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Abstract

Background: Visualizing and quantifying cellular heterogeneity is of central importance to study tissue complexity,
development, and physiology and has a vital role in understanding pathologies. Mass spectrometry-based methods
including imaging mass cytometry (IMC) have in recent years emerged as powerful approaches for assessing
cellular heterogeneity in tissues. IMC is an innovative multiplex imaging method that combines imaging using up
to 40 metal conjugated antibodies and provides distributions of protein markers in tissues with a resolution of 1
μm2 area. However, resolving the output signals of individual cells within the tissue sample, i.e., single cell
segmentation, remains challenging. To address this problem, we developed MATISSE (iMaging mAss cyTometry
mIcroscopy Single cell SegmEntation), a method that combines high-resolution fluorescence microscopy with the
multiplex capability of IMC into a single workflow to achieve improved segmentation over the current state-of-the-
art.

Results: MATISSE results in improved quality and quantity of segmented cells when compared to IMC-only
segmentation in sections of heterogeneous tissues. Additionally, MATISSE enables more complete and accurate
identification of epithelial cells, fibroblasts, and infiltrating immune cells in densely packed cellular areas in tissue
sections. MATISSE has been designed based on commonly used open-access tools and regular fluorescence
microscopy, allowing easy implementation by labs using multiplex IMC into their analysis methods.

Conclusion: MATISSE allows segmentation of densely packed cellular areas and provides a qualitative and
quantitative improvement when compared to IMC-based segmentation. We expect that implementing MATISSE
into tissue section analysis pipelines will yield improved cell segmentation and enable more accurate analysis of the
tissue microenvironment in epithelial tissue pathologies, such as autoimmunity and cancer.
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tissue
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Background
Multiplex imaging technologies have revolutionized our
ability to study cellular heterogeneity in tissues. These
methods allow visualization of spatial organization of the
tissue and quantification of different cell types. More-
over, these methods can yield precise views of cell-to-
cell differences, quantify differences in signaling status,
map signaling network topologies, and lead to important
mechanistic insights. Visualizing and quantifying cellular
heterogeneity in tissue samples is of increasing import-
ance in many areas of biology, most notably in cancer
research and oncology, where we now appreciate that
the heterogeneous tumor microenvironment has pro-
found implications for study, diagnosis, prognosis, and
treatment of cancer [1].
The most commonly used multiplex imaging tech-

nologies fall into two main categories: microscopy based
multiplex immune-histochemistry (IHC) methods [2, 3]
and mass spectrometry-based methods [4], including
imaging mass cytometry (IMC) [5]. IMC uses metal
conjugated antibodies to label specific protein markers
in a given tissue section followed by laser ablation, which
allows for analysis of 1 μm2 tissue area at a time.
Cytometry time-of-flight (CyTOF) mass spectrometry is
then used to analyze metal isotope distribution as a
readout for protein markers. Unlike fluorescence-based
microscopy imaging methods where only 4 or 5 markers
can be labeled and visualized simultaneously, mass
spectrometry-based imaging methods can provide simul-
taneous labeling and readout of approximately 40
markers. However, one of the main challenges for mass
spectrometry-based imaging methods, such as IMC, is
the difficulty of single cell segmentation, i.e., distinguish-
ing signals coming from individual cells. Currently avail-
able pipelines, such as an ilastik [6] and CellProfiler [7]
extension that allows segmentation of IMC data [8], use
membrane, cytosolic, and nuclear markers for single cell
segmentation. These strategies are limited by the intrin-
sic IMC 1 μM pixel size resolution, making it difficult to
discriminate cells in densely packed areas, such as epi-
thelial layers, or immune cell infiltrates. This can often
result in erroneous interpretation of nuclear and mem-
brane signals by either merging of multiple cells into
one event, or fragmenting single cells into multiple
events, causing inaccuracies in these analyses.
While IMC resolution is limited by a fixed 1 μM pixel

