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Abstract

Background: Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli,
and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do
nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior
might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features
of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value
produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as
observed with prospect theory.

Methodology/Principal Findings: Three sets of experiments employed this task with beautiful face images, a standardized
set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling
approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were
consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and
groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking
preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its
standard deviation, thereby setting limits to both.

Conclusions/Significance: These law-like patterns were compatible with critical features of prospect theory, the matching
law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to
the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be
relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory.
Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a
method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).
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Introduction

Intentional behavior, across a spectrum of healthy and

disordered conditions such as addiction, is hypothesized to reflect

differences in judgment and decision-making around relative

preference [1]. Relative preference is defined by the variable

extent an individual will approach or avoid [2–4] commodities

and events based on their rewarding or aversive features [5,6]. It

can be expressed by the payment an individual makes to avoid a

perceived bad outcome, or approach a positive one. Consumers

undertake such transactions to optimize their utility (i.e., overall

satisfaction or well-being) based on relative preferences [7–11].

Prior study of relative preference (with variable degrees of

uncertainty) has calibrated ratings of personal utility against a

global framework such as the macroeconomic pricing of

commodities. This calibration has produced a value function that

is recurrent and grounds modern prospect theory [12,13].

Prospect theory informs us that subjective value or relative

preference is modeled by a value function that is convex for losses,

concave for gains, and steeper for losses than gains. This value

function is modulated by probabilistic information [7,12,13].

Approach and avoidance behavior can also be modeled by data

from a validated keypress procedure [14–21] that is used within an

intrinsic motivation-like framework in which no external rewards

are provided [22,23], yet participants can produce variable

amounts of work [24,25] to modulate the time of stimulus

viewing. As a variant of approaches used to study effort-

based decision-making [26–28] the keypress procedure appears

to quantify (i) decision-making regarding the valence of be-

havior (i.e., positive valence = approach, and negative valence =

avoidance) and (ii) judgments determining its magnitude (Figure 1)

[15,20,29]. These analogies aside, this procedure is not easily

connected to a global framework pricing commodities and other

behavioral economic constructs as it operates only within a person-

or agent-centric context. Keypress measures of approach and

avoidance can be connected to neural systems [14–16,18–20], as

has been done with prospect theory [30,31], and represent an

important methodology for bridging animal and human research

of reward/aversion processing [14,32] and neuroeconomics

[10,11,33–37].

Despite research to date, we do not know if there is a balance or

‘‘trade-off’’ between keypress measures of approach and avoid-

ance. We do not know if there are ‘‘limits’’ to approach and

avoidance keypressing analogous to the saturation observed in

neurophysiology with variance-mean relationships whereby the

graph ramps up to a maximum and then returns to baseline

minimum [38]. We also do not know how approach and

avoidance might interact to produce lawful patterns underlying

valuation as observed with prospect theory [7,12] or other theories

such as the matching law [39–41]. Are there patterns to approach

and avoidance that meet engineering criteria for lawfulness and

are consistent with established features of reward/aversion

behavior such as (i) the overweighting of losses relative to gains

[7,13,31], (ii) the relative apportionment or allocation of behavior

between two categories of reinforcement [39,40,42], or (iii)

alliesthesia or hedonic deficit effects [43–46]? These questions

framed the goal for this work of determining whether approach/

avoidance behavior is governed by quantitative principles that

meet engineering criteria for lawfulness, and encoded by known

features of reward/aversion function. Such findings would have

relevance for quantitative phenotyping and subtyping of psychi-

atric disorders [47–49] that have been connected to reward/

aversion circuitry [5,8,20,31,33,35–37,50–52] such as addiction

[53–56] and major depressive disorder [57–59].

To meet this goal, we performed three sets of experiments in

three distinct cohorts of healthy subjects, and analyzed the data

following an iterative modeling schema adapted from Banks and

Tran [60]. These model-free procedures were first applied to data

collected while viewing pictures of ‘‘beautiful’’ and ‘‘average’’ faces

(Supporting Information Figure 1 or Figure S1) [14]. Behavioral

patterns observed with beauty stimuli were then tested for

recurrency using two other stimulus sets, including (a) a well-

validated stimulus set, the International Affective Picture System

(IAPS) [61,62] (Figure S2) in an independent cohort of subjects,

and (b) a stimulus set of food pictures tested during conditions of

hunger and satiation in a third cohort of healthy subjects (Figure

S3). The iterative modeling approach sought to (a) identify

quantitative patterns between variables describing approach and

avoidance, (b) determine if these patterns met criteria for

recurrency (i.e., consistency across stimuli), robustness to noise,

and scalability, (c) characterize whether these patterns were

consistent with established features of reward/aversion function,

and (d) rule out any experimental confounds to these patterns,

including the possibility of trial-by-trial interactions [63].

These procedures resulted in observation and validation of a set

of patterns underlying human approach and avoidance that are
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law-like, and are consistent with critical features of prospect

theory, the matching law, and alliesthesia. These patterns appear

to scale between groups and individuals.

Results

The keypress task was first conducted using a stimulus set

associated with strong reward/aversion behavior, namely a

picture set of faces of men and women who were models or

non-models [i.e., beautiful female (BF), average female (AF),

beautiful male (BM), average male (AM) faces [14]. Any

relationships found to be recurrent for all four conditions in the

‘‘beauty’’ stimulus set were subsequently tested for recurrency

using two other stimulus sets in separate cohorts of subjects.

Starting with data from the beauty keypress experiments, we

graphed the relationship between approach and avoidance

measures (using a number of variables described in the next

paragraph) to determine if a ‘‘trade-off’’ or ‘‘limit’’ function could

be identified. We then tested relationships between (i) trade-off

plot variables and (ii) independent variables related to keypress

intensity, which might share features with established theories of

valuation. We assessed the mathematical fit of any graphical

structure (i.e., pattern) observed, how this fit scaled between

group and individual data, and whether the structure demon-

strated the signature of a power law. Graphical structure was

compared to simulated hypothetical data to rule out that any

observed structure was mathematically trivial, and any trade-off

plots were tested for robustness against noise. A number of

control analyses were also performed to facilitate interpretation of

findings. One such control analysis sought to assure that keypress

responses for any one picture were not influencing subsequent

keypress responses to other pictures through an analysis of

variance of trial-by-trial interactions.

For these analyses, we assessed a range of descriptive statistical

variables. Location measures included mean, median, and mode

of positive (approach) and negative (avoidance) keypressing, along

with maximum and minimum values in the data set. Dispersion

estimates included standard deviation and median-absolute

deviation. Given these dispersion estimates take into account

the range of responses around a reference point, and not the

Figure 1. Experimental Design of Keypress Procedure. (a) This schematic illustrates the four potential responses to the stimuli: to increase, decrease,
variably increase or decrease for the same image, or accept the default viewing time of 6 (+2) seconds. The default condition controls for subjects having an
intention to keypress and alter viewing time, but not acting on this intention. (b) The traces of individual keypressing behavior to each picture are shown for
an anonymous subject. Time intervals are color coded by experimental condition as follows: beautiful female (pink), average female (red), beautiful male
(light blue), and average male (dark blue). Stimuli presentation was segregated by gender so that beautiful female faces did not bias all other responses (i.e.,
responses to male faces). Each blue trace of actual keypress data is shown relative to the default baseline for viewing. (c) Viewing time relative to the default
time (location and standard errors) for the ensemble of BF, AF, BM, AM faces are shown as a bar graph.
doi:10.1371/journal.pone.0010613.g001
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pattern of response within each experimental variable, such

measures may not be sensitive to qualitatively different behavioral

patterns. Entropy, signal-to-noise, and covariance variables were,

thus, assessed since they quantify the characteristics of response

pattern (e.g. the extent of irregularity/heterogeneity [64–66])

produced by underlying behavioral microvariables, and would

therefore be more sensitive to patterns in approach and

avoidance.

Approach/Avoidance Trade-offs
For group data, no consistent pattern was observed in the

graphs between location measures (e.g., mean, median, mode,

minimum, maximum) of positive (approach) and negative

(avoidance) keypressing across the four categories of faces (i.e.,

BF, AF, BM, AM faces). Nor were graphical patterns (e.g.,

manifold, function or envelope) observed for group data with the

standard deviation and median-absolute deviation. Absent pat-

terns at the level of group data for these variables, linear fitting of

individual data suggested patterns across the four experimental

conditions (i.e., categories of faces) for both the mean K+ð Þ and

standard deviation variables s+ð Þ. These patterns, though,

displayed significant heterogeneity (i.e., inconsistency), with a

broad range of values and both positive and negative slopes for

subsets of individuals. Hence, 12 of 77 subjects had positive slopes

for Kz,K{f g graphs, with a mean of 1.1662.11 and range of

5.50 (or an angle of 79.7u between minimum and maximum),

whereas 65 of 77 subjects had negative slopes for Kz,K{f g
graphs, with a mean of 22.8561.98 and range of 11.21 (or an

angle of 81.5u between minimum and maximum). For sz,s{f g
graphs, 50 of 77 had positive slopes, with a mean of 3.4163.04

and range of 14.56 (or an angle of 86.1u between minimum and

maximum), whereas 27 of 77 had negative slopes, with a mean of

23.4863.42 and range of 17.10 (or an angle of 82.7u between

minimum and maximum).

In contrast to these results with location and dispersion variables,

consistent patterns were observed for graphs with group data using

pattern variables such as (i) signal to noise ratios SNR+ð Þ, (ii)

covariance estimates CoV+ð Þ, and (iii) Shannon entropy H+ð Þ
estimates [67] (Figure 2a; Figure S4). All of these patterns for

SNRz,SNR{f g, CoVz,CoV{f g, and Hz,H{f g plots were

recurrent across BF, AF, BM, and AM face stimuli (representing

one simplex manifolds for H+ and CoV+ estimates, and a

boundary envelope for the SNR+ estimate). Spectra for the radial

distribution of the Hz,H{f g graphs for the BF, AF, BM, and AM

faces exhibited similar central tendencies when superimposed

(Figure 2b), and were amenable to Gaussian fitting, although t

location-scale fitting was the most accurate (Figure S5; Supporting

Information File S1 Section I). These SNRz,SNR{f g,
CoVz,CoV{f g, and Hz,H{f g patterns were present both with

keypress data and with total view time data (Figure S6), ruling out

resistive function effects.

The mathematical description of the Hz,H{f g plot was the

simplest of the three pattern variables (i.e., easiest to parameterize),

with a central tendency approximated by r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

zzH2
{

p
&log2N,

where r = radius from the origin and N = the number of pictures in

the experimental condition (Figure 2a; Supporting Information File

S1 Section II, Pattern 1). The mathematical descriptions of

SNRz,SNR{f g, CoVz,CoV{f g, and Hz,H{f g graphs were

similar at the scale of the group and at the scale of the individual for

the BF, AF, BM, and AM faces (Figure 2c), albeit with differing

Figure 2. Preference Uncertainty Trade-off. (a) shows a graph of Hz (y axis) vs. H{ (x axis) for BF, AF, BM, AM faces in 77 healthy control
subjects [experimental conditions (i.e., stimulus categories) are color coded as indicated in (b)]. The central tendency of the Hz,H{f g manifold is

approximated by a black quarter-circle, with its dispersion via crossbars and mathematical formulation as r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

zzH2
{

q
&log2N , where N = the

number of items in the experimental condition. Spectra for the radial probability distributions of responses to the BF, AF, BM, AM faces are
superimposed in (b). Given 20 items for each set of faces, this plot produces a distribution centered on 4.32 bits. In (c), the Hz,H{f g data for four
categories of faces are plotted for one individual.
doi:10.1371/journal.pone.0010613.g002
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parameter fits. With either group or individual data, angular

distribution along these manifolds signaled a trade-off in approach

and avoidance bias (Figure 3).

Simulation of behavior limited to only approach or avoid-

ance, and thus yoked between these two (i.e., a theoretical case

in which subjects could not accept the default position or switch

between approach and avoidance behaviors), showed that this

response profile would approximate the inner distribution of the

Hz,H{f g trade-off plot (Figure 3: red dashed line without dots;

see Supporting Information File S1 Section III). The outer

distribution of the Hz,H{f g trade-off plot was approximated

by variance-matched Gaussian noise (see below), and by subjects

(in the right upper corner of the plot) who used both increasing

and decreasing keypresses to variable extents for the same

stimulus item. Individuals falling far internal to the manifold

(i.e., on the H+ and H2 axes, or clustered far inside the arc of r)

represented individuals who accepted the default viewing time

at least once.

