
����������
�������

Citation: Welker, S.; Levy, A.

Comparing Machine Learning and

Binary Thresholding Methods for

Quantification of Callose Deposits in

the Citrus Phloem. Plants 2022, 11,

624. https://doi.org/10.3390/

plants11050624

Academic Editor: Hazem M. Kalaji

Received: 1 January 2022

Accepted: 7 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Communication

Comparing Machine Learning and Binary Thresholding
Methods for Quantification of Callose Deposits in the
Citrus Phloem
Stacy Welker and Amit Levy *

Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; stacy.welker@ufl.edu
* Correspondence: amitlevy@ufl.edu

Abstract: Callose is a polysaccharide that can be fluorescently stained to study many developmental
and immune functions in plants. High-throughput methods to accurately gather quantitative mea-
surements of callose from confocal images are useful for many applications in plant biology. Previous
callose quantification methods relied upon binary local thresholding, which had the disadvantage of
not being able to differentiate callose in conditions with low contrast from background material. Here,
a measurement approach that utilizes the Ilastik supervised machine learning imagery data collection
software is described. The Ilastik software method provided superior efficiency for acquiring counts
of callose deposits. We also determined the accuracy of these methods as compared to manual counts.
We demonstrate that the automated software methods are both good predictors of manual counts,
but that the Ilastik counts are significantly closer. Researchers can use this information to guide their
choice of method to quantify callose in their work.

Keywords: callose; phloem; supervised machine learning; bioimagery data collection; fiji;
PlasmodesmataIlastik

1. Introduction

Callose is a polysaccharide, composed of β-1,3-linked glucose, which is found through-
out the plant body and performs a variety of structural, developmental, and immune
functions [1–3]. Aniline blue is a fluorescent staining compound that binds to callose in
plant tissue [4]. Because this stain is safe to handle and easy to use, fluorescent imagery of
callose is often employed to study the biological processes in which it plays a role [5–8].
Increasingly, quantitative data from imagery is needed to further the understanding of the
role of callose in plant molecular biology. Hundreds of callose deposits can be present in
a single image of plant phloem tissue, so it can be extremely time-consuming to collect
counts accurately without the aid of specialized software.

A method was previously published that details the automated quantification of
callose using local binary thresholding in ImageJ [6]. Binary thresholding methods rely on
the premise that the pixels of the object of interest contrast substantially with the pixels of
the background of the image. Such methods are sensitive to noise, the presence of artifacts
with the same brightness as the object to be measured, and user calibration of the various
filter and threshold parameters [9]. Data can be lost when important objects are erroneously
segmented to the background instead of the foreground.

In recent years, machine learning technology has greatly improved, and it has been
applied to the problem of extracting quantitative data from images. However, the difficulty
inherent in acquiring knowledge about image segmentation and machine learning can
prevent biologists from being able to use it in their work [10]. A software program called
Ilastik was developed that uses supervised machine learning to collect quantitative data
from images [11]. Ilastik can use features other than brightness to threshold pixels, such as
texture and scale, which can allow it to overcome the limitations of binary thresholding [12].
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The expert user identifies the objects of interest and labels them for the Ilastik classifier.
The software then uses a decision tree-based algorithm to predict the identity of objects in
new images, based on the features of the objects in the user-labeled images.

Other methods of automated quantification of callose in plant tissue images which
also use machine learning technology have been published previously [5,13]. However,
little effort has been made to quantitively compare callose formation counts obtained by
expert human observers, traditional binary thresholding methods, and supervised machine
learning methods. Computer-aided quantification of callose deposits can greatly accelerate
exploration into the physiological processes in which callose plays a part, but it has not
been empirically demonstrated that such methods provide results that approximate the
counts that were manually acquired. Information is needed about the accuracy, so that
researchers can confidently make decisions about which method is appropriate.

In this work, our objective was to assess the sensitivity of the local binary threshold-
ing method and supervised machine learning method in analyzing cellular fluorescent
microscopy images. The counts produced by the automated methods were compared to
manual counts of callose deposits in the same set of images of citrus tissue. Based on the
previous work with each method, it was thought that supervised machine learning counts
were closer to manual counts than those produced with local binary thresholding. Counts
were collected from images of fluorescently stained phloem tissue, where an abundance of
callose deposits were expected. Callose counts were also taken from stained pith tissue,
where no callose deposits were expected, but fluorescent artifacts could be present. As
a control for the stain, images were also taken of unstained phloem tissue. Our results
indicate that supervised machine learning exhibited greater sensitivity as compared to
binary thresholding. These findings provide a test case for employing machine learning for
phloem callose measurements and can provide support for similar analysis in microscopic
images of other cellular components and plant tissues.

