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The human brain consists of anatomically distant neuronal assemblies that are
interconnected via a myriad of synapses. This anatomical network provides the
neurophysiological wiring framework for functional connectivity (FC), which is essential
for higher-order brain functions. While several studies have explored the scale-specific
FC, the scale-free (i.e., multifractal) aspect of brain connectivity remains largely
neglected. Here we examined the brain reorganization during a visual pattern recognition
paradigm, using bivariate focus-based multifractal (BFMF) analysis. For this study, 58
young, healthy volunteers were recruited. Before the task, 3-3 min of resting EEG was
recorded in eyes-closed (EC) and eyes-open (EO) states, respectively. The subsequent
part of the measurement protocol consisted of 30 visual pattern recognition trials of 3
difficulty levels graded as Easy, Medium, and Hard. Multifractal FC was estimated with
BFMF analysis of preprocessed EEG signals yielding two generalized Hurst exponent-
based multifractal connectivity endpoint parameters, H(2) and 1H15; with the former
indicating the long-term cross-correlation between two brain regions, while the latter
captures the degree of multifractality of their functional coupling. Accordingly, H(2)
and 1H15 networks were constructed for every participant and state, and they were
characterized by their weighted local and global node degrees. Then, we investigated
the between- and within-state variability of multifractal FC, as well as the relationship
between global node degree and task performance captured in average success
rate and reaction time. Multifractal FC increased when visual pattern recognition
was administered with no differences regarding difficulty level. The observed regional
heterogeneity was greater for 1H15 networks compared to H(2) networks. These results
show that reorganization of scale-free coupled dynamics takes place during visual
pattern recognition independent of difficulty level. Additionally, the observed regional
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variability illustrates that multifractal FC is region-specific both during rest and task. Our
findings indicate that investigating multifractal FC under various conditions – such as
mental workload in healthy and potentially in diseased populations – is a promising
direction for future research.

Keywords: multifractal, functional connectivity, brain networks, electroencephalography, visual pattern
recognition

INTRODUCTION

The human brain is a complex system encompassing spatially
distinct neuronal populations interconnected via an intricate
axonal grid. Functional brain networks emerge within this
anatomical circuitry, which provides the neurophysiological
basis for higher-order brain functions (Van Hoesen, 1993).
For instance, visual pattern recognition requires coordinated
interactions among disparate brain regions such as the visual
cortex, where primary processing, and the association areas
in the parietal and frontal cortices, where high-level cognitive
evaluation takes place (Van Hoesen, 1993; Kandel et al.,
2012). Based on the hypothesis that regions that exhibit
statistically similar dynamics are functionally coupled, functional
neuroimaging methods allowed the reconstruction of functional
connectivity (FC) in the brain under cognitive (Friston et al.,
1993) and motor (Biswal et al., 1995) tasks. A paradigm shift
regarding resting-state studies occurred after discovering that
even in the absence of external stimuli the brain is organized in
resting-state networks (RSNs) (Raichle et al., 2001). This resting-
state neural architecture is altered during task through a series of
activations and deactivations of brain regions (Fox et al., 2005).
Accordingly, we believe that studying the brain under mental
workload could reveal valuable information.

Due to its high spatial resolution, functional magnetic
resonance imaging (fMRI) has been commonly favored as
the gold standard imaging technique for detecting task-related
changes of FC (Fox et al., 2005; Krienen et al., 2014; Di et al., 2015;
Elton and Gao, 2015; Kaufmann et al., 2017). Nevertheless, the
low sampling frequency and the physical constraints of the fMRI
systems present themselves as limitations when more elaborate
experimental paradigms are designed. Albeit at the cost of a
lower anatomical resolution, these limitations can be overcome
using electroencephalography (EEG) owing to its high sampling
rate and easy-to-use instrumentation. This led to numerous task-
related EEG studies, ranging from traditional tasks like n-back
(Hou et al., 2018; Kaposzta et al., 2021) and face perception
(Yang et al., 2015) to more complex designs like urban navigation
(Skroumpelou et al., 2015). By using a visual pattern recognition
paradigm, Racz et al. demonstrated an increase in scale-specific
FC during task (Racz et al., 2017); though, in that study the scale-
free aspect of the connections was not taken into consideration.