Other Relationships with Trade-off Variables
Mean Keypress Intensity (K) and Trade-off

Variables. Graphs of group data for K+,SNR+f g, K+,CoV+f g,
and K+,H+f g produced distributions with well-delineated

envelopes (Figure 4a; Figure S7a–d), that were recurrent for

BF, AF, BM, AM faces. Please see Methods, and Supporting

Information File S1 Section IV (for example with K+,H+f g)
regarding the fitting of envelopes versus functions. The

K+,H+f g envelope resembled the value function for prospect

theory (Figure 4b), in that it encoded an increased steepness for

avoidance relative to approach responses, which is interpreted as

‘‘loss aversion’’ in prospect theory [7,13,31]. When the

coordinate system of the K+,H+f g ‘‘value function’’ was

converted to a semi-log scale (given the Shannon entropy

already included a logarithmic computation), it became linear

(Figure 4c,d), with the signature of a power law [68–70]. Linear

fits of the log-transformed group data revealed an �rrz that ranged

between 0.64 and 0.81, and an �rr{ that ranged between 0.81 and

0.92 for approach and avoidance responses, respectively (Table 1).

Although the K+,H+f g value function could be represented as a

logarithmic function (H+§azb log K+zcð Þ) or a power

function (H+§a K+zcð Þbzd) (Figure 4a; Supporting Infor-

mation File S1 Section II, Pattern 2; Supporting Information File

S1 Section IV), scaling the argument K by a constant factor in

H+§a K+zcð Þbzd caused a proportionate scaling of H

[71,72]. Furthermore, with power law scaling, the ratios of

slopes and intercept offsets for K+,H+f g envelopes

Figure 3. Interpretation of Trade-off Plot. This cartoon provides an example of possible keypress patterns that fall at six different positions on
the Hz,H{f g manifold, using data from six subjects toward the same 20 BM faces (F1–F20) for increasing viewing time (data are shown for
approach only). For the six approach graphs shown, the x-axis represents the 20 faces in an experimental condition (i.e. BF, AF, BM, AM), and the y-
axis represents the number of keypresses toward that face picture. The Shannon entropy was computed using data in this format (see Methods,
Analyses, Descriptive Statistical Measures). To schematize the balance of approach Hz and avoidance H{, one might imagine a matching of graphs
#1 with #6, #2 with #5, and #3 with #4, where one graph represents the keypress responses for approach Hz and the other avoidance H{. For
the purposes of illustration, we assigned zero values here to Hz in sub-figure #6. For each sub-figure (#1–6) above and to the right of the
Hz,H{f g manifold, data has been auto-scaled to optimize the pattern display. Overall, this graph represents relative approach or avoidance bias

along the polar angle, whereas the extent of indifference/conflict an individual feels toward an experimental condition (i.e. BF, AF, BM, or AM) is
distributed in radial fashion from the origin.
doi:10.1371/journal.pone.0010613.g003
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had narrow ranges across conditions (Supporting Infor-

mation Table 1 or Table S1, Supporting Information File S1

Section V).

The mathematical structure of the K+,H+f g envelope for

group data (defining a boundary for mappings of 77 subjects at

one time) was similar to functions fit within each individual across

the four Kz,Hzf g points (or four K{,H{f g points) representing

the four experimental conditions (i.e., BF, AF, BM, AM faces)

(Figure 5a,b). Linear fitting to log-transformed individual data

revealed a mean fit of �rrz~0.9260.15 [mean6std], and

�rr{~0.9360.24 for approach and avoidance responses, respec-

tively (Table 2; Table S2a, Supporting Information File S1

Section V). Conjunction likelihoods of observing these patterns

across the cohort of healthy controls were p,7.2610268 and

p,1.46102162 for approach and avoidance responses, respec-

tively. When evaluated as a power law, the plots of individual

data also related the ratios between conditions in a manner

observed with the matching law [39–41] (e.g., AM as a referent

for BF, so
HBF

z

HAM
z

§a
KBF

z

KAM
z

� �b

; Figure S8).

In individuals, when the relative ordering of Kz,Hzf g and

K{,H{f g was evaluated across conditions, and the order of

K{,H{f g was found to not be the inverse of the order of

Kz,Hzf g, it was noted that these individuals were more distant

from the central tendency of the Hz,H{f g trade-off. Per

condition (i.e., BF, AF, BM, AM faces), when a subject was

interior to the central tendency of the Hz,H{f g trade-off, the

relative ordering of Kz,Hzf g and K{,H{f g responses to that

condition (e.g., AM faces) showed relatively less approach and less

avoidance response than for the other conditions (e.g., BM, BF, AF

faces). In contrast, when a subject was outside the central tendency

of the Hz,H{f g trade-off, the relative ordering of Kz,Hzf g and

K{,H{f g responses to that condition (e.g., BM faces) showed

relatively more approach and more avoidance response than for

the other conditions (e.g., BF, AM, AF faces).

The relative ordering of BF, AF, BM, AM conditions on

individual Kz,Hzf g and K{,H{f g graphs varied depending on

whether order was determined relative to the x axis, the y axis, or

the function fit to K+,H+f g data (Figure 5c). Framing the relative

ordering of experimental conditions by their log or power function

Figure 4. Value Function with Group Data. In (a), the K+,H+f g boundary envelope is shown for BF, AF, BM, AM faces in 77 healthy control
subjects. The envelope can be fit well either via a logarithmic function or a power function, over the range of keypress responses. As a power
function, this envelope has a similar structure to the value function in prospect theory (b). When approach behavior (green points) and avoidance
behavior (red points) are plotted together (c), one can readily observe the steeper trajectory of the envelope for avoidance responses, which in
prospect theory is interpreted as ‘‘loss aversion’’. With transformation of the axes (d), both the K{,H{f g envelope and Kz,Hzf g envelope show
power law scaling.
doi:10.1371/journal.pone.0010613.g004
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fits could be determined by connecting each condition to their

K+,H+f g function over an absolute minimum distance. Using

this approach, three types of properties (i–iii) were observed in the

ordering across the BF, AF, BM, AM conditions. (i) For the

Kz,Hzf g graphs, each condition showed an asymmetry of

ordering such that for any two conditions A,Bð Þ, one observed

either AwB?: BwAð Þ (condition ‘‘A’’ was greater than ‘‘B’’

implied the opposite was also not true, namely it was not the case

that ‘‘B’’ was greater than ‘‘A’’) or A*B?B*A (condition ‘‘A’’

and ‘‘B’’ were similar if they were graphically superimposed). (ii)

Within the Kz,Hzf g pattern, all conditions showed

A§B _ B§A (there was a complete ordering so that either ‘‘A’’

was greater than or equal to ‘‘B’’, or ‘‘B’’ was greater than or equal

to ‘‘A’’, so that across all four face conditions there were 16

potential orderings). (iii) Within the Kz,Hzf g pattern, all

conditions showed transitivity of ordering in that

A§B ^ B§C?A§C (across all face conditions, if condition

‘‘A’’ was greater or equal to ‘‘B’’, and ‘‘B’’ equal to or greater than

‘‘C’’, then ‘‘A’’ was greater or equal to ‘‘C’’ given their Kz,Hzf g
relationships). These properties of asymmetry, completeness, and

transitivity observed with each Kz,Hzf g graph, were also

observed for each K{,H{f g graph, and are considered properties

of preference relationships [73].

Mean Keypress Intensity (K) and Standard Deviation

(s). The pattern variables SNR, CoV, and H all have

relationships with the standard deviation (s), so we also

graphed s+ against K+, and other location measures. Graphs

of group data for K+,s+f g demonstrated envelopes (Figure 6a)

for BF, AF, BM, AM faces that were not due to ceiling/floor

effects in behavior, and could be fit with quadratic functions.

Quadratic fitting of group data revealed an �rrz that ranged

between 0.83 and 0.87, and an �rr{ that ranged between 0.57 and

0.78 for approach and avoidance responses, respectively (Table 3;

Table S3a, Supporting Information File S1 Section V). In these

graphs, Ds+D increased and then returned toward baseline,

indicating a saturation relationship. The avoidance saturation

envelope was more compact than the approach saturation

envelope, although the general description of both was similar

s+~a K++bð Þ2+c (Figure 6a; Supporting Information File S1

Section II, Pattern 3), and plots of K+,s+f g in the individual

resembled the group ‘‘saturation’’ envelope (Figure 6b). Fitting of

quadratic functions to individual data revealed a mean fit of

�rrz~0.9760.07, and �rr{~0.9560.09 for approach and

avoidance responses, respectively. Conjunction likelihoods of

observing these patterns across the cohort of healthy controls

were p,1.56102307 and p,1.3610292 for approach and

avoidance responses, respectively (Table 2; Table S3a,

Supporting Information File S1 Section V).

Robustness with Noise
Noise Simulation. Three noise distributions simulated in

hypothetical subjects did not co-localize with graphs of Hz,H{f g
and K+,H+f g (Figure 7a; Figure S9; data not shown for

K+,H+f g), and could be segregated statistically from these

graphs (Figure 7b).

Noise Injection/Perturbation. When variance-matched

Gaussian noise was injected into Hz,H{f g, affecting judgments

of preference intensity, the manifold shifted past the simulated

noise (Figure 7c). Depending on the noise distribution used, one

observed ROC-like curves [74] (Figure 7d), with orderly radial

distributions after noise injection. In contrast, perturbations in the

valence of decision-making shifted the distribution of data along

the Hz,H{f g manifold, revising polar as opposed to radial

distributions (Figure 7e), and minimally affecting the spectra of the

manifold’s radial distribution (Figure 7f). The Hz,H{f g manifold

thus appeared to be robust to noise perturbation/injection.

Trial-By-Trial Response Independence
In this study, the duration for viewing each picture was

determined by participants, and adjustments were not made by the

experimental software to keep each trial of constant temporal

length. To assure that each action was not having an effect on the

following actions (e.g., whereby a subject pressing on a beautiful

image for a long period of time, may press for a lesser period in a

following trial), an analysis of variance was performed for the effect

of preceding trial behavior (independent variable) on each

subsequent trial (dependent variable) across and within subjects.

Across subjects, trials of AF or BF faces before BF faces produced

no effect on the duration of BF keypressing [F(1,1435) = 0.19,

p = 0.67]. Trials of AF or BF faces before AF faces produced no

effect on the duration of AF keypressing [F(1,1487) = 0.02,

p = 0.89]. Trials of AM or BM faces before BM faces produced

no effect on the duration of BM trials [F(1,1452) = 2.5, p = 0.12],

and trials of AM or BM faces before AM faces produced no effect

on the duration of AM trials [F(1,1470) = 0.001, p = 0.98].

Table 1. Group Data for Value Function, Beauty Stimuli.

Stimulus
Category Variables Parameter Value

Beautiful Female LogK{,H{f g Pearson Correlation .911

Sig. (2-tailed) 1.127E-028

N 72

LogKz,Hzf g Pearson Correlation .762

Sig. (2-tailed) 7.115E-014

N 67

Average Female LogK{,H{f g Pearson Correlation .894

Sig. (2-tailed) 1.879E-027

N 76

LogKz,Hzf g Pearson Correlation .684

Sig. (2-tailed) 4.471E-008

N 50

Beautiful Male LogK{,H{f g Pearson Correlation .922

Sig. (2-tailed) 5.862E-031

N 73

LogKz,Hzf g Pearson Correlation .806

Sig. (2-tailed) 1.425E-014

N 59

Average Male LogK{,H{f g Pearson Correlation .811

Sig. (2-tailed) 1.83E-018

N 74

LogKz,Hzf g Pearson Correlation .644

Sig. (2-tailed) 5.562E-006

N 41

Linear fits for the group data from 77 subjects keypressing for beautiful and
average faces. Eight correlations were performed between log-transformed
mean intensity data (K) and the Shannon entropy of the keypress responses (H),
stratified by the stimulus condition (BF, AF, BM, AM faces) and valence of
keypress (approach, +, or avoidance 2). The number of subjects producing
keypress data for a stimulus condition by valance of response is listed for N.
Note that e-xxx denotes 102xxx for the p value.
doi:10.1371/journal.pone.0010613.t001
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Analysis within each individual subject (N = 77) was also

performed to assess the effect of preceding trial viewing on subsequent

trials. Within subject analysis was first performed for the number of

increasing keypresses and the number of decreasing keypresses, for

each of the four face categories (i.e., 8 comparisons per subject). Given

77 subjects or 616 comparisons, 29 comparisons (i.e., 4.70% of the

comparisons run) produced p,0.05. If one corrected for 8

comparisons per subject, requiring a p,0.00625, only 2 of 616

comparisons met this threshold. If one evaluated within subject effects

using total viewtime, only 4 comparisons were run per subject, or 308

total analyses across 77 subjects. With this analysis, 15 analyses

produced p,0.05, or 4.87% of analyses run. If one corrected for

multiple comparisons, requiring p,0.015, only 4 of 308 analyses met

this corrected threshold.