size, fluorescent microscopy allows acquisition at vari-
able resolutions well below 1 μM pixel size. Therefore,
to provide a solution for the single cell segmentation
problem in IMC, we have developed MATISSE (iMaging
mAss cyTometry mIcroscopy Single cell SegmEntation,
Fig. 1a), a method that combines the use of IMC and
fluorescent microscopy imaging into a single workflow.
More specifically, we designed MATISSE to use a

multiplex IMC antibody panel containing membrane,
cytoplasm, and nuclear markers, as well as fluorescent
nuclear DAPI and DNA intercalator labeling of the same
tissue region for improved segmentation. The MATISSE
tissue analysis pipeline begins with staining tissue sec-
tions with metal isotope conjugated antibodies, DNA
intercalator, and DAPI, followed by fluorescence micros-
copy and IMC. The data obtained from two imaging
techniques is then aligned using nuclear staining, and
pixel probability maps for membranes and nuclei are
calculated based on IMC and DAPI data, respectively.
These probabilities are combined into a single segmenta-
tion map that is representative of the cells in the tissue
section. We have developed MATISSE based on existing
technologies and used open-access tools to create scripts
for automated alignment of the IMC and IF datasets, as
our goal was to produce a method that can be readily
implemented by other research laboratories (see Add-
itional file 1: MATISSE_MANUAL).

Results
To test and validate the performance of the MATISSE
pipeline, we benchmarked it against the current standard
in the field, the IMC-only segmentation pipeline (IMC)
[8]. We used colorectal biopsy sections from patients
with different stages of inflammatory bowel disease
(IBD) as our tissue of choice, given the established het-
erogeneity of IBD clinical phenotypes and challenges this
poses when diagnosing and treating patients [11]. Recent
studies have revealed a rewiring of both intracellular sig-
naling and cellular interactions between intestinal epi-
thelium, stroma, and immune cells in IBD patients [12],
and significant colonic epithelial cell diversity [13], fur-
ther highlighting the need for more accurate strategies
for quantitative analysis at a single cell level, which
would be ultimately applicable to multiple different types
of tissues.
Here, we prepared the tissue sections according to the

procedure described in the “Methods” section (see also
Additional file 2: Table 1, Additional file 3: Fig. S1A),
and we performed pixel classification using the machine
learning tool Ilastik [6]. Experienced users were tasked
to generate training data for nuclear and membrane
markers. Specifically for nuclear fluorescent DAPI signal
Fiji [14] was used to generate annotations for training.
Primary (nuclei) and secondary (cells) objects were iden-
tified with CellProfiler [7] based on the probability maps
generated by Ilastik (for a detailed overview of the full
procedure, see the “Methods” section, and additional file
MATISSE_MANUAL). We observed that incorporating
fluorescent microscopy images based on DAPI nuclear
staining into MATISSE workflow resulted in superior
visual and signal intensity-based separation of nuclei in
dense areas (Fig. 1b, Additional file 3: Fig S1B). Next, we
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Fig. 1 (See legend on next page.)
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assessed segmentation maps generated by both segmen-
tation methods. The predicted cell outlines differed be-
tween IMC and MATISSE methods in colon (Fig. 1c, d),
small intestine, and more different tissues such as skin,
liver, and non-small cell lung cancer (Additional file 3:
Fig. S1C). Quantitative analysis emphasized improved
cell segmentation by MATISSE, which identified signifi-
cantly higher numbers of cells in all regions of interest
(ROIs) (Fig. 2a, IMC mean 2086 ± 611 S.D., MATISSE
mean 2783 ± 622 S.D.), and an improved recall score at
different rates of overlap between predicted outlines and
annotated ground (intersection over union) (Fig. 2b–d,
Additional file 3: Fig. S2B) [15]. Of note, DNA IMC sig-
nal intensity in single cells between images was similar
(Additional file 3: Fig. S2C). Moreover, MATISSE dis-
played less cell fragmentation, as shown by a compara-
tive analysis of cell density (Fig. 1e), decreased fraction
of fragmentation events (Fig. 2e, Additional file 3: Fig.
S2A), and improved edge intersection score (Fig. 2f), in-
dicating that the increased cell number was not caused
by erroneous fragmentation of cells. Together, this com-
parative analysis showed that MATISSE resulted in both
a superior quality of segmentation, and identification of
a larger number of cells in the tissue.
Given the differences in numbers and segmentation