Various statistical approaches have been applied and/or
developed for characterizing the linear and nonlinear aspects
of the coupled neural activities (Bastos and Schoffelen, 2016).
A common limitation of these methods is that they capture
interdependence on a single scale, despite the fact that the scale-
free (or fractal) nature of the connections has already been
demonstrated in various modalities such as EEG (Wang and

Zhao, 2012; Stylianou et al., 2021), fMRI (Ciuciu et al., 2014) and
magnetoencephalography (Achard et al., 2008). The univariate
scale-free behavior of neural dynamics has already been shown
both regionally (Popivanov et al., 2006) and globally (Stam and
de Bruin, 2004). While estimating FC at a given time scale reflect
the coupling between oscillatory (narrowband) components
at specific cross-spectrum frequencies, our current approach
assumes a significant scale-free (broadband) component of the
cross-spectrum; a signature of statistical dependency spanning
a broad range of frequencies (scales). Moreover, the true
multifractal nature of coupled dynamics was recently validated
in resting-state EEG (Stylianou et al., 2021). Scale-free FC
estimators allow for capturing how the long-term memory and
multifractality of the coupled dynamics are spatially distributed
across brain networks; topological aspects that otherwise would
remain obscured. Visual pattern recognition requires sustained
interaction between brain regions involved in the processing of
the visual information, which can be captured as increased cross-
correlations (long-term memory) in the functional connections.
Furthermore, cognitive stimulation implies a shift in FC that is
typically governed by complex nonlinear dynamics (Rabinovich
and Muezzinoglu, 2010; Werner, 2010), which might alter the
multifractal profile of FC. To the best of our knowledge, this is the
first study investigating the task-related network reorganization
using multifractal connectivity analysis.

In the current study, we examined the task-related
reorganization of FC by applying a bivariate, focus-based
adaptation of multifractal analysis on EEG records. The task of
choice was a complex pattern recognition paradigm, which has
previously shown its utility in increasing FC in the prefrontal
cortex (Racz et al., 2017). Our primary objectives were: (i) to test
the hypothesis that shifts in scale-free coupled dynamics would
occur during the transition from rest to task; and (ii) to examine
the localization of multifractal FC within each mental state. Our
secondary aim was to assess the relationship between cognitive
performance and brain network measures reconstructed from
scale-free FC estimators.

MATERIALS AND METHODS

Participants
Fifty-eight young, healthy volunteers (24.2 ± 3.4 years
of age, 28 females, 9 left-handed) with no history of
psychiatric/neurological illness were recruited for the study.
Participants were instructed to have a good night’s sleep before
the day of the experiment. All subjects provided written informed
consent prior to the measurement. The study was designed and
carried out in accordance with the Declaration of Helsinki and
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FIGURE 1 | Measurement protocol for obtaining electroencephalography
records during resting states and subsequent visual pattern recognition. First,
resting-state recordings were made in 180 s periods with eyes closed and
eyes open, respectively. Then, the subject performed a pattern recognition
task in a block of 30 trials, each consisting of a 10 s or less of active period
and a 10 s passive period. In the active period, participants were presented a
large-size image (A) and its cropped sub-region (B) and were required to click
on (A) at the position of (B) if found (The picture of Figure 1 was taken from
https://alphacoders.com/users/profile/97828).

was approved by the Regional and Institutional Committee of
Science and Research Ethics of Semmelweis University (approval
number: 2020/6).

Measurement Protocol
All measurements took place in the Department of Physiology at
Semmelweis University in a quiet room under subdued ambient
illumination. During the measurement, participants were seated
comfortably in a chair in front of a computer monitor at
an approximate distance of 0.8 m from the screen and were
instructed to refrain from moving and facial expressions as
much as possible. The measurement protocol was designed and
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States) according to a pattern recognition paradigm
modified after Racz et al. (2017). The session started with a
3-min eyes-closed (EC) period serving as a baseline, followed
by a 3-min eyes-open (EO) resting-state period, as a control
for the task state. Then, participants were engaged in a visual
pattern recognition paradigm consisting of a block of 30 trials
with active and passive periods (Figure 1). Specifically, in the
active period of a trial, the subject was allowed a maximum of
10 s to identify a sub-region of a grayscale image by clicking on its
assumed location; at that point, the active period was terminated.
The active period was immediately followed by a passive (task-
free) period, during which a gray background was displayed for
10 s. In this stimulation paradigm, a pool of 6 different grayscale
images was permutated. Each of them was shown 5 times in
total – with a different sub-region to be identified in each case –
thus yielding a total of 6 × 5 = 30 trials. To investigate the
impact of difficulty level, images were sorted into Easy, Medium
and Hard categories with 2 images in each. Their classification

was based on their complexity, defined as the file size ratio of
compressed/uncompressed images [cf. Equation 1 in Yu and
Winkler (2013)]. The order of the 30 trials was randomized
with a different permutation sequence for each participant. The
following metrics characterized the performance during pattern
recognition: (i) reaction time, defined as the time between the
beginning of the image presentation and response (left mouse
click on the image) and (ii) success, defined as 1 if the participant
correctly identified the sub-region’s location and 0 otherwise.
When the subject did not respond, the trial was considered a
failure (success = 0) and the reaction time was set to 10 s.

