional vaccination campaigns by hypodermic injection and review their
applications to the current COVID-19 pandemic and beyond.

2. Discussion
2.1. Overcoming Barriers to Effective Vaccination

There are several barriers for effective vaccination campaigns in all resource settings,
including the need to increase vaccine immune response, simplify the supply chain, elim-
inate biohazardous waste, improve cost-effectiveness, and reduce reliance on trained
healthcare providers [12].

Microneedle patches have been studied for their potential application against many
pathogens, including other respiratory viruses (see Table 1). For seasonal influenza, vac-
cination by microneedle patches resulted in faster virus clearance in the lungs of murine
models [13]. For pandemic influenza, higher immunogenicity was noted in animal models
compared to intramuscular injection [14]. Delivering vaccines in the epidermis or dermis
puts the antigen in close contact with the skin’s rich population of antigen-presenting cells
and can result in lower doses of antigens being used. Vaccinations using microneedle
patches have demonstrated dose-sparing in clinical studies [15]. The use of microneedle
devices ensures a more accurate, effective, and reproducible delivery of vaccine to the skin
compared to injections [11]. Our clinic recently conducted a first-in-human clinical trial
where outcomes after inactivated influenza vaccination by intramuscular injection were
compared to dissolvable microneedle patch, which revealed similar antibody response
robustness and better acceptance [16,17].

Table 1. Vaccines studied using dissolvable microneedle patches.

Nucleic Acid Protein-Based (Including
Virus-Like Particle (VLP)) Inactivated/Live Attenuated Viral Vector

Ebola [18] Diphtheria [19–21] Adenovirus [22–24] HIV [25–27]

Hepatitis B virus [28] EV71 hand-foot-and-mouth
disease (HFMD) [29] Influenza [16,30–33]

Middle East Respiratory
Syndrome

(MERS-CoV-S1) [34]
Porcine circovirus type 2 [35] Hepatitis B [36–38] Measles [39,40] Zika [41]

Rabies [42] Human immunodeficiency virus
(HIV) [43]

Modified vaccinia virus
Ankara (MVA) [22]

Tuberculosis bacillus
Calmette–Guérin (BCG) [44]

Human papillomavirus infection
(HPV) [45,46] Neisseria gonorrhoeae [47]

Herpes simplex virus 2 [48] Poliovirus [49–51]
Influenza [19,22,52–64] Pseudomonas aeruginosa [65]

Leishmania [66] Rotavirus [67]
Malaria [19] Rubella [39]

SARS-2-CoV [34,68] Streptococcus [69]

Staphylococcal [70] Tuberculosis bacillus
Calmette–Guérin (BCG) [71]

Scrub typhus [72]
Tetanus (toxoid) [20,73,74]

Mycobacterium tuberculosis [75]
Zika [41]

A large healthcare workforce is required to have mass vaccination campaigns, which
can be limited in developing countries and could cause crowding in the pandemic era.
Most vaccines that are administered by hypodermic needle and syringe injection require
a trained healthcare provider to administer the vaccine. Microneedle patch vaccination
allows for administration by minimally trained personnel, including self-administration,
which could dramatically hasten roll-out and dissemination as well as reduce the burden on
the healthcare system. Acceptability studies using pressure sensitive microneedle patches
with an auditory force feedback indicator found that participants reported little to no
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pain with self-administration and overwhelmingly preferred microneedle patches over
intramuscular injections [76].

Microneedle patches reduce the risk of sharps and sharps waste because the micronee-
dles disappear after dissolving in the skin. The risks with sharps include unintentional
re-use, needlestick injuries, and cross contamination. Up to 3.62 per 100,000 vaccinations
result in needle-stick injury. The spread of bloodborne pathogens is a major concern, with
an estimated 1.3 million deaths resulting from needle re-use according to WHO estimates,
especially in developing countries [77,78]. Further, dissolvable microneedle patches are a
safe delivery method, with no reports to date of accidental infection in controlled studies
and widespread use in commercial cosmetic products [79–81].

Standard hypodermic needle vaccination may be wasteful via multi-dose vials and
the need for reconstitution. In general, vaccine wastage rates increase as the number of
vaccine doses per vial increases. Estimates suggest wastage rates for 10-dose vials may
be as high as 25% for liquid vaccines and 40% for lyophilized vaccines [15,82]. Single-use
microneedle patches remove this waste seen in multi-dose vials. Some vaccines need
vaccine reconstitution with a diluent, which not only requires a trained healthcare provider
to perform but also adds more needles, syringes, and vials that need to be safely stored
and transported [15]. Microneedle patches do not require reconstitution.

Microneedle patches have improved stability and can often be stored at ambient tem-
perature, eliminating the cold chain, and allowing for easier stockpile and storage [15,82].
Further, the patches are much smaller in size than vaccine vial and needle-syringe systems,
facilitating storage and distribution, and thereby simplifying the supply chain.