2. Results
2.1. Supervised Machine Learning Was Identified as More Sensitive in Detecting Phloem Callose

Phloem and pith tissue from three-year-old citrus was collected and stained with
aniline blue. Images were collected with the confocal microscope. After feature reduction
with a mean filter, a machine learning algorithm was trained using the Ilastik software.
This algorithm was able to differentiate between callose, non-fluorescing background,
and fluorescent artifacts in the images. Counts of callose were obtained from the same
images manually and by using a Fiji local binary thresholding method which segmented
the callose deposits from the background. There were significant differences between the
number of callose deposits detected by each testing system in the phloem (Figure 1). In
the stained phloem tissue, the mean number of deposits (per 10× field) detected with Fiji
was 21.9 (standard error = 8.5), while with Ilastik, the mean count (per 10× field) was
289.5 (standard error = 75.7). As controls, we used unstained phloem tissue and stained
inner pith tissue, where no callose should be present. No fluorescent objects were detected
in the unstained phloem tissue or stained inner pith.

2.2. Binary Thresholding Counts Were Significantly Different from Manual Counts, but
Supervised Machine Learning Counts Were Not

Phloem and pith tissue from three-year-old citrus was collected and stained with
aniline blue. Images were collected with the confocal microscope. Manual counts of callose
deposits were collected from each image. After feature reduction with a mean filter, counts
were collected with the Ilastik software and Fiji method. Figure 2 illustrates the mean and
standard error of the counts obtained from the stained phloem images by each detection
method. According to the Friedman test results, there were significant differences between
the counts with χ2(2) = 21.6, p < 0.001, and an effect size of 0.72. Post hoc analysis was
performed using pairwise Wilcoxon signed-rank tests, with a Bonferroni correction for
multiple comparisons (Table 1). The counts produced by Fiji were significantly different
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from manual counts, but Ilastik counts were not. The Ilastik counts were higher than the
human counts, but the difference was not statistically significant.
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Figure 1. Mean count of callose formations (per 10× field) in citrus phloem and pith tissue. Callose
formation counts were obtained from confocal images using either Ilastik, which uses a supervised
machine learning method, or Fiji, which applied a local binary threshold method. No callose
formations were detected in the unstained tissue or stained inner pith using either method. Error
bars represent standard error, n (stained phloem) = 15, n (unstained phloem) = 15 n (inner pith) = 9.
Contrast between the number of formations detected using Ilastik or Fiji in the phloem is significant
at p = 0.001, according to Wilcoxon signed-rank test results.

Table 1. Post hoc comparison of count results using a Wilcoxon signed-rank test for paired samples.
p-values were adjusted for multiple comparisons using the Bonferroni method (α = 0.05). Pair group
size was 15 for all groups. Counts were obtained from the same set of fluorescently stained citrus
phloem tissue manually, with Fiji, or with Ilastik. Asteriks indicate significant differences at p < 0.05.

Count Pair Z (Test Statistic) p-Value

Human–Fiji 120 <0.001 *
Human–Ilastik 35.5 0.52

Fiji–Ilastik 0 0.003 *

2.3. Callose Was Correctly Identified by Both Software Methods in Pith Outer Layers

Callose deposits were unexpectedly detected in the outer pith tissue images with Fiji
(mean = 0.27, standard error = 0.15) and Ilastik (mean = 68.4, standard error = 15.1). The
pith images were manually reviewed and found to contain callose deposits, as reported
by the software. The segmented images produced by Ilastik revealed the differences in
artifact topography between the phloem and pith tissue (Figure 3). Based on the image
topography, it appeared that the identified formations were callose deposits that clung to
the outer pith as the phloem was peeled away. No objects were detected in the inner pith
samples (Figure 1), and this was confirmed by visual inspection, which revealed a lack of
fluorescence in the images. The results confirmed that callose deposits from the phloem
tissue adhere to the outer pith layer during the tissue acquisition process



Plants 2022, 11, 624 4 of 11Plants 2022, 11, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 2. Mean counts of callose formations (per 10× field image) in citrus phloem tissue. Callose 

formation counts were obtained from the same set of confocal images, using the Ilastik supervised 

machine learning method, the Fiji local binary threshold method, and a human counter. Error bars 

represent standard error, n = 15. The contrast between Fiji counts and manual counts is significant, 

at p ≤ 0.001, according to Friedman test results. 

