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Abstract: Influence cascades are typically analyzed using a single metric approach, i.e., all influence
is measured using one number. However, social influence is not monolithic; different users exercise
different influences in different ways, and influence is correlated with the user and content-specific
attributes. One such attribute could be whether the action is an initiation of a new post, a contribution
to a post, or a sharing of an existing post. In this paper, we present a novel method for tracking
these influence relationships over time, which we call influence cascades, and present a visualization
technique to better understand these cascades. We investigate these influence patterns within and
across online social media platforms using empirical data and comparing to a scale-free network as a
null model. Our results show that characteristics of influence cascades and patterns of influence are,
in fact, affected by the platform and the community of the users.

Keywords: influence cascades; transfer entropy; online social networks; cross platforms; cryptocur-
rency; cyber-vulnerability

1. Introduction

Social influence in online social networks (OSNs) can be defined as the ability of a
user’s action to affect the actions of other users. We refer to such occurrences as social
influence relationships. However, in most cases these relationships to be asymmetric. A
person who influences other users is referred to as an influencer and the person being
influenced is referred to as an influencee. Social influence has been widely studied in many
fields including marketing [1–5], political science [6], human and animal behavior [7–10],
and communication [11,12].

With the rapid increase of online social media usage, social platforms now represent
a large portion of daily communication and play a major role in information diffusion
throughout society. In an OSN, we can classify user actions into three types: (1) initiation of
a conversation or a post (I), (2) contribution to an existing conversation or a post (C), or (3)
sharing of an existing post between conversations without changing the content (S). Since
we will use these three actions and this framework throughout this paper, we will refer
to it as the ICS classification. Most existing studies on social influence in OSNs assume
an implicit monolithic notion of influence, i.e., that a user’s influence is the same across
all action types. However, in reality, there are differences in how users influence others
through initiation, contribution, and sharing actions. Disregarding these differences in
behavioral influence may hinder a comprehensive understanding of the real role of social
influence in a wide variety of scenarios including (1) information propagation and influence
maximization, (2) knowledge transfer in a community and development of projects, such
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as in GitHub and Stack Overflow, (3) online influence campaigns, or (4) online brand
engagement at different stages of the consumer purchase funnel.

As an example, in online marketing campaigns, some users may create original
content, some users may contribute to others’ created content, and still other users may
spread the content of others by sharing. If a marketing firm is interested in controlling
or interacting with this information spread, it may want to identify different users based
upon the role they play and how those users affect other users. Therefore, in this study,
rather than modeling the influence as a single entity, we modeled the influence as multiple
entities and explore the cascading effects of social influence.

An influence cascade can be defined as the all of the actions in a chain that start from
an initial user, who was prompted by an external (outside the social network) stimulus or
intrinsic motivation to act, and the actions that the initial user then influences other users to
take, and, in turn, the actions those users influence others to take and so forth until a user’s
action no longer influence any other users to act. In other words, an influence cascade is all
of the users and events that were socially motivated and can be tracked back to an initial
user that was not motivated socially, but due to an influence outside the social network. The
presence of influence cascades indicates an underlying organizational structure. In the case
of a highly distributed community, such as those that exist on OSNs, such organizational
structure is not explicitly expressed, but are implicit in the actions of the users. Analyzing
influence cascades allows us to infer these underlying organizational structures. In this
paper, we extract influence cascades in a variety of scenarios over multiple platforms and
visualize the underlying organizational structures.

Though our introduction of influence cascades is novel, previous work has examined
information cascades. However, information cascades differ in that the focus of the analysis
is on the transmission of a particular piece of information, and not the users influencing
each other to transmit the information. Typically, information cascades are extracted by
tracing a piece of information such as content, URL, or an image through the explicit
link structures such as parent-child relationships [1,9,13–15]. However, such explicit link
structures are not available in many data sets or may be incomplete [13,16]. These studies
focus on analyzing characteristics such as size, depth, degree distributions, or the growth of
such information cascades, as opposed to understanding how one user directly influences
another user [1,14,15,17].