The cost of vaccination is the cost of vaccine plus the logistical costs associated with
making the vaccine available for use. Healthcare providers, waste disposal, vaccine storage,
transportation, cold chain, and vaccine wastage all contribute to the cost of vaccination.
While vaccine manufacturers often sell vaccines at significantly reduced cost for use in
developing countries, the logistical costs to vaccinate can remain a significant barrier. Anal-
yses suggest that the use of self-administered microneedle patches could not only improve
vaccination coverage but would also be cost-effective [83,84]. The cost of microneedle
patch manufacturing is expected to be lower than pre-filled syringes because the materials
are generally low-cost medical-grade polymers and other excipients used in very small
amounts. A representative microneedle array weighs less than 1 g, and the backing, ad-
hesive, and packaging are usually made of conventional pharmaceutical supplies used in
transdermal patches and other medical products [15].

Limitations of dissolving microneedle patch delivery systems for vaccines exist, includ-
ing theoretical issues with dosage accuracy; inability to deliver large doses of medications
(which could be an issue if using certain adjuvants require milligram doses); possibility of
skin irritation and external environment affecting delivery, such as hydration of the skin or
excessive sweating; and uncertainty about cost and capability of large-scale manufactur-
ing [13]. These limitations have not presented significant issues in human clinical trials or
other studies to date.

2.2. COVID-19 Microneedle Applications

The science of microneedle patches is robust, as shown by the many different licensed
and experimental vaccines delivered (see Table 1). Four weeks after the identification of the
SARS-CoV-2 S1 sequence, Kim et al. designed carboxymethyl cellulose-based dissolvable
microneedle patches containing Middle East Respiratory Syndrome Coronavirus subunit
MERS-CoV-S1 and SARS-CoV-2 vaccines capable of generating potent antigen-specific
IgG responses [68]. The MERS-CoV-S1 vaccines induced stronger humoral responses than
traditional needle injections and resulted in stronger IgG responses than via subcutaneous
injection [68]. For MERS-CoV-S1, which started prior to the SARS-CoV-2 portion of the
study, antibody levels continued to increase over time in mice vaccinated by microneedle
patch—up to when the experiment ended at 55 weeks [68]. In another study, Kuwentrai
et al. successfully designed and used dissolving microneedle patches based on a mixture of
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the receptor-binding domain (RBD) spike proteins and low-molecular weight hyaluronic
acid (HA) together with an aluminum hydroxide gel adjuvant using a micro-molding
method [34]. The team found specific B-cell antibodies and IFN-γ T-cell responses for up
to 97 days after administration, though with high variation of antibody titers compared to
subcutaneous injection [34]. The potential advantages of dissolvable microneedle patches
for COVID-19 can be found in Table 2.

Table 2. Potential advantages of dissolvable microneedle patch vaccine for coronavirus disease 2019
(COVID-19).

Increased Immunogenicity

Faster virus clearance
Dose-sparing effect

Reduction in vaccination wastage
Avoidance of reconstitution

Increased acceptance and less hesitancy
Little or no pain

Self-administration and reduced need for healthcare workforce
Reduced risk of sharps injury and contamination

Improved stability
Less reliance on cold chain

Recently, the US government through the Biomedical Advanced Research and De-
velopment Authority (BARDA) funded a total of $1.9 million to three groups developing
microneedle skin patches [85]. The patches will contain the SARS-CoV-2 spike protein—the
basis of nearly all COVID-19 vaccines. The patches are intended to be shelf-stable, self-
administered, and self-boosting by releasing the spike protein into the body as pulses
or continuously over a few weeks. This approach could eliminate the need for repeated
vaccinations. Several universities and companies have announced that they are initiating
pre-clinical studies for a SARS-CoV-2 vaccination using microneedle patches, but no data
are available yet.

In response to the COVID-19 outbreak, there was an unprecedented effort to develop
new vaccines with remarkable speed. The current bottleneck, however, is the rapid distribu-
tion and administration of the vaccines to achieve herd immunity in the global population.
This depends not only on manufacturing sufficient vaccine supply, but also on the logistical
and fiscal challenges of global distribution, sometimes complex cold chain requirements,
and the need for skilled human capital.

Microneedle patch vaccination can ease these limitations of traditional vaccination
methods, especially in resource-limited settings, although the slow pace of vaccination
even in advanced economies points to the need for simplified vaccination mechanisms
worldwide. However, microneedle patches for SARS-CoV-2 vaccination are currently not
available due in large part to a lack of existing manufacturing and regulatory infrastructure
needed for rapid development. Continued and expanded investment in innovative vaccine
delivery platforms such as microneedle patches is needed to ensure the technology and
infrastructure are in place for the pandemic needs of the future.

3. Conclusions

Microneedle patch immunization has the potential to overcome many factors affecting
the uptake and distribution of traditional hypodermic intramuscular injection campaigns.
Dissolvable microneedle patches are advantageous for many possible reasons: improved
immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination
of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply
chain, with reduction of cold chain supply through increased thermostability; ease of
use, reducing the need for healthcare providers; and greater acceptability compared to
traditional hypodermic injections. When applied to COVID-19, microneedle patches have
great potential to improve vaccination globally and save many lives. While the timeline for
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COVID-19 microneedle patch vaccine deployment may be a missed opportunity for the
current pandemic, there is a need for investment today to be better prepared for tomorrow’s
pandemic needs.
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