For all analyses of trial-by-trial interactions, the number of

significant effects found was less than what would be expected by

chance (i.e. ,5%). These results suggest that trial-by-trial viewing

was, to first approximation, independent of prior behavior.

Pattern Recurrence with Other Stimulus Sets
International Affective Picture System (IAPS). In a

second independent cohort of subjects, two distinct sets of

IAPS pictures were tested, with 9 experimental conditions (i.e.,

images of children/animals, disaster, drugs, food, nature,

objects, nudity, sports, violence). As with the ‘‘beauty’’

stimulus set, no coherent patterns were observed between

location measures of positive (approach) and negative

(avoidance) keypressing to IAPS stimuli. Structure (i.e., a

coherent pattern) was observed in graphs between the same

pattern variables for approach and avoidance keypressing used

with the beauty stimuli. Structure within the Hz,H{f g plot,

K+,H+f g plot, and K+,s+f g plot for the IAPS data had the

Figure 5. Value Function with Individual Data. In (a), data for the BF, AF, BM, AM faces in one individual is shown for K{,H{f g and Kz,Hzf g
plots, superimposed on the fits for the other individuals in the cohort. With the same log transformation of axes performed for group data, one
observes in each individual the signature of a power law. Here, the data for one individual is highlighted (b) above the graphs in lighter colors for the
rest of the subjects. It is important to note that the structure of these individual plots is consistent with the respective boundary envelopes for group
data. Interpreting rank order of experimental conditions on these K+,H+f g graphs depends on how one frames the measurement of relative
position, (c). If one frames the ordering of experimental conditions by either axis (dotted blue lines for x-axis, dotted red lines for y-axis), one observes
different relative orderings. A third ordering is possible if one frames the positioning relative to the power function fit for Kz,Hzf g (light green line),
which calibrates the pattern of responses across items in an experimental condition (H) to the mean intensity of responses (K).
doi:10.1371/journal.pone.0010613.g005
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same general mathematical formulation and signatures as that

observed with beauty stimuli (Figure 8a–d; Table S1,

Supporting Information File S1 Section V; group data for

trade-off plot not shown). These coherent patterns were also

clear for individual data (Figure 9a–d; Tables 4 & 5; Tables S2b

& S3b, Supporting Information File S1 Section V).

For K+,H+f g plots, linear fits to log-transformed individual

data revealed a mean fit of �rrz~0.9460.08 [mean6std], and

�rr{~0.9660.05 for approach and avoidance responses, for the

first IAPS experiment, and a mean fit of �rrz~0.9460.09, and

�rr{~0.9460.07 for approach and avoidance responses for the

second IAPS experiment, respectively (Tables 4 & 5; Table S2b,

Supporting Information File S1 Section V). Conjunction likeli-

hoods of observing these patterns across this cohort of healthy

controls were p,4.36102102 and p,5.06102113 for approach

and avoidance responses with the first IAPS experiment, and

p,2.8610278 and p,6.4610281 for approach and avoidance

responses with the second IAPS experiment, respectively. For both

the first and second IAPS experiments, Kz,Hzf g and K{,H{f g
graphs showed the asymmetry, completeness, and transitivity

relationships observed with the beauty data.

For the K+,s+f g plots, quadratic fitting to individual data

revealed a mean fit of �rrz~0.9560.05, and �rr{~0.9060.12 for

approach and avoidance responses with the first IAPS experiment,

and a mean fit of �rrz~0.9260.10, and �rr{~0.9160.11 for

approach and avoidance responses with the second IAPS

experiment, respectively (Tables 4 & 5; Table S3b, Supporting

Information File S1 Section V). Conjunction likelihoods of

observing these patterns across this cohort of healthy controls

were p,2.06610262 and p,2.87610231 for approach and

avoidance responses with the first IAPS experiment, and

p,8.72610235 and p,2.28610227 for approach and avoidance

responses with the second IAPS experiment, respectively.

Food Stimuli. In a third independent cohort of subjects,

subjects were tested twice with the same stimulus set, one week

apart, in the framework of hunger or satiation. Images for the

stimuli were of normal colored food, discolored food, prepared

food, and unprepared food ingredients, making a total of four

stimulus categories or experimental conditions. These four

conditions were assessed during states of hunger and satiation,

producing eight measures. As with the ‘‘beauty’’ stimulus set

and the IAPS stimulus sets, no coherent patterns (i.e., structures)

were observed between location measures of positive (approach)

and negative (avoidance) keypressing to food stimuli. Structure

was observed for graphs between the same pattern variables for

approach and avoidance keypressing used with the beauty and

the IAPS stimuli. Structure within the Hz,H{f g plot,

K+,H+f g plot, and K+,s+f g plot for the 8 food measures

had the same general mathematical formulation and signatures,

as that observed with beauty stimuli (Figure 10a–d). These

patterns were clear for both group and individual data.

Furthermore, there was a quantifiable differentiation of 18.13u
in polar angle of the trade-off plot for hunger and satiation-

based keypress responses (Figure 10a), quantifying the hedonic

deficit state.

For K+,H+f g plots, linear fitting to log-transformed individual

data revealed a mean fit of �rrz~0.9560.03 [mean6std], and

�rr{~0.9860.01 for approach and avoidance responses, respec-

tively (Table 6; Table S2b, Supporting Information File S1 Section

V). Conjunction likelihoods of observing these patterns across this

cohort of healthy controls were p,8.6610224 and p,6.2610228

for approach and avoidance responses, respectively. As with

experiments run with the beauty and IAPS stimuli, Kz,Hzf g and

K{,H{f g graphs from the experiments with food stimuli showed

asymmetry, completeness, and transitivity relationships.

For the K+,s+f g plots, quadratic fitting to individual data

revealed a mean fit of �rrz~0.9160.08, and �rr{~0.9160.06 for

approach and avoidance responses, respectively (Table 6; Table

S3b, Supporting Information File S1 Section V). Conjunction

likelihoods of observing these patterns across this cohort of healthy

controls were p,3.2610214 and p,5.761028 for approach and

avoidance responses, respectively.

Given the exact same stimuli were tested one week apart, this

experiment allowed a quantitative assessment of test-retest reliability.

Evaluation of the relative ordering of the four food picture conditions

across test sessions was performed, compared for consistency across

test sessions, and tabulated across subjects. Of the four food

conditions, 3.6760.52 of them were ordered similarly between test

sessions (i.e., hunger and satiation) across subjects.

Discussion

This study found patterns connecting approach and avoidance

behavior, which were recurrent across three distinct sets of stimuli

(i.e., beautiful and average faces, IAPS, and food stimuli) and three

groups of subjects. These patterns were specific to a small subset of

behavioral variables. These patterns included (a) trade-offs that

counterbalanced approach and avoidance behavior for three

Table 2. Individual Data for Value and Saturation Functions,
Beauty Stimuli.

Variables Parameter
Mean±SD for
Parameters

LogK{,H{f g r .936.24

r2 .926.18

p value of r .066.15

Conjunction p value of r 1.39e-162

LogKz,Hzf g r .926.15

r2 .866.21

p value of r .116.16

Conjunction p value of r 7.17e-068

K{,s{f g r .956.09

r2 .906.16

p value of r .326.26

Conjunction p value of r ,1.35e-092

Kz,szf g r .976.07

r2 .956.11

p value of r .156.20

Conjunction p value of r ,1.47e-307

Individual linear (logK, H) and quadratic (K, s) fits are listed for the subjects
keypressing for beautiful and average faces. Linear and quadratic correlations
were performed in each subject across the data relating to approach keypresses
for the BF, AF, BM, and AM stimuli, and across the data relating to avoidance
responses; subjects needed data from at least two of the experimental
conditions (BF, AF, BM, and AM) to be fitted. The mean and standard deviation
(SD) are listed for the correlation value, r, and for r2, and the likelihood value
associated with r. Out of 77 subjects, LogK{,H{f g data were available for 73
subjects, LogKz,Hzf g data for 46 subjects, K{,s{f g data for 65 subjects, and
Kz,szf g data for 50 subjects. A conjunction p value has also been computed

regarding the likelihood of that number of subjects all having linear
LogK+,H+f g or quadratic K+,s+f g fits. The coefficient of determination, r

squared, shows that 92% of the variation in LogK{,H{f g, 86% of the variation
in LogKz,Hzf g, 90% of the variation in K{,s{f g, and 95% of the variation in
Kz,szf g are explained by the model. Note that e-xxx denotes 102xxx.

doi:10.1371/journal.pone.0010613.t002
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pattern variables (i.e., SNR, CoV, and H), (b) value functions

calibrating keypress intensity (K) with each of the three pattern

variables, and (c) a limit (or saturation) function connecting choice

intensity (K) with its standard deviation (s) delineating limits to

approach and avoidance behavior (Figure S10; Supporting

Information File S1 Section II, Patterns 1–3).

Patterns (a)–(c) were found to exhibit relationships between each

other that were not always obvious to visual assessment, and

necessitated simulations. For instance, most mappings inward

from the Hz,H{f g trade-off reflected both low avoidance and

low approach on Kz,Hzf g and K{,H{f g plots. Other

mappings inward of the Hz,H{f g trade-off occurred for

individuals who accepted the default condition more than once.

Together, these observations suggested an interpretation that

mappings inward of the Hz,H{f g trade-off represented some

degree of indifference (Figure 3). Such an interpretation does not

relate to the fact there is a theoretical lower limit to the

computation of H+ due to the number of items in a stimulus set

(Pattern 4, Supporting Information File S1 Section II). In contrast

to mappings inward from the Hz,H{f g trade-off, many

mappings outward from the Hz,H{f g trade-off reflected both

high avoidance and high approach on Kz,Hzf g and K{,H{f g
plots. A similar mapping occurred for the noise simulations and for

individuals who responded with both approach and avoidance

keypresses for the same stimuli. Taken together, these observations

suggested an interpretation of variable amounts of psychological

conflict for mappings outside the Hz,H{f g trade-off (i.e., as

when you both love and hate something) (Figure 3). In addition to

relationships between patterns (a) and (b), relationships were also

observed between the K+,H+f g value functions (b) and

K+,s+f g limit (saturation) functions (c), in that steeper slopes

with K+,H+f g were associated with tighter saturation mappings.

These relationships across patterns (a)–(c) were relevant for

generalizing the relative orderings of experimental conditions (e.g.,

BF, AF, BM, AM) observed within the K+,H+f g plots. Across all

three experiments, the K+,H+f g value function was observed to

encode three critical features for logical constructions of preference

[73], namely asymmetry, completeness, and transitivity of

ordering across experimental conditions, arguing the K+,H+f g
plots reflect relative preferences for individuals toward the stimuli.

Given the K+,H+f g plot was shown to reflect features inherent in

the Hz,H{f g trade-off plot and the K+,s+f g limit plot, we will

Figure 6. Group and Individual Saturation Plots. In (a), mean keypress intensity (K) is plotted against standard deviation (s), for approach and
avoidance responses to the BF, AF, BM, AM faces, in 77 control subjects. A quadratic envelope readily fits the avoidance data K{,s{f g, and the left
side of the approach data distribution for Kz,szf g. Most telling are the individual data, where quadratic fits are also observed for each of the 77
individual data sets with the BF, AF, BM, AM data (b). A similar mathematical structure is observed in individual graphs with the BF, AF, BM, AM faces,
albeit with different fitting parameters for each of the 77 subjects. These patterns are similar to those reported for ensemble averages of mIPSCs for
synaptic GABAA channels by De Koninck & Mody [38].
doi:10.1371/journal.pone.0010613.g006
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use the phrase ‘‘relative preference’’ in subsequent text to refer to

the properties of asymmetry, completeness, and transitivity

observed across categories of stimuli in Hz,H{f g, K+,H+f g
and K+,s+f g plots. Inclusion of the ‘‘relative’’ adjective is

important given test-retest comparison with the food stimuli

showed that 3.67 of 4 food conditions were similarly ordered

across test sessions with altered framing (i.e., hunger vs. satiation)

and were not perfectly identical. Each pattern, and what it

potentially communicates about relative preference, will be

discussed in the paragraphs that follow.