As we are interested in behavioral influence, with the premise that any I, C, or S action
that a user can take can influence other users to do any I, C, or S actions, we defined nine
types of influence relationships that can exist between any pair of users. We use transfer
entropy to quantify these nine types of influence relationships [18] as it gives us the ability
to model social influence as multidimensional while capturing the direction and causality
of the influence relationships.

Because of the action classification used, our model is abstracted from platform event
types and, as a result, we can compare influence cascades on different platforms using the
same ICS classification. Different social media platforms enable different affordances for
interaction. Though the actions on these platforms can still be characterized under the ICS
classification, the algorithms and exact implementations may alter how users utilize these
different actions. Hence, this gives us the ability to study human behavior on different
platforms and determine if the affordances of the platform affect influence cascades. To
the best of our knowledge, this is the first study to compare influence cascades between
platforms. We consider cryptocurrency (crypto), common vulnerable exposure (CVE),
interest communities on GitHub (GH) and Twitter (TW) to explore the characteristics of
influence cascades, and contrast the extracted OSN influence cascades against those from
on scale-free networks as well. The results of our study show that the depth and the
structure of influence cascades depend on the platform and community of users. As a
result of these observations, we can characterize the underlying organizational structures
of these online communities.
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The rest of the article is organized as follows: Section 2 covers background information
and related work. Section 3 presents the proposed methodology, description of empirical
data, and the experimental setup. Section 4 present the experimental results on empirical
data and a generic scale-free network. Finally, Section 5 discuss the results and Section 6
concludes the paper.

2. Background and Related Work

Social influence has long been studied in many areas such as information diffusion and
influence maximization [8,11], viral marketing [1,2], influential blogger finding [9], health
applications [19], spread of opinions and news [7,12,20], and so on. In these studies, social
influence is measured in many different ways. Among these methods, most of the work
has focused on the notion of centrality, or structural influence. Centrality measurements
such as degree, closeness, betweenness, eigenvector, Katz, and their variations are used
widely in studies of social influence [21–24]. However, in most of these measurements
except eigenvector centrality, there is no distinction of the contribution of individual nodes
to the measurement [25], and even in the case of eigenvector centrality, the only difference
is a structural difference, not behavior-based. The number of followers, which is related to
degree centrality, is used by [2,26] to measure influence in microblogs. However, in [2,27,28],
the authors show that there is a weak correlation between behavioral influence and the
number of followers. Hence, these measurements are not fully able to capture behavioral
influence and state-of-art methods related to these measurements cannot comprehensibly
address the scenarios where an organization is interested in different types of influence, as
discussed in the Introduction.

In addition, some recent studies use deep learning models to capture social influence.
The DeepInf developed by Qiu et al. [29] is able to predict the binary status (active/inactive)
of a user, given the user’s underlying local network structure and the status of the near
neighbors of the user. Leung et al. [30] proposed the HPPNP model by integrating a
feature from a page rank domain to the DeepInf model and improved the performance
of the DeepInf model. These models use historical interactions to predict social influence.
However, the accuracy of the prediction depends on the underlying social network that the
model uses because of the assumption that only near neighbors influence users’ actions.
In [29,30], the authors use underlying user networks such as follower/followee or friend-
ship networks for their study. Hence, these studies fail to address users’ actions that may
occur when they identified posts using hashtags or keywords [31].

Another way to measure influence is based on entropy and information theory.
Peng et al. [32] use node entropy based upon the degree of a user and interaction fre-
quency entropy to evaluate social influence in mobile social networks. Sun and Ng [33] use
graph entropy based upon the centrality of users to measure the influence of connectors
on social networks. Chen et al. [34] consider network topology and proposed a method
to rank the influential nodes by considering the Tsallis entropy of the users and their
neighbors. Transfer entropy is another entropy-based measurement that is used to quantify
influence. Transfer entropy is introduced by Schreiber [18] to capture the cause and effect
in an interaction between two coupled systems effectively. It is an information-theoretic
approach based on Shannon entropy [35] and it measures the uncertainty reduced by the
prediction of the future of a system from the past of the system by knowing the past of
another system. If two random processes are X = {Xt}t∈N and Y = {Yt}t∈N then the
transfer entropy can be defined as