quality of identified cells, we next set out to examine
which cell types or tissue regions were differently seg-
mented and thus most impacted by an improved seg-
mentation pipeline. Clustering analysis was performed
on all single cell events of all included ROIs combined
to assess identified cell types, resulting in 26 clusters
represented in a t-SNE plot (Fig. 3a, see Additional file
4: Table 2). Comparison of the number of cells identified
in each cluster showed that specific clusters were af-
fected by the method of segmentation in multiple ROIs
(Fig. 3b, Additional File 3: Fig S3A), confirming that im-
proved segmentation leads to differences in quality and
quantity for downstream analysis of the data. Multiple
clusters displayed differences in cell numbers, including
clusters with low membrane signal in IMC, and clusters

displaying clear positive signal in multiple channels, in-
dicating that signal intensity of a specific population did
not bias the observed differences in segmentation (Fig.
3c). The 6 clusters with largest increase of cell numbers
in MATISSE versus IMC included fibroblasts (clusters 1
and 7), epithelial cells (clusters 2, 11, 23), myeloid cells
and intra-epithelial lymphocytes (clusters 11 and 23),
and negative cells expressing no significant levels of
stained markers (cluster 5). Next, we visualized all single
cells at their spatial location in the tissue, color-coded
by cluster number (Fig. 3d, Additional file 3: Fig S3B).
Focusing on the 6 clusters displaying the largest increase
in cell numbers using MATISSE showed localization
throughout the tissue, as expected, with clusters 2 and
23 locating in the epithelial layer, clusters 1, 7, and 11 in
the basal membrane just below the epithelium, and clus-
ters 1, 5, and 11 in the lamina propria (Fig. 3e, Add-
itional file 3: Fig S3C). The 6 clusters that showed lower
cell numbers in MATISSE versus IMC, and 7 clusters
with equal numbers of cells in both segmentation
methods, were analyzed in a similar fashion (Additional
file 3: Fig S3C). This highlighted that cells identified with
both methods can occur at similar spatial locations but
appear more often fragmented (Additional file 3: Fig.
S3D) or differently clustered in several examples using
IMC-based segmentation compared to MATISSE.

Discussion
We show that the segmentation maps between IMC-
based and MATISSE methods displayed major differ-
ences. The differences were most pronounced for
specific cell populations, such as epithelial cells, fibro-
blasts, and specific immune cells where using higher
resolution data in MATISSE facilitated improved anno-
tation of separate nuclei and, consequently, superior
training and segmentation. Rendering improved segmen-
tation maps with MATISSE led to clear quantitative and
qualitative changes in downstream analysis. Moreover,
MATISSE demonstrated improved segmentation in the
small intestine, which is similar to colon, but also in

(See figure on previous page.)
Fig. 1 Combining fluorescence microscopy with multiplex IMC data of colorectal tissue advances quality of single cell segmentation. a Cartoon
describing MATISSE, a novel pipeline adding microscopic imaging to multiplex IMC analysis and downstream segmentation. In short: tissue
sections on slides were stained using isotope-conjugated primary antibodies, DNA intercalator, and DAPI. The tissue was first scanned using a
fluorescent microscope and then processed with IMC. Data produced by both techniques is aligned using the nuclear staining. Nuclear and
membranous pixel probability maps are produced based on the fluorescent images and IMC data respectively. These probability maps are used
to generate a segmentation map, where all detected cells are included. b Representative images of DNA intercalator on a colorectal tissue
section analyzed by Ir193 labeling and IMC (left) or DAPI labeling and fluorescent microscopy (IF, right). c IMC-only (IMC) and MATISSE cell
segmentation (MATISSE) were performed, and shown are the different predicted outlines on a representative image of Ir193 labeling. Arrows
indicate areas with cell fragmentation. d Display of a large region of interest (ROI) showing an overlay of the predicted cell outlines (pink) upon
IMC or MATISSE segmentation on a representative IMC image of DNA-Ir193 labeling of colorectal tissue. Highlighted in yellow is the approximate
position of the basement membrane surrounding the epithelial monolayer. Scale bar 25 μm. e Cell density was calculated as the number of cells
within a radius of 10 μM from the center of each single cell [9, 10]. This number is displayed with a color code for each cell in the
representative image
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tissues such as skin and liver and in samples from non-
small cell lung cancer. Of note, the panel and training in
this study were designed for analysis of colon tissue and