Trade-off plots were observed with each of the three pattern

variables, yet the Hz,H{f g plot was the simplest in mathematical

terms. The Hz,H{f g plot suggests that relative preference

represents a balance between approach and avoidance choices,

where bundles of approach behaviors are balanced against bundles

of avoidance behaviors. Of the trade-off plots observed, the trade-

off between Hzð Þ and H{ð Þ could not be simulated or produced

from noise, was recurrent across all variables tested, and was

robust to noise injected into the judgment and the decision-making

components of the task. Shannon defined information as the

uncertainty related to making a choice [67], so the preference

trade-off plots between Hzð Þ and H{ð Þ show how uncertainties

regarding approach choices might be balanced against uncertain-

ties regarding avoidance choices.

Shannon’s insight has relevance for one of the value functions

observed (i.e., K+,H+f g vs. K+,SNR+f g or K+,CoV+f g), in

that the K+,H+f g plot appears to relate preference intensity to

the uncertainty associated with preference choices. These

‘intensity-uncertainty’ (i.e., K+,H+f g) envelopes for group data

(Figure 4a,c) and functions for individual graphs (Figure 5a,b)

showed a relationship between approach and avoidance graphs

that was similar to the positive and negative components of the

value function for prospect theory (Figure 4b). The slopes for

avoidance responses were steeper than the slopes for approach,

which in prospect theory (Figure 4b) is interpreted as ‘‘loss

aversion’’ [7,12]. In prospect theory, the value function graphs a

relationship between (i) the value of gains and losses in the larger

economic system and (ii) subjective value or utility defined by

individuals, and thus depends on a global or universal framework.

In contrast, the intensity-uncertainty relationship shows a

predictable pattern between two measurements within the same

individual. Personal utility, the dependent variable in the value

function of prospect theory [13], has been hypothesized to contain

a probabilistic measure of choice [75], so that preference

magnitude is connected to an estimate of the uncertainty

associated with that preference. The intensity-uncertainty rela-

tionship observed in these experiments supports such a hypothesis,

and places this calibration of value within a ‘‘relative’’ construct

(please also see Figure 5c).

The intensity-uncertainty envelopes for group data and

functions within individuals appeared consistent with power law

scaling, producing linear correlations that were recurrent and

strong. In such a framework, the plots of individual data also

related the ratios of measures, which resemble the Matching Law

(Figure S8). Matching describes the relative apportionment of

value between reinforcers [41,76]. Originally conceived as a linear

relationship between ratios [39,42], it has been observed to follow

a power function in some cases [40]. The current data suggest that

apportionment of uncertainty related to preferences (i.e., the ratio

of uncertainty toward discrete experimental conditions such as BF

and AM faces), was quantitatively related to the relative

apportionment of preference intensity across categories of

experimental stimuli. Such an interpretation would not apply to

value functions that calibrated SNR or CoV to the intensity (K) of

relative preference. Such an interpretation would also not apply to

the strictly logarithmic interpretation of the intensity-uncertainty

patterns (see Figure 4a), which ignored the presence of a logarithm

in computing the Shannon entropy.

Although the K+,s+f g (i.e., intensity-variance) graph can be

considered as derived from the intensity-uncertainty graph, the

saturation relationship observed has its own implications. Humans

do not act like molecules for which increased temperature

(analogous to K) leads to increased variance s+f g. The saturation

observed in the intensity-variance graph (Figures 6a,b) can be

analogized to the issue of easy versus hard decision-making

described by Koechlin and Hyafil [77]. Namely, decisions

involving low or high preference magnitude will be easy and

therefore have low variance associated with them. Goal-objects

with intermediate magnitudes of preference will have high

variance estimates, indicating potentially hard decisions.

These considerations regarding the K+,s+f g graph and

decision-making may have relevance for current discussions in

neuroeconomics regarding risk assessment [78]. A number of

neuroimaging studies have reported neural evidence for a mean-

variance approach to risk assessment [79–84], whereas others have

provided neural evidence for an expected utility approach [30,85–

88]. The K+,s+f g graph observed in the current study appears to

be consistent with the mean-variance approach to the assessment

of risky gambles [89,90] within individuals or across groups, where

risk is described by the outcome variance (i.e., the standard

deviation, s). By the mean-variance approach, valuation V is

computed by a difference between the mean transaction outcome

and variance estimate: V~K{ds, where d is the penalty imposed

for risk, which increases with increasing risk aversion [78]. As

illustrated in Figure S11, the K+,s+f g graph encodes low values

of K as s increases to a maximum, and higher values of K as s
diminishes back to baseline. With K increasing as s quadratically

decreases, valuation V points to choices that are more likely to be

preferred by the individual.

At the same time that the K+,s+f g graph appears to support

use of a mean-variance approach to decisions under conditions of

risk, the K+,H+f g graph could be argued to support use of the

expected utility approach [12,91,92]. For expected utility, risk

Table 3. Group Data for Saturation Function, Beauty Stimuli
by Stimulus Category.

Stimulus Category Variables Parameter Value

r Sig.

Beautiful Female K{,s{f g .782 ,161025

Kz,szf g .826 ,161025

Average Female K{,s{f g .566 ,161025

Kz,szf g .860 ,161025

Beautiful Male K{,s{f g .660 ,161025

Kz,szf g .858 ,161025

Average Male K{,s{f g .616 ,161025

Kz,szf g .872 ,161025

Quadratic fits for the group data from 77 subjects keypressing for beautiful and
average faces. Eight correlations were performed between mean intensity data
(K) and the standard deviation of the responses (sigma), stratified by the
stimulus condition (BF, AF, BM, AM faces) and valence of keypress (approach, +,
or avoidance 2). The degrees of freedom for each quadratic correlation were
df1 = 2, and df2 = 74. Results are listed for r and the related likelihood (p value or
significance).
doi:10.1371/journal.pone.0010613.t003
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aversion is thought to be represented by nonlinearity in the

valuation of outcome magnitudes, as when a utility function U of

an outcome K is concave, such as for prospect theory (Figure 4b).

A similar concavity in the Kz,Hzf g graph and convexity in the

K{,H{f g graph means that the incremental change in H+/H2

is less for each change in K+ or K2. Such an analogy necessitates

further research to determine to what extent the pattern of

outcomes for categories of goal-objects (e.g., patterns in subplots

#1–#6 in Figure 3) might serve as a representation of a utility

function. Until such work is done, we can only state that the

K+,H+f g graph displays a feature akin to that of ‘‘loss aversion’’

in prospect theory. If future work can connect the K+,H+f g
graphs with expected utility approaches to risk assessment, and the

K+,s+f g graphs with the mean-variance approach [78], such

findings would provide indirect support for the dual-system theory

of cognition proposed by Evans [93]. Dual-system theory, when

applied to choice under uncertainty, has analogies to reflexive

versus reflective learning proposed by Daw and colleagues [94]

Figure 7. Noise Simulation and Injection for Hzz,H{{f g. (a) Simulation results for variance-matched Gaussian noise (orange dots) do not mimic
data from 77 controls over 4 experimental conditions (blue) (also see Figure S9). These simulation data represent alterations in the length of exposure
to stimuli, and thus relate to the psychological process of judgment regarding how long to keypress for a stimulus. The minimal overlap between real
data and simulated noise is underscored by statistical parametric mapping (i.e., bucket statistics (b)). When the Gaussian noise is injected into the real
data, a new manifold is produced (orange dots), which is shifted past the manifold for the Gaussian noise (c). Depending on the noise distributions
used for injection into experimental data, one can observe a range of central tendencies for the manifolds resulting from data plus noise, which share
features with receiver operating characteristic (ROC) curves (i)–(iv) in (d). The cartoon in (d) can also be compared to Figure 3, where (i) represents the
theoretical internal boundary for the trade-off manifold when subjects either keypress to approach or avoid; the central tendency of the experimental
data would be (ii), while the outer border with Gaussian noise data would be (iii), and the new manifold due to injected noise would be (iv). The Pflip
analysis shown in (e) and (f) allows one to assess the effects of inserting noise into the decision-making process. It specifically alters the valence or
polarity of the decision-making shown by experimental subjects for their existing trace profiles in a parametric fashion (i.e., flipping 10%, 20%, 30%,
40%, 50%, etc. of the decisions from approach to avoidance, and vice versa). The graphical effect of this parametric flipping of the valence of
decision-making can then be assessed by overlaying graphical representations of existing subject data with representations altered by this decision-
making perturbation. In the preference trade-off graph (e), this flipping leads to data convergence toward the midpoint of the theoretical central
tendency of the Hz,H{f g manifold as one goes from 0% flipping to 50% flipping. With 60% to 100% flipping one observes the manifold being
stretched back out along its central tendency (i.e., the black line; data not shown). As one goes from 0% to 100% flipping, one effectively reverses the
manifold so that it is rotated along the radius line of 45 degrees. In (f), we see that the radial spectra of the Pflip analysis are superimposed and similar
across flipping perturbations. The Hz,H{f g manifold is thus robust to perturbation of the decision-making.
doi:10.1371/journal.pone.0010613.g007
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and heuristic versus logical problem solving proposed by Kahne-

man and Frederick [95].

The saturation data produced strong and consistent quadratic fits

across all three experiments, even when there was a baseline shift in

hedonic state as with the third experimental cohort. The intensity-

variance graph appeared to define limits to both the intensity of

preference and the range of intensities that decisions will span for

individuals and groups. It should, thus, facilitate the quantification of

state-based effects or adaptation in valuation [43,45]. Indeed, each of

the three functions in the third cohort of subjects showed an increase

in positive preference bias during hunger relative to satiation. This

can be quantified by a shift of the radial angle in the trade-off plot

between the center-of-mass of data collected during the satiated

condition and data collected during the hunger condition (Figure 10a).

A related shift occurs along individual saturation graphs and value

functions, suggesting they code alliesthesia effects.

Together, the saturation and trade-off graphs communicate

limits to the range and extent of approach/avoidance, and the

balance between patterns of approach and avoidance behaviors.

Limitations to behavior, and the balance between distinct

behaviors, are important components of what might be considered

self-regulation or control of behavioral choices, allowing individ-

uals to modify their behavior using information about changes in

internal states and in the environment [96,97]. Traditionally, self-

regulation has been primarily framed by behavioral inhibition.

Hence, research has focused on the capacity for inhibitory control

to modify unconscious tendencies [98–101], which appear to be

important for self-determined behavior [102,103]. Work on

inhibitory control of decision-making appears to indicate that it

might increase in efficacy with recurrent use [104]. The current

results contribute to this literature by identifying markers for when

to potentially apply inhibition. They also suggest a variable extent

of inhibition (i.e., not just a complete ‘‘no’’) could be modulated by

where the category of goal-object is mapped along the K+,s+f g
saturation plot and Hz,H{f g trade-off. Such considerations

make analogies to control-theoretic frameworks [105–107] for

how the variability of behavior is maintained in a narrow range,

yet allowed to be tolerant of significant environmental perturba-

tions [108,109]. Although reminiscent of opponent process theory

[110,111], which has analogies to opponent control of color vision

[112], more work is needed to evaluate how a dynamic system

might target the fitting parameters of the K+,s+f g and

Hz,H{f g plots, or mappings on them for maintaining behavior

in an optimized range.

Figure 8. Replication with IAPS Stimuli. With transformation of the axes in (a) & (b), both the K{,H{f g data (red linear fits) and the Kz,Hzf g
data (green linear fits) show power law scaling for the individuals in the first and second experiments with the IAPS stimuli. Saturation plots for the
same individuals are shown in (c) & (d), where quadratic fits for K{,s{f g are shown in red, and for Kz,szf g are shown in green.
doi:10.1371/journal.pone.0010613.g008
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All three patterns, the preference tradeoff, preference value

function, and preference saturation function, suggested scaling

between group and individual data in that they had consistent

mathematical formulations across groups (as central tendencies of

manifolds or boundary envelopes) and individuals (as fitted functions).

In general, connections between one layer of organization and

another specify the information that one has about the other

[113,114]. Statistically framed connections between scales, or

graphical representations preserved across scales, directly reflect the

degree to which the principles regulating organization at one scale are

preserved at another [115–117]. This presumptive scaling between

individual and group data point to a potential mechanism by which

individual choice behavior in a microeconomic framework might

aggregate as group behavior in a macroeconomic framework [118].