TEX→Y = ∑
x,y∈Ω

P(Yt+1 = y, Yt = y, Xt = x) log
P(Yt+1 = y|Yt = y, Xt = x)

P(Yt+1 = y|Yt = y)
, (1)

where Ω is the sample space that includes all realizations.
VerSteeg and Galstyan [36] use this approach to quantify the influence of content

on users in social media and show that transfer entropy is able to capture some of the
relationships that cannot be captured by the follower network or mention network suc-
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cessfully. Moreover, He et al. [37] use the same approach to reconstruct the underlying
network structure of online social media and use transfer entropy to measure peer influence
in OSNs.

Information cascades have provided us with insight into how these social networks
operate. For example, Adar and Zhang [13] study the sharing of URLs in the blog-space by
inferring their explicit link structure and implicit link structure. Explicit link structure is
constructed by tracing the provided information on the data. Implicit link structure is con-
structed by using a classifier that depends on the blog similarity measures. Gruhl et al. [38]
propose a model to study the propagation of information in the form of topics throughout
the blog space using a derived form of the independent cascade model on a network
induced by the timeseris of the topics and the blog which posts that topic at that time.
Further, Leskovec et al. [14] study the propagation of posts in the blog space to discover
the patterns of information propagation. The authors analyze the cascades of blog posts by
measuring the overall out-degree, in-degree, and in-degree distribution of nodes at level L
of the collection of cascades. Further, they quantify the cascades by the number of nodes in
the cascades and analyze the distribution of the cascade size over the collection of cascades
they extracted. Their results show that blog posts have weekly periodicity but they do not
have a bursty behavior. Moreover, Leskovec et al. [1] trace the diffusion of product recom-
mendations using emails and show that product recommendation cascades do not grow
very large. Kumar et al. [15] study the information cascades in yahoo!, Twitter, and Usenet
groups by reconstructing the information cascades using the parent-child relationships that
exist in the data and explore the distributions of size, depth, and degree of the information
cascades. They show that degree distributions of information cascades are close to a power
law. Bakshy et al. [9] study the information diffusion by studying the cascades of URL’s
sharing on Twitter and show that information mainly spreads through small cascades that
are started by ordinary individuals while long cascades are rare. Dow et al. [17] study the
cascade of image sharing on Facebook and explore them in terms of evaluation time and
the distributions of the depth of the cascades. Further, they quantify the predictability of
sub-cascades sizes. Cadena et al. [39] show that activity cascades in Twitter are predictive
of civil unrest.

Moreover, with the variety of OSNs today, people engage with multiple social media
platforms giving them the opportunity to discuss and share their interests in multiple
platforms. Hence, researchers have become interested in studying how human behavior
differs on different platforms. Xiong et al. [40] propose a new approach to link GitHub and
Stack Overflow accounts using a CART decision tree and explore developer behavior on
these two platforms. Waterloo et al. [41] study how users express their emotions in What-
sApp, Facebook, Twitter, and Instagram and find that there are differences in the patterns
of emotional expression based on the platform. Furthermore, Kim et al. [42] propose a
method to estimate the information transfer across mainstream news, social networking
sites, and blogs using transfer entropy. Also, a similar study from Bhattacharjee [43] ana-
lyzes information transfer across social media, in particular Twitter, Reddit, and GitHub.
Bhattacharjee uses symbolic transfer entropy to measure the influence from one platform to
the other. Our work extends this past work into the realm of influence cascades, so we can
understand not only how the same user operates on different platforms, but also whether
users on one platform influence users on other platforms.