Table 1. Post hoc comparison of count results using a Wilcoxon signed-rank test for paired samples. 

p-values were adjusted for multiple comparisons using the Bonferroni method (α = 0.05). Pair group 

size was 15 for all groups. Counts were obtained from the same set of fluorescently stained citrus 

phloem tissue manually, with Fiji, or with Ilastik. Asteriks indicate significant differences at p < 0.05. 

Count Pair Z (Test Statistic) p-Value 

Human–Fiji 120 <0.001 * 

Human–Ilastik 35.5 0.52 

Fiji–Ilastik 0 0.003 * 

2.3. Callose Was Correctly Identified by Both Software Methods in Pith Outer Layers 

Callose deposits were unexpectedly detected in the outer pith tissue images with Fiji 

(mean = 0.27, standard error = 0.15) and Ilastik (mean = 68.4, standard error = 15.1). The 

pith images were manually reviewed and found to contain callose deposits, as reported 

by the software. The segmented images produced by Ilastik revealed the differences in 

artifact topography between the phloem and pith tissue (Figure 3). Based on the image 

topography, it appeared that the identified formations were callose deposits that clung to 

the outer pith as the phloem was peeled away. No objects were detected in the inner pith 

samples (Figure 1), and this was confirmed by visual inspection, which revealed a lack of 

Figure 2. Mean counts of callose formations (per 10× field image) in citrus phloem tissue. Callose
formation counts were obtained from the same set of confocal images, using the Ilastik supervised
machine learning method, the Fiji local binary threshold method, and a human counter. Error bars
represent standard error, n = 15. The contrast between Fiji counts and manual counts is significant, at
p ≤ 0.001, according to Friedman test results.
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Figure 3. Comparison between raw confocal images, segmentation results from Ilastik, and threshold
results from Fiji. (A–C): A raw confocal image, Ilastik segmentation results, and Fiji threshold results,
respectively, of callose deposits in citrus stem phloem tissue. (D–F): A raw confocal image, Ilastik
segmentation results, and Fiji threshold results, respectively, of callose deposits in citrus stem outer
pith tissue. (B,E): Blue represents non-fluorescent background. Red represents fluorescent artifact
material, such as epidermis. Yellow represents fluorescent callose deposits. (C,F): White represents
non-callose background, and black represents callose deposits.
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2.4. Counts from the Supervised Machine Learning Method Are a Better Approximation of
Manual Counts

Negative binomial regressions were performed to assess which software method was
a better predictor of manual counts of callose deposits in the citrus phloem tissue. Table 2
contains the results of the regression between manual counts and the counts obtained
with the Ilastik method. Table 3 contains the results of the regression between manual
counts and the counts obtained with the Fiji method. Both software methods are significant
predictors of manual counts. Three measures of fitness were computed for each model
(Table 4). The Ilastik count was model showed less uncertainty and information loss and
had a better fit to the manual counts.

Table 2. Results of a negative binomial regression which evaluates the Ilastik counts of callose deposits
as a predictor of manual counts from the same images 1. The counts were collected using each method
from images of fluorescently stained citrus phloem tissue (at 10×magnification). Asterisks indicate
significant differences at p ≤ 0.05.

Effect Estimate Standard Error z-Value p-Value

Intercept 3.86 0.24 16.22 <0.001 *
Ilastik count 0.004 <0.001 7.023 <0.001 *

1 Degrees of freedom = 14.

Table 3. Results of negative binomial regression which evaluates counts of callose deposits, obtained
with Fiji, as a predictor of manual counts from the same images 1. Counts were collected using each
method from images of fluorescently stained citrus phloem tissue (at 10×magnification).

Effect Estimate Standard Error z-Value p-Value

Intercept 4.75 0.28 16.75 <0.001 *
Fiji count 0.02 0.007 3.32 <0.001 *

1 Degrees of freedom = 14. * Indicate significant differences at p < 0.05.

Table 4. Comparison of model fitness between two negative binomial regressions, which assessed
the counts obtained either by the Fiji or Ilastik method, as predictors of manual counts. Counts of
callose deposits were from the same images of fluorescently stained citrus phloem tissue (at 10×
magnification). Kullback–Leibler R2 (K–L R2) measures the proportion of uncertainty explained by
the inclusion of a regressor in a general linear model. Root mean square error (RMSE) is a measure
of model accuracy, where a lower number indicates a better fit between the predicted and observed
data. Akaike information criterion (AIC) is an estimation of how much information is lost when a
model is fitted to a dataset.