Such an interpretation is tempered by the common observation in

biology [119], mathematics [120] and economics [121] of emergent

behavior across layers of organization with implications that cannot

readily be connected to initial conditions. Further study with a high

number of experimental conditions and a very large cohort, to

optimally fit individual data, would facilitate testing whether the

scaling observed here between group and individual graphs can be

extrapolated, as done in other studies [122], to interpret the

interaction of individual preferences with the behavior of groups/

markets.

Parallel research in neuroscience argues for the relevance of

these findings at both the group and individual scales of

measurement. Keypress intensity measures (i.e., K) have been

associated (a) with reward circuitry ‘‘activation’’ [31,33,35–37,50–

52] by functional magnetic resonance imaging (fMRI) [14], and (b)

with both reward circuitry activation and genetic polymorphisms

connected to CREB1 [18] and BDNF [20]. Patterns similar to the

K+,s+f g saturation plots have been produced as ‘‘variance-

mean’’ graphs for noise analysis in electrophysiology [38], raising

the prospect that the same patterns might be observed during

fMRI of preference-based judgment and decision-making given

the current status of knowledge regarding the basis of the blood

oxygen level dependent signal [123; reviewed in 29]. Altogether,

these findings argue for the ‘‘biological plausibility’’ [124,125] of a

number of the K+,H+,s+f g findings. Given their association

with brain circuitry and genetic measures, these findings raise the

question of their relevance for phenotyping psychiatric illnesses

[47–49]. Recent work has shown that keypress intensity (K) for the

four beauty face conditions was reduced in cocaine dependent

subjects relative to controls [19]. The addicts also showed a

restricted range in their keypress responses, and this behavior was

significantly associated with reduced cortical thickness in the

dorsolateral prefrontal cortex of these addicts. The restricted range

in behavior is one representation of the reduced repertoire of

Figure 9. Individual Data Set from IAPS Experiment. The nine categories of stimuli used from the IAPS stimuli for these experiments are color
coded, and displayed for one example subject. This subject’s Hz,H{f g plot is shown in (a). Their value function, K{,H{f g and Kz,Hzf g, is shown
in (b), and with log-transformation of K in (c). Note the tightness of the fitted functions in (b) and (c). Tight quadratic fitting is further noted for the
saturation function in (d), for both K{,s{f g and Kz,szf g. Details regarding these fits across the entire cohort of subjects undergoing testing with
the IAPS stimuli, can be found in Tables 4 and 5. Note the similar sets of behavioral patterns in this figure to those shown in Figures 2–6.
doi:10.1371/journal.pone.0010613.g009
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behavior that is a defining feature of addiction in general. These

findings of Makris and colleagues [19] suggest the need for further

work to assess if alterations in the relationships between

K+,H+,s+f g encode other quantitative features of addiction or

might represent phenotypes for other psychiatric illnesses [47,48].

Given the prospect of such applications, it is also important to

consider limitations to the current work in the form of further

studies needed to determine how general the findings might be.

For instance, the K+,H+,s+f g patterns appear to reflect

alliesthesia effects between states of hunger and satiation, but

analysis with a larger cohort is needed to quantify the consistency

of such effects, and to connect them to established clinical

measures of appetitive motivation [126]. Further investigation of

how experimental framing might alter the ordering of items

across the K+,H+,s+f g patterns, as might be expected, for

instance, with sleep deprivation on carbohydrate vs. protein

appetite, will be helpful to quantify the ‘‘relative’’ character of

preference. The K+,H+,s+f g patterns were observed with a

keypress procedure so it is not yet known if these patterns will be

observed using data collected by other experimental methods

such as ratings. Also, the length of trials was not fixed, raising the

question of whether or not K+,H+,s+f g patterns would be

observed if they were kept constant. The current paradigm did

not show consistent dependencies between trials across subjects or

within subject, but this does not rule out nonlinear effects being

observed with subsequent dynamic analyses. The current

paradigm used intrinsic as opposed to extrinsic goal-objects

[22,23], raising the question of whether these patterns to

approach and avoidance apply to stimuli that actually meliorate

a deficit state. The relevance of this last concern might be

mitigated if genetic polymorphsims can be shown to directly

predict variance in features of the trade-off plot, K+,H+f g plot,

or K+,s+f g plot, or if variance in neuroimaging signals could do

the same. The K+,H+,s+f g patterns were quite consistent

across experiments, yet more work is needed to assess if they are

mathematically closed under certain operations and thus form a

function space, or might be supplemented by other relationships

to form a function space. Lastly, the observation of important

features from prospect theory and the matching law within the

K+,H+f g plot raises the question of a deeper relationship

between the K+,H+,s+f g patterns, and validated constructs of

reward-based judgment and decision-making. Can the

K+,H+,s+f g patterns be derived from prospect theory and

the matching law, or vice versa? Pending studies of the issues

raised above, the findings reported herein must be considered

specific to the experimental paradigm used.

In summary, this study found recurrent, robust, and scalable

patterns to approach and avoidance behavior. The law-like

graphical patterns observed in this study are consistent with

salient features from a number of established constructs regarding

reward-based choice behavior. The patterns evidence the feature

Table 4. Individual Data for Value and Saturation Functions,
IAPS, First Experiment.

Variables Parameter
Mean±SD for
Parameters

LogK{,H{f g r .966.05

r2 .936.09

p value of r 3610236.01

Conjunction p value of r 5.03e-113

LogKz,Hzf g r .946.08

r2 .906.13

p value of r .026.08

Conjunction p value of r ,4.32e-102

K{,s{f g r .906.12

r2 .826.18

p value of r .256.23

Conjunction p value of r 2.87e-031

Kz,szf g r .956.05

r2 .906.09

p value of r .176.26

Conjunction p value of r ,2.06e-062

Individual linear (logK, H) and quadratic (K, s) fits are listed for the subjects
keypressing for IAPS stimuli, in the first IAPS experiment. Linear and quadratic
correlations were performed in each subject across the data relating to
approach keypresses for the nine categories of IAPS stimuli, and across the data
relating to avoidance responses; subjects needed data from at least two of the
experimental conditions (children/animals, disaster, drugs, food, nature, objects,
nudity, sports, violence) to be fitted. The mean and standard deviation (SD) are
listed for the correlation value, r, and for r2, and the likelihood (p value)
associated with r. Out of 33 subjects in the first experiment, LogK{,H{f g data
were available for 26 subjects, LogKz,Hzf g data for 25 subjects, K{,s{f g
data for 26 subjects, and Kz,szf g data for 25 subjects. A conjunction p value
has also been computed regarding the likelihood of that number of subjects all
having linear LogK+,H+f g or quadratic K+,s+f g fits. The coefficient of
determination, r squared, shows that 93% of the variation in LogK{,H{f g,
90% of the variation in LogKz,Hzf g, 82% of the variation in K{,s{f g, and
90% of the variation in Kz,szf g are explained by the model. Note that e-xxx
denotes 102xxx.
doi:10.1371/journal.pone.0010613.t004

Table 5. Individual Data for Value and Saturation Functions,
IAPS, Second Experiment.

Variables Parameters
Mean±SD for
Parameters

LogK{,H{f g r .946.07

r2 .896.13

p value of r .0076.01

Conjunction p value of r 6.40e-081

LogKz,Hzf g r .946.09

r2 .886.15

p value of r .0076.01

Conjunction p value of r 2.82e-078

K{,s{f g r .916.11

r2 .856.17

p value of r .236.25

Conjunction p value of r 2.28e-027

Kz,szf g r .926.10

r2 .866.17

p value of r .126.22

Conjunction p value of r 8.72e-035

Individual linear (logK, H) and quadratic (K, s) fits are listed for the subjects
keypressing for IAPS stimuli, in the second IAPS experiment. Please see legend
for Table 4 for definitions. Out of 31 subjects in the second experiment,
LogK{,H{f g data were available for 23 subjects, LogKz,Hzf g data for 21

subjects, K{,s{f g data for 23 subjects, and Kz,szf g data for 21 subjects. The
coefficient of determination, r squared, shows that 89% of the variation in
LogK{,H{f g, 88% of the variation in LogKz,Hzf g, 85% of the variation in
K{,s{f g, and 86% of the variation in Kz,szf g are explained by the model.

Note that e-xxx denotes 102xxx.
doi:10.1371/journal.pone.0010613.t005
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of loss aversion described by prospect theory [7,12], the

allocation or apportionment of preference across goal-objects

described by the Matching Law [40,76], and the limits/

behavioral adaptation described by alliesthesia [43,45]. The

trade-off and value function graphs point to the idea of

information processing as the discrimination among possibilities,

in alignment with Shannon’s initial definition of information [67],

and modern frameworks for decision theory [1,75]. At the same

time, the trade-off and saturation graphs are consistent with the

idea of dual processes operating to maintain the variability of

behavioral output in a narrow range [108,109]. The saturation

and value function graphs raise analogies with current discussions

in neuroeconomics regarding mean-variance versus expected

utility approaches to assessment of risk [78]; further work is

needed to assess whether the current findings contribute to such

neuroeconomic discussions.

Although we focused on one set of graphical representations of the

data to facilitate their integration with established findings in reward/

aversion psychology, at least two other formulations are possible,

albeit with more complicated parameterization (Figure S10). There

may well be other formulations possible, with variable relevance to

topics in the psychology of reward/aversion processing and choice

behavior. How these alternate formulations scale to circuitry function

is also an open question. At this time, the mean intensity of keypress

behavior (K) has been associated with reward circuitry activity

[14,18], cortical thickness measures [19], and foci of genetic

variability [18,20], while variance-mean plots in electrophysiology

[38] approximate the saturation plots we see with keypress behavior.

Figure 10. Replication with Food Stimuli. Four types of food stimuli were shown to subjects in hungry and satiated states. The order in which
each state occurred was counterbalanced across subjects and separated by approximately one week. These stimuli included pictures of normal
colored food, discolored food, prepared food and unprepared food. For the trade-off plot in (a), the center of mass of Hz,H{f g across these four
stimuli differed between the hungry and satiated states, with an angular offset of 58.92u during the hunger condition, and 40.79u during the satiated
condition. This difference of 18.13u quantifies the alliesthesia effect, by which homeostatic state can alter the baseline valuation of goal-objects. For
these same subjects, the value function for K+,H+f g is shown in (b), with the signature of a power law in (c), and approach responses in green and
avoidance responses in red. Lastly, the saturation plots for these same subjects are shown in (d), with quadratic fitting of approach responses in
green and avoidance responses in red. Color, shape, and open/full coding of the four stimulus types, during hunger or satiation, for approach and
avoidance responses, are shown with the same codes in (b)–(d). Details regarding fitting across the cohort of subjects undergoing testing with the
food stimuli, can be found in Table 6. Note the similar sets of behavioral patterns in this figure to those shown in Figures 2–6, 8, and 9.
doi:10.1371/journal.pone.0010613.g010
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These findings with (K) and (s) variables underline the biological

plausibility of the patterns described herein [124]. The apparent

scaling of all K+,H+,s+f g patterns between group and individual

data support the neuroeconomic perspective [10,11,33–37,124] of

combining engineering [64,127], systems modeling [60], and

neuroscience [128–130] approaches to the study of choice behavior,

and may provide a route for quantitative phenotyping of psychiatric

illness [47–49]. Given the simplicity of the approach used to evaluate

these K+,H+,s+f g patterns, there are likely to be implications for

its use within a clinical toolbox of psychological assays, and for

marketing or financial applications such as agent-based macroeco-

nomic modeling.

Materials and Methods

Ethics Statement
All subjects signed written informed consent prior to participa-

tion, for this study approved by the Institutional Review Board of

Massachusetts General Hospital (i.e., Partners Human Research

Committee, Partners Healthcare), and all experiments were

conducted in accordance with the principles of the Declaration

of Helsinki.

Subjects
For the first and second cohorts, subjects were recruited by

advertisement, and underwent a clinical interview with a doctoral-

level clinician that included the Structured Clinical Interview for

Diagnosis – Axis I (SCID-I/P) [131]. Race was determined by

individual self-identification on a standardized form [132], and

handedness by the Edinburgh Handedness Inventory [133].

Eligible subjects were age 18–55, without any current or lifetime

DSM-IV Axis I disorder or major medical illness known to

influence brain structure or function, including neurologic disease,

HIV, and hepatitis C. Female subjects were studied during their

mid-follicular phase based upon self-reported menstrual history

with confirmation at the time of study based on an absence of

progesterone surge using a urine assay. All subjects were studied at

normal or corrected normal vision.