still showed reasonable performance. Future studies
examining whether targeted training would even further
improve performance in a range of tissues are warranted.

Fig. 2 MATISSE segmentation promotes both cell identification quantity and quality. a Numbers of cells were quantified using IMC and MATISSE
segmentation methods for all analyzed regions of interest (ROIs). Lines link the datapoints per ROI. Paired t test was performed to test for
significance. ****p < 0.0001. N = 45 images. b, c Overlap between manual annotations and predictions was quantified by recall score and b
compared for MATISSE and IMC at varying intersection-over-union (IOU) thresholds, c displayed per ROI at IOU 0.6 and higher, lines link
datapoints per ROI. Paired t test was performed to test for significance. ****p < 0.0001. N = 30 images. d Representative image of IOU values
indicated by a color-scale labeling of the annotated events (red lining) that overlap with predictions by IMC or MATISSE. Black lines indicate
outlines of the predictions. Scale bar 25 μm. e Fraction of split annotated events were quantified using IMC and MATISSE segmentation methods
for all ROIs, lines link the datapoints per ROI. Paired t test was performed to test for significance. ****p < 0.0001. N = 30 images. f Edge
intersection score per ROI was determined by quantifying intersection of predicted cell outlines by both methods with manually annotated
nuclei, where a lower score corresponds to less overlap. Lines link the datapoints per ROI. Paired t-test was performed to test for significance.
****p < 0.0001. N = 30 images
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Fig. 3 (See legend on next page.)
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For optimal accessibility, MATISSE has been developed
based on existing technologies and open-access tools
and can therefore be readily applied to different tissues
and IMC antibody panels.

Conclusions
Taken together, MATISSE allowed segmentation of cel-
lular areas such as the colonic mucosa, and keratinocyte
layer of the skin, and showed a qualitative and quantita-
tive difference in the outcome of analysis compared to
IMC-based segmentation. Going forward, we expect that
implementing MATISSE into tissue section analysis
pipelines of colorectal samples, and beyond, will yield
improved cell segmentation and enable more accurate
analysis of the tissue microenvironment in tissue path-
ologies, such as autoimmunity and cancer.

Methods
Patients
Historical formalin-fixed paraffin embedded (FFPE) tis-
sue blocks of colonic biopsies from patients with inflam-
matory bowel disease (IBD) were collected and included.
Informed consent was obtained from all patients. Ten
tissue sections were included from 3 patients with IBD,
of 3 separate timepoints of biopsy per patient. The study
was approved by the medical ethical board of the UMC
Utrecht (METC protocol #11-050/E, and biobank proto-
cols #18-676). Furthermore, TMA sections of rest-
material, including intestine, liver, and non-small cell
lung cancer, were included according to the no-
objection-agreement, approved by the UMC Utrecht
biobank committee (protocol #18-222).

Antibodies and reagents
For a comprehensive list of antibodies, compounds, and
kits, see Supplementary Table 1.