Data Acquisition
EEG signals were recorded by a wireless Emotive Epoc+ device
and its corresponding EmotivPRO software (Emotiv Systems
Inc., San Francisco, CA, United States). After ensuring low
electrical impedance (<20 k�), EEG signals from 14 brain
regions (10–20 standard montage locations: AF3, AF4, F3, F4, F7,
F8, FC5, FC6, T7, T8, P7, P8, O1, and O2) were recorded, at a
128 Hz sampling rate1. CMS and DRL electrodes at left and right
mastoid processes were used as reference.

Preprocessing
The EEG device applied built-in band-pass (0.2–45 Hz, digital
5th order Sinc) and notch (50 and 60 Hz) filters to the raw
data. To maximize the artifact-detection capacity of independent
component analysis (ICA), first we performed wavelet-enhanced
ICA (wICA) (Rong-Yi and Zhong, 2005; Gabard-Durnam et al.,
2018). The purpose of wICA was to exclude wavelet components
with coefficients higher than a certain threshold, resulting in the
removal of high amplitude spikes. Subsequently, we manually
excluded non-brain components, as ICA isolated them. wICA
was performed in an automated manner, while the EEGLAB
toolbox (Delorme and Makeig, 2004) was used for manual ICA.

Estimation of Multifractal Functional
Connectivity
The scale-free coupled dynamics were estimated with bivariate
focus-based multifractal analysis (BFMF), introduced by Mukli
and colleagues (Mukli et al., 2018). The applicability of BFMF
for multifractal FC estimation was demonstrated previously
(Stylianou et al., 2021). Here we only provide a summary of
the method, while further details are found in the references
mentioned above. The scaling function SXY (Figure 2) of two
EEG time series (X and Y) of length L datapoints can be
calculated as:

SXY
(
q, s
)
=

(
1
Ns

Ns∑
v = 1

|covXY (v, s) |q
)1/q

, (1)

where Ns denotes the number of bridge-detrended, non-
overlapping windows of size s (s = 2n with n being integers
ranging from 2 to 8) indexed by v. The statistical moment order

118 recordings were carried out at 256 Hz sampling rate which were downsampled
to 128 Hz prior to further preprocessing.
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FIGURE 2 | Multifractal time series analysis and its endpoint parameters. On the upper panels, a representative pair of 2048 datapoint-long EEG segments (from
Subject01) is displayed along with the windowing scheme for a smaller (s = 64, shown in yellow) and larger (s = 128, shown in purple) scale, which illustrates the
calculation of covariance scaling function [SXY (q,s) displayed in the lower panel] according to Eq. 1. The Focus (red disk) is used as a reference point when
simultaneously fitting linear models in the log-log transform of the SXY (q,s) vs s, the essential step of BFMF. The slope of each linear regression line represents the
generalized Hurst exponent [H(q)] (shown for q = –15, +2, +15). H(2) describes the long-term cross-correlation between the signals X and Y, while the degree of
multifractality (1H15) is captured in the difference between H(q) values at the extreme [i.e., minimal (–15) and maximal (15)] statistical moments.

(q) ranges from−15 to 15 with increments of 1 and the window-
wise covariance between simultaneous s-size segments of X and Y
is denoted by covXY (v, s). When q = 0, the scaling function takes
the form:

SXY (0, s) = e[
1

2Ns
∑Ns

v = 1 ln(|covXY (v,s)|)] (2)

In the special case when the whole segment is used for
obtaining the scaling function [SXY (q,L)], the sum in Eq. 1
becomes independent of q and thus, the scaling function
values of all moments converge to a so-called Focus. This
Focus serves as a reference point when regressing for the
log[SXY (q,s)] vs log[s] relationship for every q simultaneously.
In contrast with the standard approach where separate q-wise
assessments of the power-law relationship are applied, fitting
all statistical moments simultaneously results in a more robust
analysis (Mukli et al., 2015). This is achieved by enforcing
the monotonous decay of regression slopes, which represent
the generalized, q-dependent bivariate Hurst-exponent function
H(q). The special case of H(2) depicts the global long-term cross-
correlation in the coupled dynamics underlying the functional

connection. If this bivariate H(2) is greater than 0.5, then
there is functional coupling exhibiting long-term memory.
H(2) = 0.5 indicates uncorrelated, uncoupled dynamics, while
H(2) < 0.5 demonstrates anticorrelated coupling (Eke et al.,
2002; Kristoufek, 2014). 1H15, calculated as H(-15)-H(15),
captures the degree of multifractality, an indicator of the
q-wise dependence of the scaling function on large and small
covariances. The whole segment of each trial (active section +
10 s of passive period) was analyzed with BFMF. As for the
resting-state conditions, 9 non-overlapping segments of 20 s for
each of the EC and EO states were analyzed. To remove the
effect of different time lengths due to various response times, we
also performed analyses adjusted to the length of time series (see
Supplementary Material).