For the first cohort of subjects undergoing keypress procedures

with the beauty stimuli, seventy-seven unrelated healthy subjects

were recruited as participants in a multimodal imaging and

genetics project, the Phenotype Genotype Project in Addiction

and Mood Disorder at Massachusetts General Hospital (MGH

PGP; http://pgp.mgh.harvard.edu). Subjects were adults, mean

age 33.0 years (SD 11.1), mean educational history of 15.6 years

(2.6), 40/77 (52%) female, and 69/77 (90%) right-handed. Ten

were African American, 3 American Indian, 9 Asian, and 55

Caucasian.

For the second cohort of subjects undergoing keypress

procedures with the International Affective Picture System (IAPS)

stimuli [61,62], thirty-three unrelated healthy subjects were

recruited. Subjects were recruited for two experiments with the

IAPS data, of which thirty-one subjects completed both experi-

ments. For the thirty-three individuals completing the first

experiment, subjects were adults, mean age 31.8 (SD 13.6), mean

years of education 16.2 (62.7 years), 21/33 (63%) females, 29/33

(87%) right handed. Four were African American, 4 Asian, and 25

Caucasian. For the thirty-one individuals completing the second

experiment, subjects were adults, mean age 30.5 years (SD 13.1),

mean years of education 16.2 (62.7 years), 19/31 (61%) females,

29/31 (93%) right handed. Four were African American, 4 Asian,

and 23 Caucasian.

For the third cohort of subjects undergoing keypress procedures

with the food stimuli, six subjects were randomly selected from a

larger cohort of fourteen subjects in an orphaned data set. This

data set was collected 10 years earlier with the same keypress

procedures used with the first two cohorts, but using images of

food as stimuli; it was presented as a poster to the North American

Association for the Study of Obesity (NAASO), October 2000, and

never published. The fourteen subjects were right-handed, non-

vegetarian, and free of psychiatric diagnoses (including eating

disorders), neurological disease, and illicit substance dependence.

Subjects were male, ages 22–40 (M = 27.8, SD = 6.1), with body-

mass indices between 20.6 and 29.3 (M = 24.8, SD = 2.1). Body

Mass Index (BMI) was computed as the ratio between an

individual’s weight and the square of his/her height (kg/m2).

The normal range of BMI for adults is 18–25 kg/m2. Overweight

is defined as a BMI between 25 and 30, and obesity is defined as a

BMI greater than 30 [134]. No subject reported engaging in

dietary restraint in order to lose weight, or smoking more than one

pack of cigarettes per day. To verify that subjects exhibited normal

eating behavior, we administered the Three Factor Eating

Questionnaire [135], which measures three dimensions of human

eating behavior: cognitive restraint, disinhibition, and perceived

hunger. Subjects’ mean scores (Restraint, mean 6.5, SD 4.6;

Disinhibition, mean 5.9, SD 3.3; Hunger, mean 5.4, SD 3.1) were

within the published normal ranges.

Keypress and Other Experimental Procedures
Keypress Task. The task quantified the amount of work in

units of keypress [25,28,136] that subjects traded for viewing time

of pictures. This task used procedures and resistive function

resembling those reported previously with the beauty stimuli

[14,16,19] and with angry and other facial expressions [15,18,20],

Table 6. Individual Data for Value and Saturation Functions,
Food Stimuli.

Variables Parameters
Mean±SD for
Parameters

LogK{,H{f g r .986.01

r2 .966.03

p value of r 1610246261024

Conjunction p value of r 6.23e-028

LogKz,Hzf g r .956.03

r2 .916.06

p value of r 6610246961024

Conjunction p value of r 8.64e-024

K{,s{f g r .916.06

r2 .826.11

p value of r .166.19

Conjunction p value of r 5.72e-008

Kz,szf g r .916.08

r2 .836.13

p value of r .066.08

Conjunction p value of r 3.15e-014

Individual linear (logK, H) and quadratic (K, s) fits are listed for the subjects
keypressing for food stimuli (Normal, Discolored, Prepared, and Unprepared),
during states of hunger and satiation. Please see Table 4 legend for definitions.
Data represents the output of six subjects. The coefficient of determination, r
squared, shows that 96% of the variation in LogK{,H{f g, 91% of the variation
in LogKz,Hzf g, 82% of the variation in K{,s{f g, and 83% of the variation in
Kz,szf g are explained by the model. Note that e-xxx denotes 102xxx.

doi:10.1371/journal.pone.0010613.t006
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with the keypress procedures implemented using MatLab scripts

on a PC computer.

For this procedure, categories of pictures with N pictures for

each category were considered to be items in an economic bag of

goods (e.g., four categories of pictures for the beauty stimulus set,

with 20 identities per category). The objective was to determine,

for each experimental subject, their relative approach/avoidance

behavior toward the items in this bag of goods compared to the

default position. Subjects were told that they would be exposed to

a series of pictures that if not interfered with (i.e. no keypresses

were made), would change every eight seconds (the default

valuation of 6 seconds+2 second decision block; Figure 1). How-

ever, if they wanted a picture to disappear faster, they could

alternate pressing the one set of keys (#3 and #4 on the button

box), whereas if they wanted a picture to stay longer on the screen,

they could alternate pressing other keys (#1 and #2 on the button

box). Subjects thus had a choice of four potential behaviors: they

could (a) approach (positive keypress), (b) avoid (negative keypress),

(c) approach and avoid if they overshot or undershot a target view

time, or changed their mind, or (d) do nothing about the different

categories of stimuli. Keypress results reflecting viewing time for

(a)–(d) were recorded as raster plots for each subject (Figure 1b).

These alternatives suggest this effort-related keypress procedure

(Figure 1) reflects (i) decision-making regarding the valence of

behavior (i.e., approach, avoidance, or no action) and (ii) judgment

regarding the amount of value that each item or face picture had

relative to the default position of 6 seconds [15,25,29]. A ‘‘slider’’

was displayed left of each picture to indicate total viewing time.

Subjects were informed that the task would last approximately

20 minutes, and that this length was independent of any

behavioral responses to the task, as was their overall payment.

The dependent measure of interest was the amount of work in

units of keypress that subjects exerted in response to the different

categories of stimuli (i.e., the units in keypress that the subjects

traded for viewing time); work and effort exerted for experiments

has become an important focus of research in effort-based

decision-making over the past decade [25–28,136].

To model this task, we assumed x1,x2,x3, � � � � � � :xnf g~S,

where S defined a set of items in a viewable itemset. The

relationship of keypress effort to viewing time received, followed

previous instantiations [14,15] and was defined by the following

resistive function: tn~
PN

n~1

tn{1z A{tn{1ð Þ=J, where tn equaled

the new time achieved via keypressing, tn{1 equaled the time

prior to a keypress, A equaled Ø seconds for keypresses

reducing the viewing time, and 14 seconds for keypresses

increasing the viewing time, and J was a scaling constant set to

40. The summary of biases toward S was defined by US where

US~
PS
s~0

aStS
N and a~f A,J,Nð Þ was potentially unique for each

item in S. If the individual did nothing, then the default

was: US~
PS
s~0

aStS
N = 6 seconds680 items = 480 seconds. With

the transactions of keypress effort for changes in time, US defined

for each individual a set of deviations from the default position:

D6{tN DS .

Picture Stimuli for Keypress Experiments. For the

three cohorts of subjects, three distinct stimulus sets were used.

The first stimulus set included beautiful (models) and average (non-

models) faces of both genders [i.e., four experimental conditions:

beautiful female (BF), average female (AF), beautiful male (BM),

and average male (AM); see Figure S1] [14,16,17,19,29]. Each of

these experimental conditions consisted of either 20 male or 20

female faces. As initially developed (see acknowledgments and

[14,29]), two sets of 40 non-famous human faces were selected

from print media and digitized at 600 dpi in 8-bit grayscale,

spatially downsampled, and cropped to fit in an oval ‘‘window’’

sized 310–350 pixels wide by 470 pixels high using Photoshop 4.0

software (Adobe Systems).

The second stimulus set used images from the International

Affective Picture System (IAPS) [61,62], a well-validated stimulus

set, supplemented by pictures from the Internet for only one of the

nine categories of pictures (Figure S2). Pictures fell into 9 distinct

categories (objects, nudes/sex, sports, disasters, food, kids/pets,

nature, violence/war, and drug paraphernalia), with nine pictures

per category (N = 81 items in total). For the first IAPS experiment,

5 of 9 images of drug paraphernalia came from the Internet (5 of

81 total), which were color-corrected, and reformatted for monitor

viewing, with the maximum size of 10246768 pixels. For the

second experiment, 8 of 9 images of drug paraphernalia came

from the Internet (8 of 81 total). These two stimulus sets of 81

pictures apiece have been referred to as ‘‘IAPS’’ throughout the

text.

The third stimulus set used 222 photograph-quality digital

pictures of food retrieved from the Internet, which were

approximately 250 pixels wide and high (on average), correspond-

ing to an area of approximately 10 degrees of visual angle on each

side when viewed at a distance of 50 cm. The pictures fell into four

distinct categories: (1) ‘‘Normal,’’ or normally-colored food items

[68 pictures], (2) ‘‘Discolored,’’ or discolored food items [68

pictures], (3) ‘‘Prepared,’’ or prepared food items [43 pictures],

and (4) ‘‘Unprepared,’’ or unprepared food ingredients [43

pictures] (Figure S3). Colors in Normal pictures were altered by

PhotoShop 5.5 software (Adobe Systems) to create the Discolored

picture category on an iMac DV computer [hues shifted for reds

by +75, and for yellows by 2110], so that this category no longer

appeared natural. Prepared and Unprepared pictures were

generally matched across categories of food items for the details

of the food items presented, so that one presented the unprepared

ingredients for a food item, and the other the prepared equivalent

(e.g., a picture of a cooked steak was matched with a picture of a

raw beef).

Other Design Procedures for Keypressing Experiments.

For the beauty stimuli, the experiment was divided into two

‘‘runs’’, lasting approximately 10–11 minutes apiece. The

order of stimuli was randomized and reordered for each

subject.

For the IAPS stimuli, each experiment was also divided into two

runs lasting approximately 11 minutes apiece. Given 9 categories

of images, and 9 pictures per category, pictures were presented in

a counterbalanced order such that no condition followed or

preceded another more than once. This produced a sequence of

41 trials for the first run, and 40 plus one trial for the second run,

with the extra trial in the second run being equivalent to the last

trial in the first run, placed at the beginning to maintain

counterbalancing across all conditions.

For the experiments with food stimuli, each subject participated

in two experimental sessions separated by 3–10 days, one in a

‘‘Hungry’’ state and the other in a ‘‘Satiated’’ state. The order was

counterbalanced so that half of the subjects were in the Hungry

state before the Satiated state, and vice-versa for the other half of

the subjects. Although all subjects participated in both conditions,

they were told in advance that their condition would be selected at

random for each session, and that their condition for the second

session would be independent of their condition during the first

session. Each subject came to each session between 11:00 AM and

1:00 PM, having been instructed to not eat after 12:00 midnight

the night before, and not at all on that day. Subjects were allowed
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to drink water, as well as any caffeinated beverages they would

normally drink, but no other fluids. Subjects were told that they

would receive a meal as part of each session. Subjects in the

Hungry condition filled out the pre-session questionnaire,

completed the experimental task, and were then given a meal of

their choice from the hospital cafeteria; subjects in the Satiated

condition were first given the meal, then filled out the pre-session

questionnaire and finally completed the experiment.