Sample preparation
Tissue sections of 4 μM thickness were cut and placed
on a glass slide (brand, specifics).
Slides were baked for an hour at 60 °C. Samples were

deparaffinized in xylene twice for 10 minutes, followed
by rehydration in a graded series of ethanol (100% 10
min, 95% 5min, 80% 5min, 70% 5min), washed in Milli

Q water 3 min, and finally PBST (TBS containing 0.1%
Tween) for 10 min. Antigen retrieval was performed for
30 min at 96 °C in Tris-EDTA (10mM Tris, 1 mM
EDTA) pH 9, followed by a cool-down period of 10 min
at room temperature. Samples were incubated in TBST
for 10 min. Tissue sections were encircled using a PAP
pen. Blocking was performed with TBST containing 3%
BSA and FC-block 1:100 for 1 h at room temperature.
Metal-conjugated antibodies were diluted according to
dilutions stated in supplementary Table 1 in TBST con-
taining 0.5% BSA. Staining was performed in a humidi-
fied chamber overnight at 4 °C. Samples were then
washed in TBST twice for 5 min and TBS for 10 min,
followed by incubation with 300 times diluted DNA
intercalator Ir193 (Fluidigm) and 1000 times diluted
DAPI in PBS for 1 h at room temperature. Then, slides
were then washed twice with ddH2O for 5 min. Samples
were mounted in 90% glycerol and covered with a cover-
slip for microscopy.

Fluorescent microscopy imaging
Slides were imaged on a Zeiss CellObserver using a × 20
dry objective (0.75 NA, 420150-9900). A Colibri 7 was
used as light source, in combination with a Zeiss 90 HE
filter set. The system was equipped with a Hamamatsu
Orca Flash4.0 V2+ camera (C11440-22CU). Images were
acquired in a tiled Z-stack format with 10% overlap be-
tween tiles and 9 Z-slices using ZEN software (2.3). ZEN
was again used to export imaging data to individual 16-
bit tiff tiles. Z-stacks were converted to single in-focus
images using the Extended Depth of Field plugin in Fiji
at highest quality settings [14, 17]. Tile images were
stitched using the MIST algorithm in Fiji [18].

Mass cytometry imaging
After microscopy, samples were unmounted by dipping
and washing in ddH2O. Samples were stained with tolui-
dine blue for 5 min at RT, washed for 3 min with
ddH2O, and dried. Mass cytometry imaging was per-
formed on a Hyperion (Fluidigm) laser ablation module,
coupled to a Helios (Fluidigm) mass cytometer. Tuning
was performed according to manufacturer instructions.
Laser ablation frequency was set to 200 Hz. Data files

(See figure on previous page.)
Fig. 3 MATISSE improves identification of specific cell subsets in colorectal tissue. a Forty-five regions of interest (ROIs) in 10 different tissue
sections were imaged and segmented using IMC or MATISSE pipelines, and 10% of all identified single cells were included in a t-SNE. Twenty-six
phenoclusters [16] were identified and displayed with a color-code. N = 29242 cells for IMC, 38430 cells for MATISSE. b Numbers of cells
contained per cluster were calculated and displayed for both IMC and MATISSE methods. N = 45 images. N = 291919 cells for IMC, 384804 cells
for MATISSE. c Heatmap display of the mean signal intensity per cell in each cluster. The ratio of number of cells identified by both segmentation
methods (IMC / MATISSE) per cluster is displayed on the right. N = 45 images. d, e Spatial location of single cells in the tissue was visualized and
color-coded by phenocluster. Displayed are overview images of an entire ROI (left) and a zoom of a specific region (right), shown are all
phenoclusters (d), top 6 differential phenoclusters with higher cell numbers in MATISSE (e). Scale bar 25 μm
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were converted to 32-bit tiff files using the imctools li-
brary (https://github.com/BodenmillerGroup/imctools).
Histone H3 imaging results typically show nuclear

localization with a different staining pattern compared
to DNA intercalator (Ir193, and DAPI), since they bind
to different targets, and Histone H3 is an antibody stain-
ing. Therefore, we used both intercalators for registra-
tion (see below).