Assessing Multifractality
A series of statistical tests evaluated the true scale-free nature
of the connections. In short, the purpose of these tests was
to: (i) validate the power-law relationship of the connection
both in the frequency and time domains (spectral slope
and detrended cross-correlation coefficient tests, respectively),
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(ii) distinguish true from spurious multifractality (phase
randomization and shuffling tests), and (iii) determine if the
emerging coupling between the two processes is genuine or
only reflects a mere autocorrelation within each EEG signal
(bivariate-univariate Hurst comparison). This series of tests
reveal the qualitative nature of bivariate multifractality, which
is assessed independently from its quantitative changes in this
study. The complete account of the testing procedure followed
in this study was reported elsewhere (Stylianou et al., 2021).
We expanded the test yielding a distinction between extrinsic
and intrinsic multifractality referred to as bivariate-univariate
Hurst comparison. In our previous paper, only the inequality
between the bivariate Hurst exponent and the mean of the
univariate Hurst exponents comprising the connection was tested
(Stylianou et al., 2021). In the present study, we considered a
bivariate-univariate Hurst comparison test successful only when
the bivariate H(2) was lower than the mean of its univariate H(2).
This choice was made based on the fact that bivariate H(2) can
exceed the mean of univariate H(2) only due to the finite length
or non-normal distribution of the time series (Kristoufek, 2015a,
2016).

Brain Network Construction
We then proceeded with reconstructing functional networks
and analyzing their architecture. For each subject, we isolated
48 different EEG segments (9 EC, 9 EO, 10 Easy, 10 Medium
and 10 Hard). For each connection, the H(2) and 1H15 values
obtained in the 5 different states were averaged, resulting in 5
different values per subject. Altogether, 5-5 (i.e., fully connected)
networks (EC, EO, Easy, Medium, Hard) were reconstructed
for every subject, based on either their H(2) or 1H15 values.
In these analyses, we used untresholded networks as we did in
our previous studies of EEG-based functional connectivity (Racz
et al., 2018, 2019, 2020; Kaposzta et al., 2021). We characterized
network topology via the local (D) and global (D) weighted node
degrees from the H(2) and 1H15 values of each connection, since
earlier we found that in small networks, clustering coefficient
and efficiency were highly correlated with node degree (Kaposzta
et al., 2021). D represents the total connection strength of a
node, while D (the average of all D) is an indicator of the
network’s interconnectivity2. The calculations of D and D were
carried out using functions of the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Statistical Evaluation
We evaluated between-states (e.g., Hard vs EC) and within-
states (e.g., O1 vs O2 in EO) differences for both H(2) and
1H15 networks. To rule out that the observed differences
could be attributed to opening of the eyes, we included both
resting-state periods in the statistical evaluation. Therefore, the
between-states comparisons consisted of global D and local D
comparisons of the 5 different states (EC, EO, Easy, Medium,
Hard). Since the normality assumption (Lilliefors test) was

2D
∑n

i = 1 ci where n represents all possible edges of a node, while ci is the strength

[either H(2) or 1H15] of the ith connection. D =
∑N

j = 1 Dj
N where N represents all

nodes of the network, while Dj
W is the weighted degree of the jth node.

not satisfied for all distributions, we used the non-parametric
Friedman test. Subsequently, paired comparisons were used to
identify specific pairwise differences. If any of the two populations
under investigation were non-normally distributed, Wilcoxon
signed-rank test was carried out. If both distributions were
normal, a paired sample t-test was used. Benjamini-Hochberg
(BH) correction (with α = 0.05) (Benjamini and Hochberg, 1995)
was used to adjust for multiple testing. Then, we investigated
the regional differences within every state’s local D (i.e., 91
comparisons for each of the 5 states). The same statistical tests
as in the between-states comparisons were utilized. Moreover, we
estimated Kendall’s coefficient of concordance (W) of D for both
H(2) and 1H15 networks for each state.

We also contrasted the average success rate (SR) and average
reaction time (RT) between the 3 difficulty levels, applying the
same statistical pipeline as described above. Then we investigated
the plausible relationships between performance metrics and
network architecture since scale-free FC and behavioral variables
have already been shown to correlate (Ciuciu et al., 2014). In that,
we examined the effect of FC on task performance by calculating
the Spearman’s rank correlation (r) between SR-D and RT-D for
each difficulty level. Every step of our analytical pipeline was
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States).