Analyses
Our general approach adapted the iterative modeling of Banks

and Tran [60] to consider engineering perspectives on lawfulness

[127], specifically (i) mathematical or algorithmic formulation of

patterns within data, (ii) recurrency of observed patterns across

discrete types of stimuli or experiments, (iii) robustness of patterns

to noise, and (iv) potential scalability of observed patterns. We

started with a large dataset (i.e., group data) that met stringent

quality assurance criteria and interrogated it for graphical

structure showing a trade-off between approach and avoidance

behavior. Graphical structure focused on manifolds, boundary

envelopes and fitted functions that were consistent across all the

experimental conditions studied (e.g., the BF, AF, BM, and AM

faces). For these analyses, we considered a manifold to be a

geometric structure in the graph (i.e., a two countable Hausdorff

space), which was locally homeomorphic to a 2-dimensional

Euclidean space. A manifold could also have a boundary envelope

or be characterized by a fitted function such as a central tendency,

although a graph with an envelope or fitted function did not

necessarily imply the existence of a manifold. An envelope was

considered to be the boundary of the graphical region filled by

mappings between location, dispersion, or pattern variables. Fitted

functions were considered to be relations describable with a

formula between elements in the domains of two variables [i.e., the

function consisted of an ordered triple of sets (X,Y,F), where X was

the domain of the function, Y the codomain, and F the set of

ordered pairings between X and Y]. To determine whether an

envelope or a function would be fit to a data distribution we

acquired, we evaluated if the density of points at a boundary was

equal to or more than the density of points elsewhere in the graph,

or if the density of points fell abruptly to approximate Ø when

moving away from one axis or another (and boundaries could not

be the axes themselves). When consistent boundaries were

observed for some data (e.g., avoidance data), but only a partial

boundary was observed for data of the opposite valence (e.g.,

approach data), we used the mathematical format defined by the

one (i.e., avoidance data) distribution, and seeded a fit with that

mathematical format and the partial boundary observed for the

other (i.e., approach) data. When no boundary conditions were

observed (as was common with low density plots consisting of four

points for one individual), function fitting was performed for the

entire distribution. Please see Supporting Information File S1

Section IV, for more detail.

Where structure was found, we further assessed if variables in

the trade-off were also in a relationship with other orthogonal (i.e.,

independent) variables regarding individual behavior. Mathemat-

ical fitting of all graphical structures and their alternate

formulations was performed. Graphical structures were further

tested to see if they were (a) recurrent within and across

experiments, (b) distinct from any noise distributions (and

potentially robust to noise), (c) scalable between group and

individual data, and (d) representative of important features in the

reward/aversion literature. For graphical patterns meeting (a)–(d),

we then considered what novel insights these patterns provided.

Descriptive Statistical Measures. Keypress responses were

evaluated using descriptive statistics. Location estimates included

(i) mean intensity (Kz and K{ for the mean of the positive and

negative keypress responses respectively), (ii) median intensity, (iii)

mode of the data distribution, along with (iv) maximum and (v)

minimum values in the data set (e.g., mz and m{ for the

minimums).

Dispersion estimates for the positive and negative keypress

responses focused on (iv) the standard deviation (sz and s{), (v)

the signal-to-noise ratio (SNRz and SNR{), (vi) the covariance

(CoVz and CoV{), (vi) the median-absolute deviation, and (vii)

the Shannon entropy (Hz and H{; see Supporting Information

File S1 Section VI). SNR and CoV were computed as
K

s
and

s

K
,

respectively. We included an entropy-based pattern variable [137]

for its relevance to neuroscience and experimental psychology

[64,66]. As originally defined, it represents the uncertainty of making

a choice [67], and thus might be of particular relevance to

judgment and decision-making. The following considerations were

used for computing the entropy: consider an ensemble of

behavioral responses X to be a random variable x with a set of

possible outcomes, AX ~ a1,a2,:::ai,:::aIf g, having probabilities

p1,p2,:::pi,:::pIf g, with P x~aið Þ~pi, pi§0 and
P

x[AX
P xð Þ~1.

The first order entropy of this ensemble can be computed by the

Shannon entropy: H+~
PN
i~1

p+,i=log p+,i, where Hz is the

entropy of increasing keypresses, H{ is the entropy of decreasing

keypresses, Pz,i is the relative intensity of the increasing keypresses

for the item (economic commodity) i, P{,i is the relative intensity

of the decreasing keypresses for the item (economic commodity) i,

and N is the number of the alternatives. For cases where subjects

made no keypress responses, but accepted the default condition for

all items in the itemset for a condition, we defined H = 0. H would

also equal 0 in the theoretical context that the number of items in a

category of economic commodity, xp, was decreased to 1, so that

the individual could not, by definition, have any ambiguity of

choice (Pattern 4, Supporting Information File S1 Section II). This

information theoretic approach [64,66,67,137–143] is grounded in

the classical theory of entropy, but does not necessitate the

temporal evolution of an ensemble. See the end of Supporting

Information File S1 Section VI for an example computation.

Testing for recurrent trade-offs in approach/avoidance

keypressing. Relationships were assessed between location

estimates of keypress responses (e.g., Kz and K{), between

dispersion measures (e.g., sz and s{), and between pattern

variables (e.g., Hz and H{). This evaluation sought to determine

(a) if limit conditions were observed for any of the variables (e.g.,

floor/ceiling effects such as mz,m{f g= 0), (b) if graphical

structure was observed in the form of a manifold, envelope, or

function, which was consistent or recurrent across all the four

experimental conditions (e.g., BF, AF, BM, AM), (c) if any

graphical structure balanced positive and negative keypress

responses in an opponent/trade-off manner, (d) if any structure

observed was mathematically simple, and (e) if the measures/

estimates comprising this structure could be combined with other

measures/estimates to produce structures of relevance to prospect

theory [7,12,13], or other reward-based theories [41]. Patterns

observed with individual data that were not associated with

patterns at the level of group data were noted but not analyzed

further. By definition, such individual patterns would not be

scalable to group data.

Assessing other recurrent relationships between

location/dispersion measures. We next evaluated whether

structure observed in the graph of one location measure or

dispersion estimate was related to structure observed in graphs of
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other measures/estimates (i.e., graphical interactions such as

K+,H+f g between orthogonal or independent variables). If other

manifolds, envelopes, or functions were apparent that could be

explicitly simulated/fitted (see Supporting Information File S1

Section IV), we then explored relationships between measures/

estimates found in these new structures, and the measures/

estimates that might have a relationship with them (e.g., exploring

s, given its relationship with the pattern variables). Follow-up

analyses also identified parameters influencing graphical extents

for any structure by simulating constraints to choice behavior in

the experimental task, to assure apparent structures were not

mathematically trivial (e.g., Supporting Information File S1

Section III). We further identified critical features within and

between graphical structures.

For the full set of graphs demonstrating a manifold, envelope, or

function, which were consistent across all conditions (e.g., BF, AF,

BM, AM faces), we then applied two procedures to confirm

recurrence across experimental conditions and to test for power

law scaling. The first procedure involved radial and angular re-

sampling of the observed structural relationship between variables

to assess the frequency spectra of their distributions and potential

Gaussian, log-logistic, or t location-scale fit (Supporting Informa-

tion File S1 Section I), allowing testing of whether or not they had

similar central tendencies for BF, AF, BM, AM conditions. The

second procedure further assessed if power law scaling was

observed between variables (i) by appropriate log transformations

of axes, (ii) by mathematical evaluation of a power function fit to

the observed graphical structure, and (iii) by assessing if a scaling of

the independent variable by a constant caused a proportionate

scaling of the function itself (i.e., if given f xð Þ~axk, that

f cxð Þ~a cxð Þk~ckf xð Þ!f xð Þ) [71,72,144,145]. Power law scal-

ing would argue that the observed structure was due to self-

organizational processes [68–70], and facilitate interpretation in

light of other power functions such as the Weber-Fechner-Stevens

Law [146–150] and value function of prospect theory [7,12,13].

If recurrent structure was confirmed across experimental

conditions, or power law scaling observed, we lastly assessed

similarities in graphical structure between (i) group data for one

condition, and (ii) individual graphs involving multiple conditions

to assess whether these patterns might be scalable. Evaluation of

graphical similarity entailed determining if graphs from each

individual had a similar mathematical form (albeit with different

parameter fits) to the manifold, envelope, or function from group

data.

Analysis of approach and avoidance in regards to

preference. For this process, individual data was first reduced

to rank orderings, and then evaluated for three properties relevant

for preference judgments, namely rank order ‘‘asymmetry’’,

‘‘completeness’’, and ‘‘transitivity’’ across conditions (defined

below) [73]. Rank ordering of experimental conditions was

performed for the beauty stimuli, IAPS, and food stimuli for

each subject, by connecting each experimental condition to the

power function fit of their K+,H+f g data over an absolute

minimum distance (see cartoon in Figure 5c). This data was

tabulated for each subject, with orderings along Kz,Hzf g and

along K{,H{f g in different rows.

‘‘Asymmetry’’ across experimental conditions was defined as

such: for any two conditions A,Bð Þ, one observed either

AwB?: BwAð Þ or A*B?B*A. Namely, for any two

experimental conditions A or B (e.g., BF and AF), condition A

was greater than B implied the opposite was also not true, namely

it was not the case that B was greater than A, or condition A and B

were similar in that they were graphically superimposed. To test

for this across each of the three data sets, we evaluated asymmetry

across all potential pairings of experimental conditions within each

stimulus set and cohort.

‘‘Completeness’’ across experimental conditions was defined by

the observation that every pairing of conditions showed

A§B _ B§A. Namely, there was no experimental condition

that could not be ordered relative to all of the other experimental

conditions, so that either A was greater than or equal to B, or B

was greater than or equal to A. This evaluation assessed

completeness across four conditions for the beauty stimuli, 9

conditions for the IAPS, and 4 conditions (in two experiments) for

the food stimuli.

‘‘Transitivity’’ across conditions was defined as A§B
^B§C?A§C. Namely, if condition A was greater or equal

to B, and B equal to or greater than C, then A was greater or

equal to C given their Kz,Hzf g relationships. To test for this

property across each of the three data sets, we evaluated

asymmetry across all possible combinations of three conditions

in each stimulus set, and tested if these asymmetries were

transitive.

Analysis of graphical robustness. For graphs showing

structure across subjects with the beauty stimuli (e.g., Hz,H{f g,
K+,H+f g), we performed two sets of control analyses: noise

simulations and noise perturbations.

Noise Simulations: First, we compared group data with

simulations from hypothetical subjects. These simulations were

performed with each Hz,H{f g and K+,H+f g plot to determine

that the patterns were not mathematically trivial in that (a) the

behavioral and noise sources could be segregated, (b) the

behavioral effect was not a random effect, and (c) the observed

structure did not simply reflect the analytical procedures utilized.

Three simulations were performed with the following noise

parameterization: (i) mean-matched uniform random noise, (ii)

range-matched uniform random noise, and (iii) variance-matched

Gaussian noise that maximized the entropy of the response profile

distribution. For all simulations, we assumed the existence of a

hypothetical subject for each real experimental subject (i.e., a one-

to-one match between the hypothetical subject and the experi-

mental subject whom we studied), who was asked to keypress

without any visual stimuli, over a time interval that was set so that

their keypress behavior was the same as that of the experimental

subject on the macroscopic level [i.e., mean, range, or variance is

matched with the experimental subject], but showed random

microscopic behavior within one of the macroscopic constraints.

For both the mean-matched uniform noise simulation and the

range-matched uniform noise simulation, the random microscopic

behavior was defined as having a linearly uniform spectrum

density. For the mean-matched uniform noise simulation, this

meant that each hypothetical subject produced keypress results

within the range of the 95% confidence interval of their matched

real experimental subject; for some subjects, the lower limit of the

confidence interval would be below zero, in which case the

theoretical values below zero would be considered to be zero. For

the range-matched uniform noise simulation, the assumption of a

linearly uniform spectrum density meant that each hypothetical

subject produced a keypress range that was the same as their

matched real subject, with a distribution that was uniform across

this range. For the variance-matched Gaussian noise, the random

microscopic behavior was defined as having the same spectral

density as a Gaussian, i.e., the entropy of the distribution was

maximized with the given variance constraint. As with other noise

distributions, some subjects evidenced a confidence interval with al

lower limit below zero, in which case the theoretical values below

zero would be considered to be zero. The collected behaviors of

the hypothetical subjects for each parameterization were com-
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pared with those of the experimental subjects. All of the

simulations were performed using random noise generation by

built-in MatLab functions: the uniform noise generator or the

Gaussian noise generator.

To quantify differences between experimental data versus

simulated data, we applied a variation of bucket statistics used in

statistical parametric mapping of neuroimaging data [151]. We

applied this technique to the preference trade-off plots, and

pixilated these graphs in the radial and polar dimensions. The

incidence of real and hypothetical subject presence in each bucket

or pixel was compared to a Gaussian distribution, in a t-statistic

analysis. The t-value was converted into a pseudocolor map on the

preference trade-off plot as is done commonly with neuroimaging

data (Figure 7b), quantifying the segregation of experimental data

from simulated data.