Predictor K–L R2 RMSE AIC

Ilastik 0.68 60.87 182.29
Fiji 0.34 329.26 194.18

3. Discussion

The results indicate that both software methods can be used as a substitute for manual
counts in experiments where callose is used as a physiological indicator in plants. Statistical
analysis of the counts produced with data from the two image segmentation methods
reveals that Ilastik counts resembled human counts more closely than those from Fiji. Fiji
counts are a significant predictor of manual counts, but they differ from the manual results
significantly. Ilastik counts were a better predictor of manual counts, according to three
measures of model fitness. However, Ilastik reported a higher mean count than the human
observer. The trained classifier was likely over-generalizing and including some fluorescent
artifacts in the callose category, but this difference was not significant.

Both software methods identified callose deposits in outer pith tissue. This raised the
possibility of a lack of specificity, because callose deposits are normally a feature found the
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phloem, not the pith. Upon manual review, the human counter also found callose deposits
in the outer pith tissue. When aniline blue-stained images from the inner and outer piths
were obtained and run through the Ilastik classifier, no fluorescence could be detected in
the inner pith. This suggests that some phloem tissue may cling to the outer pith after the
peeling process is complete, leaving detectable callose deposits. Because the classifier had
been trained to recognize callose deposits in the phloem, it may not be able to differentiate
between artifacts and callose in the context of the pith tissue. The appearance of callose
where none was expected required further experimentation to confirm the identity of the
objects that were detected by the classifier. This underscores the importance of re-training
the Ilastik classifier for each new tissue type to ensure maximum accuracy and efficiency.

The analyses shown here indicate that the Ilastik segmentation method will be more
suitable for images where there is low contrast between the desirable objects and back-
ground, or where multiple similar targets need to be quantified. The Ilastik classifier
appears to be more sensitive in detecting callose deposits than the binary thresholding
method, and acceptable specificity is obtained even when fluorescent artifacts are present
in images and have a similar brightness level to the callose deposits. Fewer pre-processing
steps are needed to obtain satisfactory results, but the accuracy of the identification was
improved by applying a mean filter to the images with Fiji before applying the classifier.
Feature reduction is a common step in machine learning-based data collection processes [14].
In this application, it appears necessary to reduce the complexity of the images in order to
make it less likely that noise artifacts will be mistaken for features by the software.

One limitation of this study is the fact that the human counter had previous experience
with both types of software counting methods. This may have produced some bias in the
counts. Ideally, the bias would be reduced by obtaining counts of the same images by
multiple human observers who were unaware of the capabilities of each software. However,
multiple manual counts were not feasible for this project. Because counting callose deposits
in the citrus phloem is a relatively simple task, it may be more difficult to obtain highly
accurate counts from a trained machine learning classifier with more complex types of
images. Researchers should evaluate different counting methods and choose the most
appropriate one for their datasets and resources. In any imagery data collection project,
care must be taken to adjust settings and feature reduction until they match the human
observation as much as possible for all software methods.

4. Materials and Methods
4.1. Plant Material and Tissue Collection

The plants used in this study were healthy ‘Valencia’ sweet orange trees (Citrus
sinensis L. Osbeck), which were approximately 3 years old. The plants were kept in
an air-conditioned greenhouse in Lake Alfred, Florida, with an ambient temperature of
27 ◦C. The trees were grown in 1-gallon pots, with water applied 2 to 3 times weekly, as
needed. The water contained 20–10–20 fertilizer at 15% concentration. Samples for the
initial classification were collected in December 2020. Tissue samples were obtained from
the branch portion of the mature flush of the trees, approximately 7–10 cm from the leaves.