RESULTS

Qualitative Assessment of Bivariate
Multifractal Character
Table 1 summarizes the percentage of connections passing each
multifractal test. The 5 different states showed similar success
rates in the spectral slope, phase randomization and 1H15 part
of shuffling tests (the latter comparing the original 1H15 with
that of shuffled surrogates). On the other hand, the rest states
exhibited higher success rates in the bivariate-univariate Hurst
comparison test and passed the detrended cross-correlation
coefficient tests more frequently. Finally, comparing the original
H(2) with that of shuffled surrogates had a higher success rate in
the task states. As a result, more connections showed scale-free
characteristics in the rest states (Table 2).

TABLE 1 | Success rate of multifractality tests at the subject level
(mean ± standard deviation).

Tests

PL PR S1H15 S-H(2) DCCC Biv-Univ

EC 92 ± 7% 96 ± 4% 99 ± 2% 70 ± 18% 93 ± 4% 85 ± 18%

EO 94 ± 3% 96 ± 6% 98 ± 4% 76 ± 16% 93 ± 4% 86 ± 15%

Easy 93 ± 2% 97 ± 4% 99 ± 2% 90 ± 8% 64 ± 19% 65 ± 17%

Medium 94 ± 2% 97 ± 4% 99 ± 2% 90 ± 9% 65 ± 16% 68 ± 18%

Hard 94 ± 2% 97 ± 3% 99 ± 2% 89 ± 9% 62 ± 17% 73 ± 16%

PL, power-law test; PR, phase randomization test; S-1H15, 1H15 part of the
shuffling test; S-H(2), H(2) part of the shuffling test; DCCC, detrended cross-
correlation coefficient test; Biv-Univ, bivariate-univariate Hurst comparison.
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TABLE 2 | Percentage of connections, at the subject level (mean ± standard
deviation), that passed all multifractality assessment tests.

State

EC EO Easy Medium Hard

H(2) 48 ± 13% 55 ± 12% 31 ± 10% 34 ± 10% 35 ± 9%

1H15 46 ± 13% 53 ± 12% 30 ± 10 % 33 ± 10% 34 ± 9%

Effect of Brain State on Multifractal
Connectivity
The Friedman tests indicated a significant effect of state
(p < 0.01), and post hoc pairwise comparisons revealed that the
rest states (EC, EO) were characterized by lower D compared to
the task states (Easy, Medium, Hard) (Figures 3, 4). Additionally,
we found higher D during EO compared to EC, for both H(2)
and 1H15 networks. A similar motif emerged in the local level

comparisons, with the D of several nodes being significantly
different between the rest and task states, as well as between EC
and EO for both networks (Figure 5).

As seen in Figure 3, the H(2) networks had higher FC
in the frontal regions, while higher values of 1H15 were
observed in the occipital cortex. This regional variability was
statistically validated by the within-state comparisons, which
showed significant differences within all 5 tasks, for both H(2)
and 1H15 networks. We also observed that if the D of two nodes
in the 1H15 network were statistically different, there was a
high chance of the equivalent nodes being statistically different
in the H(2) network as well, while the opposite did not occur.
This can be easily visualized by the abundance of blue [both
H(2) and 1H15 significant] and orange (only 1H15 significant),
in contrast to the sparse red [only H(2) significant] boxes in
Figure 6. Moreover, small subject concordance appeared only in
the 1H15 networks; on the contrary, no subject agreement was
found in the H(2) networks (Table 3).

FIGURE 3 | State-dependent weighted node degree topology of H(2) and 1H15 brain networks. The color bars represent the values of the local node degrees.

FIGURE 4 | State-dependent weighted global node degree distribution of H(2) and 1H15 brain networks. Significance marked by asterisk (*). Figure was created
using Gramm (Morel, 2018).
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FIGURE 5 | Localization of significantly different weighted node degrees for every between state comparison of the H(2) and 1H15 brain networks. The colormap is
based on the absolute difference of the node degrees of the states under investigation (e.g., | DO2,EC - DO2,EO |). Only the significantly different nodes are shown.

Cognitive Performance and Its
Correlates With Functional Connectivity
The comparison of difficulty levels indicated a significant
decrease of SR in the Hard state. RT was also statistically different
between the 3 difficulty levels, with Easy having the fastest
response and Hard having the slowest (Figure 7). Furthermore,
significant (p < 0.05) positive correlations were found between
RT and D of the 1H15 networks during Easy and Hard
(Figure 8). After BH correction, these correlations were rendered
not significant.