Registration
Fluorescent microscopy images of DAPI were registered
to mass cytometry images of the DNA-intercalator sig-
nal, while retaining the resolution of the fluorescent im-
ages. Registration was performed using key points
generated using the MOPS algorithm [19]. Images were
transformed using the landmark correspondence com-
mand in F i j i ( h t t p s : / / image j . n e t / L andma rk_
Correspondences). The method for transformation used
was moving least squares and transformation class
similarity.

Profile plot
The plot profile function in Fiji [14] was used to deter-
mine signal intensity along lines. Images of DAPI and
DNA-intercalator were co-registered, but analysis was
performed at original resolution. Intensity values were
normalized per line and marker.

Probability map generation mass cytometry images
Before training on imaging mass cytometry data, signal
intensity was manually scaled and converted to a 16-bit
range. Annotations were generated by experienced users
using Ilastik [6] (1.3.3). The following channels were se-
lected for machine learning: Pan-Keratin, E-Cadherin,
αSMA, Histon H3, 193Ir, LMNB1, Ki-67, CD3, CD4,
CD8a, CD14, CD16, CD20, CD45, CD45RO, and CD68.
Training data was generated for 5 classes, namely non-

epithelial cellular membranes, non-epithelial nuclei, epi-
thelial cytoplasm/membrane, epithelial nuclei, and back-
ground. Training and probability map generation was
performed in Ilastik using only IMC data as input. In
Ilastik all features with sigma between 0.3 and 1.6 were
selected. Probability maps were saved to individual 32-
bit tiff files for each class.

Probability map generation fluorescent microscopy
images
Training data was generated on a random subset of 100
tile regions of fluorescent imaging data. Annotations
were made by 4 experienced users for classes nuclei,
edges of nuclei, and background, using Fiji [14] based
only on DAPI signal. No contrast adjustments were
made. Feature images and morphological filters of the
raw DAPI signal were made using FeatureJ [20] and

MorphoLibJ [21] respectively and added as channels to
the imaging data before training in Ilastik. Features:
Laplacian (σ 0.7, 1, 1.6, 2, 3), Hessian-smallest (σ 3, 5),
Hessian-largest (σ 1, 2), Structure-largest (σ 1, 2), Gauss-
ian (σ 0.7, 1.6, 2, 3.5). Morphology filters: Opening (σ 1,
2, 3, 5), Internal Gradient (σ 1, 3, 5), White Top Hat (σ
8, 10, 15, 20), Edges (σ 1, 2). In Ilastik, only the Gaussian
smoothing feature with sigma 1.0 was selected, since all
feature images are included in the input data. Probability
maps were generated for stitched tile-scan images. Prob-
ability maps were saved to individual 32-bit tiff files for
each class. Ilastik was used in headless mode on a high-
performance computer cluster using 8 cores and 100 GB
of memory.

Single cell segmentation
Segmentation was performed using Cellprofiler [7]
(v3.1.9). The pipeline can be found in the online
methods. For both segmentation approaches, cells were
identified firstly by identification of individual nuclei and
secondly by expansion of these nuclei to the full extent
of the cells. The segmentation map was stored in a 16-
bit tiff format.
For IMC-based segmentation, only the probability

maps generated using the IMC-data were used. For
MATISSE segmentation, identification of nuclei was
based on the probability maps generated using the fluor-
escent images of DAPI, at high resolution. The identified
nuclei were next downscaled to the resolution of the
IMC data and expanded to the full extent of the cells
using the membrane probability generated using only
the IMC data.

Segmentation score
Manual annotations for ground truth
Trained experts were asked to manually annotate
individual nuclei in a subset of 30 images of nuclear
staining (100 × 100 μm). These images were a composite
of both fluorescent and IMC data, of DAPI and DNA-
intercalator respectively, after co-registration, at high
resolution. In total 2642 nuclei were annotated. The an-
notations were converted to a binary mask and down-
scaled to the resolution of IMC data.