Noise Perturbations: Following quantifiable dissociation of real

from hypothetical data, we pursued analyses assessing noise effects

on the robustness of the observed graphical structures, using two

approaches: injecting noise into the judgment of preference

intensity and perturbing the valence (i.e., flipping a percentage

of responses – ‘‘Pflip’’) of decision-making data. These control

analyses evaluated whether or not the general structures observed

across subjects were maintained despite introduction of noise into

judgment and decision-making.

The first approach to noise perturbation involved injecting noise

into the existing data and assessing its graphical effects. This was

performed by adding together keypress response profiles from (i) the

real data and (ii) the hypothetical data (i.e., noise simulation data

described above), on a one-to-one basis to decrease the contrast in the

profiles between stimuli items. For this addition of hypothetical data,

we added simulated data to the existing keypress response profiles

with the same mean and variance as the existing data. As an

extension of this process, we also added together data from two

existing experimental conditions (i.e., the BF+AF data or the

BM+AM data), and evaluated the graphical outcomes.

A second approach sought to undermine the polarity of the

decision-making by experimental subjects through parametrically

altering the percentage of traces for which the polarity was reversed in

the existing response profiles and assessing the graphical effects. This

perturbation flipped the valance in decision-making from the positive

keypress to negative keypress and vice-versa (i.e., flipping the

approach/avoidance status of response traces) with a probability of

‘‘Pflip’’ or Pflip. For these processes, the random number generator

used a fixed random number seed.

These two approaches to simulation allowed us to assess

graphical robustness of each structure to noise, in that the

graphical representation of existing subject data could be overlain

with representations altered by (i) injected noise (or addition of

existing keypress profiles across experimental conditions), or (ii)

decision-making perturbations. Changes to the fitting parameters

of any manifold, envelope, or function could then be readily

determined, or dissipation of the structure confirmed.

Analysis of trial-by-trial response independence. This

analysis sought to determine if approach or avoidance behaviors

for beauty stimuli had an effect on the actions that followed. This was

initially performed across subjects for each of the four experimental

conditions using F tests, and then done within individuals using an

analysis of variance. Given experimental conditions were segregated

by gender to assure gender effects did not skew responses (see

Figure 1b), F tests across subjects assessed if preceding AF and BF

behavior affected subsequent BF responses, and separately,

subsequent AF responses. Similarly, F tests across subjects assessed

if preceding AM and BM behavior affected subsequent BM

responses, or, separately, subsequent AM responses. For analyses

within individuals, ANOVAs were performed for each subject with

pre-condition behavior as the independent variable and post-viewing

time as the dependent variable. This was performed initially for

decreasing keypress behavior and increasing keypress behavior

separately, and then repeated with total viewtime. Hence

ANOVAs were run for four experimental conditions6increasing/

decreasing keypresses677 subjects, or 616 comparisons. This was

followed by ANOVAs for four experimental conditions6total

viewtime677 subjects, or 308 comparisons. The percentage of p-

values less than 0.05 were then computed to determine if they were in

the range of 5% of the total number of comparisons run, or what

might be expected by chance.
Analysis of test-retest reliability. To test for consistency of

responses across test session, individual data from the experiment

with food stimuli was first reduced to rank orderings, and then

compared across the two test sessions performed 3–10 days apart.

Rank ordering of experimental conditions was performed for each

subject, by connecting each experimental condition to the power

function fit of their K+,H+f g data over an absolute minimum

distance (see Figure 5c). This data was tabulated separately for

orderings along Kz,Hzf g and along K{,H{f g for each subject.

In the evaluation of consistency, given any change in the rank

order for an experimental condition could shift each of the other

orderings by one position, we considered ordering preserved if it

was plus or minus one position. Consider, for example, the relative

orderings along Kz,Hzf g as follows: normal colored food (4,4),

discolored food (2,3), prepared food (3,1), and unprepared food

(1,2). In this scenario, the relative order of the normal colored

food, discolored food, and unprepared food to each other was

preserved, and thus this ordering was considered consistent for

three experimental conditions. These results were then

summarized with descriptive statistics.

Supporting Information

File S1 Supporting information (Sections I–VI) for the main

text, with mathematical description of findings, computer code for

simulations, and further information about methods.

Found at: doi:10.1371/journal.pone.0010613.s001 (0.43 MB

DOC)

Figure S1 Examples of Beauty Stimuli. A sample of the four

picture types used for the beauty stimuli (from left to right):

beautiful female, average female, beautiful male and average male.

Each of these experimental conditions or categories of picture

consisted of either 20 male or 20 female faces. Since initial

development (see acknowledgments and [14,29]), these stimuli

have been used in a number of studies [16,17,19].

Found at: doi:10.1371/journal.pone.0010613.s002 (1.06 MB TIF)

Figure S2 Representative pictures from the International

Affective Picture System (IAPS) [61,62]. Images used came from

nine distinct categories of picture content: objects, nudes/sex,

sports, disasters, food, kids/pets, nature, violence/war, and drug

paraphernalia. Each category contained 9 pictures. Please see

Methods, Picture Stimuli for Keypress Experiments, for further

information and commentary.

Found at: doi:10.1371/journal.pone.0010613.s003 (3.01 MB TIF)

Figure S3 Examples of Food Stimuli. One example of items

from each category of food stimuli: (a) Normally colored food

item; (b) Discolored food item; (c) Prepared food item; (d)
Unprepared food item.

Found at: doi:10.1371/journal.pone.0010613.s004 (2.07 MB TIF)

Figure S4 Examples of Trade-off plots Using Pattern-variables.

Three functionally similar types of preference trade-off graphs are
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displayed for H, SNR, and CoV estimates. In (a), a graph is

displayed of the Shannon entropy for increasing keypress

responses (y axis) versus the entropy for decreasing keypress

responses (x axis) for responses to BF, AF, AM, AM faces in 77

healthy control subjects. For the same set of experimental subjects,

we show in (b) a graph for the CoVz,CoV{f g manifold, and in

(c) a graph for SNRz,SNR{f g, which represents a boundary

envelope.

Found at: doi:10.1371/journal.pone.0010613.s005 (0.25 MB TIF)

Figure S5 Radial Distributions from Trade-off Plots. Each

graph represents the data from 77 healthy controls, for one

experimental condition (i.e., BF, AF, BM, AM faces), with three

types of fitting of the radial distribution from the trade-off plot of

that experimental condition. Radial sampling of the preference

trade-off graphs for these four experimental conditions were

tabulated using bins of 0.2 bits (in gray-tone lines off the x-axis).

Bin height reflected the normalized number of data points across

77 subjects. Fitting through three methods (see Supporting

Information File S1 Section I) was performed, so that each of

the resulting curves contains the same area or number of samples.

Qualitatively, the best fit is observed with the t location-scale

distribution.

Found at: doi:10.1371/journal.pone.0010613.s006 (0.46 MB TIF)

Figure S6 Trade-off Plots for Total Viewtime Versus Keypress

Number. The resistive function used to translate keypress effort

into viewing time theoretically might influence the form of the

preference trade-off, the value function or the saturation function.

To rule this out, we analyzed total viewtime data (symbolized by

T(K+) or T(K2) for viewtimes resulting from pressing the positive

keys or the negative keys respectively), to determine if the same set

of patterns was observed with group data, or whether there were

discrete functions with individual data. The resulting graphs of the

preference trade-off, value function, and saturation function

exhibited the same patterns whether or not using keypress number

or viewtime data. In this figure, the CoVz,CoV{f g manifold is

shown for keypress data (a) and for viewtime data (b). To further

support the observation shown in Figure S4, the same comparison

of keypress versus total viewtime data (again using the symboli-

zation of T(K+) or T(K2) for viewtimes resulting from pressing

the positive keys or the negative keys respectively) is shown using

SNR estimates. The SNRz,SNR{f g plot is shown for keypress

number (c) and total veiwtime (d). This observation further

supports the potential for these analyses to be used for other

frequency data besides that acquired using keypress procedures.

Found at: doi:10.1371/journal.pone.0010613.s007 (0.32 MB TIF)

Figure S7 Examples of Value Function Graphs Using Pattern-

variables. Three types of value function graphs are displayed for

H, SNR, and CoV estimates. In (a), graphs of K+,H+f g are

shown in red for the negative (avoidance) keypress and green for

the positive (approach) keypress for 77 healthy controls, with no

color-coding between BF, AF, BM, AM stimulus conditions. The

approach and avoidance keypress data are displayed on the same

axes to illustrate the difference in curvature between approach and

avoidance responses, which approximates the observation of ‘‘loss

aversion’’ described in prospect theory. Similar differences

between approach and avoidance slopes are also observed for

value functions using SNR and CoV estimates. The boundary

envelopes for K+,SNR+f g graphs (b), and for K+,CoV+f g
graphs (c) are also shown for BF, AF, BM, AM faces in 77 healthy

control subjects. In (d), a cartoon of the differences in boundary

envelopes observed across value functions with H, SNR, and CoV

estimates is illustrated. Note that a similar graphical structure to

that observed with the K+,H+f g plot is also observed with a very

different psychological phenomenon, namely the Weber-Fechner-

Stevens Law in sensory psychophysics [146–150], underscoring

the pervasiveness of power functions in nature [68–72].

Found at: doi:10.1371/journal.pone.0010613.s008 (0.37 MB TIF)

Figure S8 Comparing the Value Function with the Matching

Law. The matching law as described by Herrnstein [39] was

initially approximated by ratios. Later work by Baum [40]

suggested that matching could be better described by a power

function, although modern research regarding matching works

elegantly with the initial formulation of Herrnstein [39]. These

issues are of interest given the observation of power law scaling

with the K+,H+f g value function, which allows ratios to be

represented with the same mathematical structure (equation at

bottom) for individual data (two plots on right).

Found at: doi:10.1371/journal.pone.0010613.s009 (0.35 MB TIF)

Figure S9 Noise Simulations. Three noise simulations were run

for each of the four experimental conditions, and combined in the

illustrated graphs (real subject data with filled circles, and

hypothetical subject data with x’s or open circles). These three

simulations include: (a) mean-matched uniform random noise, (b)
range-matched uniform random noise, and (c) variance-matched

Gaussian noise. Procedures for these simulations are described in

the main text methods section. Note that across these three graphs,

no simulation duplicates the human experimental data, or a subset

thereof.

Found at: doi:10.1371/journal.pone.0010613.s010 (0.30 MB TIF)

Figure S10 Alternate Sets of Patterns Characterizing Approach

and Avoidance. There appear to be at least three alternate

formulations of the relationships organizing relative preference in

humans. These three formulations are illustrated schematically in

three columns of graphs, with a trade-off relationship on top of

each, a value function in the middle, and a saturation function on

the bottom. With group data, the trade-off relationships represent

manifolds for the Hz,H{f g plot (a) and CoVz,CoV{f g plot

(c), and a boundary envelope for the SNRz,SNR{f g plot (b).
The central tendency of the Hz,H{f g plot has a similar

mathematical form to the graphs of individual data across

experimental conditions tested, although there can be significant

variability across individuals. For all of the value functions

assessed, group data reveals an envelope for the K+,H+f g,
K+,CoV+f g, and K+,SNR+f g plots. In individuals, K+,H+f g

plots reveal striking functional fits. Lastly, one can associate the

K+,s+f g plot with each of the graphs produced using the three

pattern variables.

Found at: doi:10.1371/journal.pone.0010613.s011 (0.39 MB TIF)

Figure S11 K+,s+f g Plot and Mean-Variance Model of

Choice. The K+,s+f g plot may have relevance for mean-

variance approaches to decision making under risk. As described

by D’Acremont and Bossaerts [78], the mean-variance approach

describes risk by the outcome variance (i.e., standard deviation, s),

and computes a valuation V by the difference between the mean

transaction outcome and variance estimate: V~K{ds, where d is

the penalty imposed for risk. As d increases, the individual shows

increasing risk aversion. In the quadratic fitting of K+,s+f g, the

computation of V is not likely to show that the individual prefers

mappings on the K+,s+f g plot until after s has reached a

maximum and is decreasing (while K continues to increase). This

might not be necessary if d is quite low, in which case one could

imagine preferred choices being represented on the K+,s+f g plot

by mappings with low s, and either high or low K. Given the

K+,s+f g plot involves both approach (positive) and avoidance

(negative) components, one might also imagine adapting the
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mean-variance framework to include both components in the

valuation computation (e.g., so that Kz, K{, sz, and s{ are all

incorporated in the computation).

Found at: doi:10.1371/journal.pone.0010613.s012 (0.33 MB

TIF)
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