For the initial comparison between Fiji and Ilastik, two types of samples were collected:
bark samples that contained phloem tissue and pith samples that were largely free from
phloem tissue. A scalpel was used to peel away a section of bark from the branch, with the
phloem tissue adherent to the inside. The dimensions of the bark peels were approximately
0.5 to 1 cm wide and 2 to 3 cm in length. A scalpel was also used to peel away portions
of the stem pith with similar dimensions to the phloem samples. In total, three samples
were collected each from three trees: one phloem sample to be stained with aniline blue,
one phloem sample to remain unstained, and one pith sample that was also stained with
aniline blue. All samples were plunged immediately after collection into 1.5 mL Eppendorf
tubes filled with 85% ethanol. After the ethanol fixation, the phloem samples were divided
into a group that was stained and a group that was not stained.
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After the initial comparison analysis was completed, more tissue samples were col-
lected and stained to further examine callose which was identified in the pith images from
the previous samples. In November 2021, one sample each was collected from three healthy
2-year-old ‘Valencia’ sweet orange trees that were kept in the same location and conditions
as the initial experiment. Stem segments that were 3 cm in length were cut from mature
flush branches, approximately 10 cm from the leaves. The stem segments were placed
immediately in Eppendorf tubes filled with 85% ethanol. Each stem segment was kept
submerged in the ethanol for 24 h to fix and destain the tissue. The stem segments were
removed from the ethanol and dissected with a scalpel into the phloem, outer pith, and
inner pith layers.

4.2. Tissue Staining

All samples were transferred from the ethanol solution to a 0.01% Tween-20 solution.
The unstained samples remained in this solution until images were taken, for approximately
2 h. After rehydrating in the tween solution for 1 h, the other phloem and pith samples
were placed in the stain solution. The stain consisted of a 0.6 M glycine solution, which
contained 0.01% w/v aniline blue. The pH of the stain was adjusted to 9.5 with several
drops of 5 M KOH from a transfer pipette. The samples were allowed to absorb the stain
for 1 h. After staining, these samples were also transferred to the Tween solution until the
images were taken.

After dissection, the samples that were collected to further examine the pith callose
were treated with the same staining procedure as described above.

4.3. Image Collection

Five images were taken from each tissue peel, which resulted in a total of 15 images
each for the three groups (stained phloem, unstained phloem, and stained xylem). A Leica
SP8 confocal microscope was used to collect images, with the 10×/0.32 NA objective. The
pinhole diameter was set at 330.5 µm. A 405 nm diode laser was used for excitation at 25%
power, and a 475–525 nm band-pass filter was used for emission detection, with gain at
400.9 and offset at −0.09. The Leica Application Suite X software was used to convert the
images to TIF format for data collection. The images produced in this step were used as the
test set. Three citrus phloem images from a previous callose measuring experiment, stained
with the same procedure and imaged using the same settings, were used as the training
set [15].

For the pith callose samples, three pictures were collected from each type of tissue
from three stem segments, making a sample of nine images for each tissue type (phloem,
inner pith, and outer pith). These images were collected using the same microscope and
settings as described above. For the outer pith samples, the morphology of each sample
was examined, and images were taken only of the surface that contacted the phloem.

4.4. Manual Counts

All images of the first collection of phloem tissue were also manually counted by a
human observer who was highly familiar with the appearance of callose deposits. The
images were viewed at 200% magnification in Microsoft Paint. The observer counted one
field of view at a time using a digital click counter. After each field of view was counted, the
observer scrolled to the next field. The fields of view were counted in a serpentine pattern,
starting at the top right and ending at the bottom left. If callose deposits were located at
the bottom and right edges of a field, they were counted and used as a guide to scroll to
the next field of view. Each callose deposit was marked with a bright dot to ensure it was
counted. Each image was examined again at full magnification to make sure all callose
deposits were counted. Counts were recorded for statistical analysis in a CSV file.
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4.5. Image Pre-Processing for Ilastik

To reduce the effects of noise artifacts on the training of the algorithm, a copy of each
image was pre-processed, with a mean filter and radius of three pixels using Fiji [16]. A
macro was scripted to apply the filter automatically to all images in one session (Figure 4).
The new filtered images were saved in a separate drive, leaving the originals unaltered.
The same filter was applied to the pith images.
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workflow in the Ilastik software [11] (Figure 5). The first step was pixel classification.
The three images, from a prior callose-measuring experiment, were loaded into the data
input menu and used to train the algorithm [15]. The tissue in these training images had
been stained, and images were taken with the same procedures outlined in the preceding
methods sections. The images were chosen to each represent tissue with typical high,
medium, or low-callose quantities. After the training images were loaded, the pixel features
and feature size (sigma) were selected. Because computation time was not expected to
become problematic, all features on all sigma scales were selected. This allowed pixels
to be classified based on color, color intensity, resemblance to an edge, and texture. Next,
the supervised training was performed. In this step, a separate color label was chosen to
identify callose, background, or epidermis/cuticle artifact. Three examples of each object
were labeled with the appropriately sized brush; then, the classifier was allowed to update
to observe the results. Using the uncertainty overlay, areas of high uncertainty were labeled
iteratively until the prediction layer showed satisfactory identification of the pixels. This
process was repeated for all three images. The trained classifier was then run on all images
in the test dataset, and the pixel classification data was saved.