Segmentation score calculation
For calculation of a recall score, first the intersection
over union (IOU) was calculated. The IOU is deter-
mined for all manually annotated nuclei that overlap
with any nuclear outline generated by either segmenta-
tion pipeline separately. IOU is calculated as the surface
area of the intersection area between nuclear outlines,
divided by the surface area of the union of both nuclear
outlines. For each manual event only the interaction
with highest IOU was taken for recall calculation, in case
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of multiple identified overlaps [15]. Recall is calculated
as the number of true positive events, divided by the
sum of number of true positive events and number of
false negative events. Specifically, this recall is calculated
at different required IOU thresholds, ranging from 0.5 to
1.0 with increments of 0.05.
The proportion of split events is calculated as the frac-

tion of ground truth nuclear annotations that overlap
with multiple nuclear events from either segmentation
pipeline, over the total number of events that have any
overlap. Overlap being defined as at least 20% of surface
area of the ground truth object.
A probability score was calculated for intersection of

cell boundaries, derived from segmentation maps from
automated pipelines, with manually annotated nuclei
[22]. This was performed for both IMC-based and
MATISSE segmentation methods.
For calculation of fragmentation per phenocluster, we

calculated the proportion of events generated by either
segmentation pipeline that was identified as part of a
fragmentation event, from the total number of events
that overlap for at least 20% with any ground truth an-
notation. Fragmentation events being at least two events
overlapping with a single ground truth annotation for at
least 20% of the ground truth surface area per
interaction.

Single cell data generation
Single cell data was generated in R (v4.0) [23] by extract-
ing pixel intensities from unscaled 32-bit images for all
channels for all cells represented in the segmentation
maps for both IMC-only and MATISSE methods.

Spatial analysis
Segmentation maps were converted to polygons in R
using packages sf [9] and stars [24]. Distances between
neighboring cells were calculated using the RANN pack-
age [10] based on centroids of the cells determined with
the sf package. A radius of 10 μm was used to count the
number of direct neighbors for each cell and used as a
measure for density.

Clustering
Single cell clusters were generated with the Rpheno-
graph package [16], based on the mean expression per
cell of the markers αSMA, CD14, CD16, CD20, CD3,
CD4, CD45, CD45RO, CD68, CD8a, E-Cadherin,
FOXP3, IL-17α, Pan-Keratin, and TCRγδ. This cluster-
ing was performed using pooled single cell data gener-
ated by both segmentation methods. The number of
nearest neighbors was kept at the default value of 30 for
clustering. tSNE was performed using the Rtsne package
[25–27], again using pooled data, with settings initial

dimensions 50, perplexity 30, and theta 0.5. Single cell
data was log1p transformed for clustering and tSNE.

Phenocluster spatial representation
Polygons representing cell outlines were plotted and
given a random color fill corresponding to their assigned
phenocluster number. Clusters with a large difference in
number of cells across segmentation methods were se-
lected by taking the top 6 with the highest or lowest ra-
tio. Clusters assumed to be equally represented in both
segmentation methods were selected based on a ratio
between 0.9 and 1.1. Random regions were generated by
selecting a region of 100 by 100 μm from 4 randomly se-
lected ROIs.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12915-021-01043-y.

Additional file 1. MATISSE_MANUAL: an interactive PDF outlining all
steps of computational methods, to allow smooth implementation of
MATISSE methods. All code required is publicly accessible in Github:
https://github.com/VercoulenLab/MATISSE-Pipeline.

Additional file 2: Supplementary Table 1. Antibody panel resources

Additional file 3: Figure S1. a) Representative examples of IMC images,
b) nuclear staining profiles DAPI versus Ir193, and c) predicted cell
outlines of different tissues. Figure S2. a) Representative example of
overlap between manual annotations and predictions, b) Recall scores
calculated for different tissues, and c) Ir193 signal intensity across all
analyzed images. Figure S3. Comparison of IMC and MATISSE
performance per phenocluster. a) Cell numbers identified per
phenocluster across all analyzed images. b) representative examples of
cell outlines, density and phenoclusters, c) representative examples of
cells colored by specific phenoclusters, d) fragmentation events per
phenocluster.

Additional file 4: Supplementary Table 2. Phenocluster names.
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