DISCUSSION

This study investigated the scale-free coupled dynamics of brain
activity in resting state and during a visual pattern recognition
task of various difficulty levels. We employed two FC estimators
derived from bivariate focused-based multifractal analysis,
namely H(2) and 1H15. They were used for constructing brain
networks based on their multifractal connectivity for both rest
and task conditions. Our findings show that: (i) the local and
global functional connectivity measures increased during task

when compared to resting conditions, indicating a reorganization
of brain networks, and (ii) there was a substantial regional
variability within the 5 different states. However, significant
correlations were found only between the global node degree
and average reaction time during Easy and Hard tasks in the
1H15-networks.

After acquiring the BFMF measures, H(2) and 1H15, it
was essential to perform an array of multifractality assessment
tests since by default not all functional connections – or in
general, not all dynamic processes – can be assumed to have
multifractal character. Our tests showed that a considerable
fraction of the connections had true multifractal characteristics
(Table 1). Similar success rates have been found in the resting
state previously (Stylianou et al., 2021). Despite the different
channel density of the EEG devices and the different sampling
populations, similar results were obtained in these studies,
concluding that coupled dynamics between cortical regions are
indeed multifractal during rest. The extent of multifractality
decreased during task, as indicated by the lower number
of connections passing our multifractality assessment tests
(Table 2). To the best of our knowledge, this is the first study
demonstrating the true multifractal nature of coupled dynamics
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FIGURE 6 | Within-state differences of node degrees in every state. Red: only H(2) network comparison was significant, Orange: only 1H15 network comparison
was significant, Blue: both H(2) and 1H15 networks comparisons were significant.

TABLE 3 | State-dependent subject concordance, as captured by Kendall’s W.

State

EC EO Easy Medium Hard

H(2) 0.10 0.09 0.09 0.12 0.11

1H15 0.24 0.15 0.25 0.24 0.26

during complex mental tasks. This provides an opportunity
to reveal novel aspects of rest and task states using BFMF
by obtaining information that would have remained hidden
otherwise [for a demonstration, see the Supplementary Material
in Stylianou et al. (2021)].

The higher node degree in the fully connected (i.e.,
unthresholded) H(2) and 1H15 networks during task
corresponds to increased H(2) and 1H15 values of the
connections. The high values of H(2) indicate a relative shift of
the coupled dynamics toward lower frequency components. This
greater long-term memory reflects a stronger coupling between
the probed regions of the brain cortex. Conversely, Ciuciu
and colleagues found a shift of scale-free coupled fluctuations
in fMRI-BOLD signals toward the higher frequencies (i.e.,
decreasing Hurst-exponent), accompanied by a decrease in
connectivity between resting-state networks during a motor task
(Ciuciu et al., 2014). While the signs of changes were opposite,
both studies showed a positive association between H(2) and FC
change during task. This difference could possibly be attributed
to the differences in imaging modality and stimulation paradigm,

which should be further investigated in future studies. Moreover,
based on the elevated 1H15 values of the connections, we
can conclude that the coupling between recorded EEG signals
transitioned into a state with increased multifractal strength
suggesting increased nonlinearity (Ashkenazy et al., 2003).
Multifractal dynamics are characterized by increased dependency
between different time scales. As time scale relates to frequency,
one such model is formulated by assuming a relationship
between the phase of lower frequencies and the amplitude of
higher frequencies (He et al., 2010). In that, a stronger phase-
amplitude coupling is associated with higher nonlinearity as
captured by increased 1H15 (Ashkenazy et al., 2003). Taken
together, BFMF reveals that task induces a redistribution of the
long-term cross-correlation in coupled dynamics as indicated by
higher Hurst exponent and renders them more interdependent
across different time scales as manifested by increased 1H15. The
more pronounced multifractal character of the connections can
possibly be attributed to the recruitment of excitatory/inhibitory
feedback loops (Poil et al., 2012) during task, whose transient is
typically characterized by nonlinear dynamics (Rabinovich and
Muezzinoglu, 2010). The elevated coupling [increased H(2)] and
feedback loops (increased 1H15) that take place in this visual
pattern recognition paradigm can be ascribed to the enhanced
cooperation of distant brain areas involved in various aspects
of visual processing, such as recalling short-term memory and
making visual comparisons.

Both H(2) and 1H15 networks showed a significantly
increased connectivity in task states compared to EO and
EC, captured in their global and local weighted node degrees
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FIGURE 7 | Average success rate and reaction time for different difficulty levels. Significant differences are marked by asterisk (*). Figure was created using Gramm
(Morel, 2018).

FIGURE 8 | Scatter plots of the reaction time vs global node degree for Easy
(orange) and Hard (blue) task in 1H15 networks and their Spearman’s
correlation (r). Figure was created using Gramm (Morel, 2018).