3. Methodology

In this section, we examine the basic concept of influence cascades. In particular, we
start by examining users who are not socially influenced themselves but exert influence
on others, and how different actions contribute to the accumulation of social influence
as it progresses through the network via influencer-influenced relationships. We use the
ICS classification in order to replicate our findings across two social media platforms
and two different communities. We extract social influence cascades observed in four
online user communities: (1) GitHub users working on cryptocurrency, (2) Twitter users
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discussing cryptocurrency, (3) GitHub users working on cyber-vulnerabilities (CVEs), and
(4) Twitter users discussing CVEs. It should be noted that in this study we are not following
any retweet chains or reply chains of specific content. Influence cascades are not direct
interaction chains, i.e., retweeting chains or reply chains. Instead, influence cascades are
observed from looking at the time series of all users in the data set, and observing how
likely a user’s particular event causes another event of another user. This means influence
cascades do not always begin with an I action because a root user’s I action may not be
the action that influences other users but instead a root user’s I, C, or S actions could all
create influence chains. Also, there is a possibility to observe a C action influencing an I
relationship in the cascade since that means that we observed that when a certain user
performs contribution events, another user is likely to initiate a new thread.

We performed this 2 × 2 comparison to give us the ability to analyze both platform
and subject community differences. Finally, we compared the extracted social influence
cascades against those expected on an artificially generated scale-free network. By using
this scale-free model as a null model, we provide a basis of a comparison that is independent
of any of the intrinsic properties of underlying networks, to compare and contrast our
results. Therefore, we can identify what aspects are related to the particular circumstances
of the platform and community and what aspects are present in any network.

3.1. Defining Influence Relationships

In this study, we built our framework based on ICS classification. We let the set of
actions a user can perform be denoted as A = {I, C, S}. Once a user, u, performs an action,
a, there is a chance that his action influences another user, v, to preform another action,
b, which we describe as a social influence relationship of type ua → vb, where a, b ∈ A
and u, v are users in the network W. Hence, we can define nine influence relationships
as follows: uI → vI , uI → vC, uI → vS, uC → vI , uC → vC, uC → vS, uS → vI , uS → vC,
and uS → vS. As an example, we can use uI → vI to symbolize an influence relationship
where u’s initiation of a conversation influenced the initiation of another conversation by
v. We use transfer entropy to quantify these influences and infer causal relationships [18].
Transfer entropy has been shown to capture influence better than other commonly used
measures such as centrality and number of followers [36]. Also, by using transfer entropy,
we are not restricted to limitations in the follower network that may occur if a user is
influenced by, but does not follow, another user [2,28,31].

3.2. Extraction of Influence Cascades

We first quantify the magnitude of influence for each relationship ua → vb by calculat-
ing the transfer entropy, from a time series of action type a of user u to the time series of
action type b of user v [44]. Next, we extract influence cascades from the pruned influence
network and visualize them as follows.

3.2.1. Constructing the Influence Network

Since each directed user pair ~(u, v) can have nine types of influence relationships
ua → vb, we define the total social influence from user u to v as a vector −→γ u,v with the
corresponding influence measurement values γuv(ab) as its vector components. If at least
one influence relationship exists, i.e., at least one non-zero influence vector component
exists from u to v, then we can say that u influences v. Accordingly, we define the influence
network G(V, E) according to Equations (2) and (3).

V = {∀ u, v ∈W| ∑
a,b∈A

γuv(ab) > 0}, (2)

E = {{u, v}| ∑
a,b∈A

γuv(ab) > 0}. (3)
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It must be noted that G is a directed graph. Furthermore, we attribute the influence vector
components to edge weights of G. In this manner, W is pruned of edges that have no social
influence from one user to another, forming G.

3.2.2. Extracting Influence Cascades

Next, to study the characteristics and reach of the quantified influences, we extract the
influence cascades of the users as follows. Externally motivated but not socially influenced
users R is defined according to Equation (4).

R = {u ∈ V|in− degree(u) = 0} (4)

In order to extract the influence cascades from any u ∈ R, we first extract all the outgoing
neighbors of u, No(u), and their corresponding edges from u. We then extract all the
outgoing neighbors of users in No(u) and their corresponding edges and repeat this
process until there are no more identifiable outgoing edges. The initial user, at the top of
the cascade, is called the root user and their node level is 0. Level 0 users are chosen as
those who have no incoming edges, i.e., have no influencing users, but exert influence
on other users. The node level of other users in the cascade is labeled based on the hop
distance from the level 0 user to them. Figure 1 shows an example influence cascade using
this process.