In the second step, the object classification workflow was used to label regions of
the images as object types (callose, background, or cuticle artifact), based on how pixels
were classified. The raw training images, in addition to the associated probability maps,
which were obtained in the pixel classification step, were loaded into the workflow. All
standard features were selected to identify the objects. The neighborhood size was left at
30 × 30 pixels. The training process was similar to that in the pixel classification workflow.
Three different labels were chosen for callose, background, and cuticle artifact objects. Three
of each type of object were labeled; then, further labels were placed on objects with highly
uncertain identities, until all objects in the images were correctly identified, according to
the trainer’s expertise. When the training process was complete, the classifier was applied
to the images in the test dataset. The data collected from every object in each image was
exported as CSV files to be used for statistical analysis.
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Figure 5. A stepwise illustration of the callose measurement process in citrus phloem using Ilastik.
(A). An unaltered image of a high-callose section of citrus phloem, stained with aniline blue. (B). The
same image after a mean filter with radius = 3 is applied with Fiji. (C). Three labels are chosen for the
callose formations, stained cuticle artifact, and background. Several labels for each class are added
initially; then, additional labels are added in areas of high uncertainty, until the algorithm produces
accurate predictions in the whole training image. (D). A fully segmented image, with all objects
classified correctly, according to the expertise of the human trainer.

The same workflow was used to collect counts of callose formations and artifacts from
the images for the pith callose examination.

4.7. Local Binary Thresholding and Segmentation

To create a comparison dataset which was acquired using a binary segmentation
method, the initial set of test images that were classified with Ilastik were processed with a
workflow in Fiji, which was described previously [6,15].

4.8. Statistical Analysis

All statistical analysis was performed using Ref. [17]. The CSV files that contained
information about objects in the images were combined and cleaned, such that the measure-
ments were grouped by the tissue type (stained phloem, unstained phloem, or pith). The
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count of callose objects per image was obtained from the CSV files, and summary statistics
were computed for each count dataset. Because no callose objects were detected from the
unstained phloem tissue, only the stained phloem and pith were included in statistical tests.

Linear regression models were examined to compare the Fiji and Ilastik counts as
predictors of human counts. This analysis was performed in other biological studies that
examined machine learning count accuracy versus human-performed counts [18]. However,
when the residuals of the linear models were tested for this citrus phloem study, they did not
meet the assumptions of linearity and homogeneity of variance. Poisson, negative binomial,
and hurdle models were considered because they are most appropriate for biological count
data [19]. The negative binomial regression was chosen for both the Fiji and Ilastik counts
because the variance was greater than the mean for all sets of counts. A hurdle model
may also have been appropriate for the Fiji counts, but the negative binomial model was
chosen so that both models could be compared. K–L R2 is the most appropriate measure
for finding the proportion of variance explained by each regressor in nonlinear regression
models, and this was found for both regression models with the {performance} package
in Refs. [20,21]. RMSE was calculated for each model with the {Metrics} package [22].
Because the count datasets did not meet the assumptions for the parametric tests, such
as ANOVA, the Friedman test for paired data was chosen to find differences in the mean
counts, based on the type of measurement system [23]. The effect size for the Friedman
test was found with the {rstatix} package [24]. Post hoc analysis was performed using
pairwise Wilcoxon signed-rank tests with a Bonferroni correction for multiple comparisons.
A Wilcoxon signed-rank test was also used to compare the callose deposit counts obtained
by both software methods in the citrus phloem tissue.

5. Conclusions

The counts of callose deposits that were produced by the Ilastik supervised machine
learning software were a good predictor of manual counts from the same images, although
Ilastik may have counted some artifacts as callose. The Fiji counts from the same images
were also significant predictors of human counts, but the counts differed significantly.
The Ilastik method, described here, may allow significant biological differences in callose
production to be easily detected in low contrast images, while saving time, compared
to manual counts. Regardless of the automated method used, researchers should care-
fully evaluate the data produced by the software and ensure that the level of accuracy is
appropriate for their objectives.
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