(Figures 3–5). Our results agree with the findings of a previous
functional near-infrared spectroscopy study using a very similar
cognitive paradigm. Racz et al. found global weighted node
degree increased in the prefrontal cortex during task (Racz
et al., 2017), using the scale-specific Pearson’s correlation as
FC estimator. Based on these two studies, it appears that
both the scale-free and scale-specific connectivity of the brain
increases during visual pattern recognition. This indicates that
a significant reorganization of functional brain networks takes
place in response to increased mental workload. Nevertheless,
definite conclusions cannot be drawn due to the different
modalities (EEG vs functional near-infrared spectroscopy). It is
also noteworthy that FC increased during the transition from
EC to EO. Since considerable brain capacity is devoted to
visual processing, opening the eyes should substantially increase
brain network activity. Thus, the observed higher node degrees

during EO are consistent with the manifestation of increased
mental workload. It should be recalled that a shift to higher
frequencies characterizes cortical desynchronization during EO,
contrasting with the earlier interpretation of increased H(2) (i.e.,
shift to lower frequencies). We speculate that scale-free and
oscillatory components of coupled electrophysiological activity
have different origins and could be affected by the opening
of the eyes differently. Previously, we have demonstrated that
the global multifractal dynamics of FC are affected by the EC-
EO transition (Racz et al., 2018), our present study extends
these findings by revealing the local alterations in scale-free
coupled dynamics (Figure 5). Still, the mental workload of
EO was not as substantial as that of the pattern recognition
task, since the node degrees of the EO networks differed
significantly from those of the task states. On the other hand,
the 3 task states (Easy, Medium and Hard) had statistically
similar node degrees (Figures 3–5), even though the cognitive
stimulation paradigm showed a lower success rate for more
complex images (Figure 7). Similar results were found in
an n-back EEG study (Kaposzta et al., 2021), in which
there was no significant difference in the density, clustering
coefficient and efficiency of the 2-back and 3-back brain
networks. In this n-back study, the network measures decreased
during task, which is in contrast with the current findings
of increased FC. This apparent controversy in FC alterations
between tasks has already been noticed, with n-back being the
most different from the rest of the studied task conditions
(Krienen et al., 2014). The use of different FC estimators
could have impacted the reported results as well. Moreover,
for both BFMF measures, the within-state comparisons showed
apparent regional variability (Figure 6), similarly to our previous
results (Stylianou et al., 2021). In that, we saw that the
degree of multifractality (1H15) varied more than the long-
term cross-correlation [H(2)] across the brain, in all states.
Additionally, significant differences in the long-term cross-
correlation were accompanied by changes in the degree of
multifractality, in most cases. A possible explanation could
be that multifractality results from more complex dynamics
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(Tel, 1988) which tend to vary more from region to region. On
the other hand, this contradicts the findings of our previous
resting-state study, where H(2) values varied the most [cf.
Table 2 in Stylianou et al. (2021)]. The different electrode
densities of the EEG system used in these two studies (62 vs
14 channels) could well account for the observed differences.
Nonetheless, these two studies indicate that scale-free coupled
dynamics do not emerge homogenously in the brain, neither
in rest nor in task states, which is a motivation for further
studying the multifractal properties of FC at higher spatial
resolution. Furthermore, small subject concordance within the
different states was observed only for the 1H15 network
(Table 3). This agrees with a previous study (Mueller et al.,
2013), which found inter-subject FC variation localized mainly
in the high-order association cortices in the frontal and
parietal lobes, i.e., regions strongly overlapping with those we
recorded EEG from.

As to the performance metrics, the Easy state was associated
with faster RT than the Medium and Hard states, while significant
differences in the SR were observed only between Easy-Hard and
Medium-Hard (Figure 7). Even though no significant differences
in the SR were observed between Easy-Medium, the RT during
the Medium task was longer. We believe that a significant
difference in the SR between Easy-Medium could be found by
including a larger or more diverse population sample in future
studies. Furthermore, no significant associations were found
between the global node degrees and performance metrics (SR
and RT), with the exception of positive correlations between
RT and D in the Easy and Hard states of the 1H15 networks.
Similarly, in another EEG n-back study, network measures
were found significantly correlated only with RT, and not with
SR (Dai et al., 2017). This suggests that lower multifractality
corresponds to faster pattern recognition, while the subject’s
SR remains independent of scale-free coupled dynamics. These
correlations did not remain significant after BH correction,
suggesting that a larger, more representative sample of the
population could potentially reveal significant correlations even
after BH correction.

Our results derived from the main analytical pipeline are
supported by further analysis accounting for the slightly different
length of analyzed signals from the task states (Supplementary
Material). Because the multifractal profile of a time series is
influenced by its length (Grech and Pamuła, 2012; Rak and
Grech, 2018), we anticipated a similar effect on our bivariate
multifractal analysis (Kristoufek, 2015b); thus, we re-analyzed
our dataset in a pipeline adjusted to the different lengths of
analyzed pair of time series based on the different response
times. The results agree with our primary analysis, indicating that
the slightly varying signal length had no effect on the observed
patterns. We also compared the D of every state after excluding
connections that did not pass our multifractality assessment
tests. While significant differences were found between rest
and task states, they were of the opposite direction, i.e.,
D decreased during task (Supplementary Figure 1), which
can be explained by the larger number of connections that
passed our tests during rest (Table 2). However, there was
great inconsistency among the multifractality assessment tests

for every connection and task (e.g., out of the 10 Hard
segments, the connection AF4-AF3 might have passed the test
in only 4 of them). In order to avoid any bias, our main
analysis focused on unthresholded networks. Additionally, the
thresholded analysis showed significant positive correlations
between D-RT in the Easy and Medium states for both
H(2) and 1H15 networks, warranting further investigation in
future studies (Supplementary Figure 2). While a growing
number of publications investigates the FC-related differences
between the two sexes (Zhang et al., 2018; Ýçer et al., 2020),
we found no significant sex-related differences in network
architecture. Since the studies mentioned above had higher
spatial resolution (higher density EEG or fMRI recordings),
we believe that future experiments with higher number of
EEG channels might be able to reveal such differences. As
to the effect of handedness, no significant differences in D
were identified between the left- and right-handed participants
in any state (EC, EO, Easy, Medium, Hard) or network
[H(2) and 1H15]. To assess the test-retest reliability, 5 of
our subjects repeated the same experiment a few months
later. No significant differences were found in the SR and RT
between the two sessions, suggesting that our experimental
paradigm can be used in further reproducibility studies.
Finally, we found a moderate concordance between H(2)
and 1H15 values for every subject (Supplementary Table 1),
indicating a relatively constant multifractal character of the
connections. Further details of these analyses can be found in the
Supplementary Material.

Future developments based on this study should consider
the following shortcomings. Despite its sample size, the subject
cohort of our study might not have been representative of
the general population, thus limiting us in drawing more
general conclusions. All participants were young, healthy and
educated, university students or graduates. Differences observed
in the multifractal FC during task could be augmented or
attenuated if a larger cohort of volunteers participated. The
recorded EEG signals might be affected by scalp muscle
contraction (especially at the frontal and temporal sites), as
shown previously (Goncharova et al., 2003). Since the spectral
characteristics of electromyographic signals considerably overlap
with EEG, part of the results could be attributed to activity
of motor units rather than changes in local field potentials in
the brain cortex. Nonetheless, independent component analysis
can remove a significant part of these electromyographic
contaminations (Yilmaz et al., 2019). Additionally, task-related
EEG changes are not greatly affected by muscle contractions
(Boytsova et al., 2016). Because during diverse tasks different
brain network architectures emerge (Krienen et al., 2014), the
construction of more extensive cognitive stimuli with several
different paradigms should be considered. Studies found that
FC changed as subjects repeated and thus learned a task
(Lewis et al., 2009; Bassett et al., 2011), which warrants
that our future experiments investigate the effect of learning.
Additionally, the bimodality phenomenon observed in univariate
focus-based multifractal analysis (Nagy et al., 2017) can be
extended to the multifractal covariance scaling function with
multiple scaling ranges.
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As to future perspectives, it will be interesting to see
the discriminatory power of multifractal FC between rest
and task states at the individual level, which was beyond
the scope of this study. In future studies, we intend to
investigate the rest-state classification performance of BFMF
compared to other measures of brain network dynamics (Racz
et al., 2020). To reveal mechanistic background of scale-free
coupled dynamics, further clinical trials and animal models
are needed using anesthetics, antipsychotics, antiparkinsonian
and other medications (Nasrallah et al., 2017). On a final
note, a promising field where such visual pattern recognition
task could be advantageous is in attention deficit hyperactivity
disorder (ADHD) research, where brain network alterations
during spatial working memory tasks have already been revealed
(Jang et al., 2020).

CONCLUSION

In the present study, we reconstructed brain networks from
measures of scale-free coupled dynamics in resting states and
during a visual pattern recognition task estimated by our
novel bivariate multifractal analytical algorithm. Initially, we
showed that our method could capture true multifractal coupled
dynamics that varied across different brain regions. Additionally,
we saw an increase in functional connectivity during the
transition from rest (EC and EO) to task states, which was
however, independent of task difficulty. We also found higher
functional connectivity when the participants transitioned from
EC to EO. These findings could well facilitate future research
of scale-free functional connectivity studies with complex
experimental designs in healthy and diseased populations.
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