Figure 1. Example of an Influence Cascade. User u1 is selected as a root user as it has a zero in-degree,
i.e. it is not socially influenced. User u1 socially influences users {u2, u3} at level 1. Users {u2, u3}
influence users {u4, u5, u6, u7} at level 2. ~γui ,uj ; i, j = 1, 2, . . . , 7 represent the total influence vector
from user ui to user uj.

3.2.3. Characterization of Influence Vector Components

As Figure 1 shows, the extracted cascades help analyze basic characteristics, such as
the size and length of the cascades. However, this representation does not identify whether
the influencing action was a I, C, or S. Hence, we propose a visualization technique that
can integrate the information of influence cascades as follows:

Let Li,i+1 represent the set of influence vectors flow from the ith level to (i + 1)th
level, where i ∈ {0, 1, , . . . , n− 1} and n is the depth of the cascade. The normalized vector
component of the total social influence an action a has on an action b, γi,i+1(ab) is calculated
as shown in Equation (5).
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γi,i+1(ab) =
∑l∈Li,i+1

l(ab)

∑i=n−1
i=0 ∑l∈Li,i+1

l(ab)
(5)

We visualize the influence cascade through a Sankey diagram [45]. In the Sankey
diagram, nodes represent the influencing actions (a ∈ A), while flows represent the total
magnitude of influence exerted by this action on users at the next level of the cascade,
normalized across the cascade. Figure 2 shows an example of a Sankey diagram produced
by the proposed method.

Figure 2. Example of a Sankey diagram produced by the proposed method. The diagram visualizes
the normalized flow of total influence, categorized by influence relationships, along the length
of a influence cascade. The nodes represent the different activity types, I: Initiation (yellow), C:
Contribution (blue), and S: Sharing (pink), and their heights represent the relative magnitude
of influence each level exerts on the next. The thickness of the blue, pink, yellow flow lines are
proportionate to the magnitude of the normalized total influence value that C, S, and I events have
on corresponding actions at the next level, respectively.

3.3. Experiments

We studied the consistency of characteristics of influence cascades such as depth of
the cascades and the structure of the cascades within and across OSNs. In addition, we
compared them against those expected from the scale-free network, which serves as a
null model.

3.3.1. Data

We considered two OSNs, Twitter and GitHub for our experiments. Twitter is a
popular social networking site that allows users to post and interact with comments.
Though GitHub may not appear to be an OSN on its surface, it provides powerful tools for
interaction and commenting, allowing users to socially interact in a fashion similar to other
OSNs [46].

The empirical data consisted of temporal user activity related to discussions and
project development of selected cryptocurrencies (Crypto) and cyber-vulnerabilities (CVE)
on both Twitter (TW) and GitHub (GH). The data is gathered as follows:

• GH-Crypto data was collected by extracting events related to more than 20 target coins’
official repositories, repositories labeled with target coin names, and repositories that
mentioned the target coin names in their descriptions.

• TW-Crypto data was collected by extracting all tweets from official websites related
to more than 20 target coins and by matching the target coin names, code, hashtags,
etc. with the full Twitter firehose. Extraction was limited to English language tweets
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and users from either unknown countries or the UK, India, Canada, Russia, and
The Netherlands.

• GH-CVE data was collected by extracting events related to any repositories that were
related to CVE at a certain point in their life cycle, found by matching CVE textual
patterns against repository descriptions and texts related to events.

• TW-CVE data was collected by matching the CVE textual patterns against the collec-
tion of tweets extracted through the public Twitter API.

The TW-Crypto data was extracted from the 1st of August 2018 to the 30th of Novem-
ber 2018 while GH-Crypto, GH-CVE, and TW-CVE data were extracted from the 1st of
January 2017 to the 31st of March 2017. The raw data sets contained 111821, 19166, 11875,
and 3278 unique users respectively. As low activity users have less impact on influencing
others over time we only considered active users who had an average monthly activity
greater than five events within these time periods. The filtered data sets contained 4170,
1784, 1989, and 92 unique users respectively. Table 1 shows the categorizations of 14
different GitHub events and 4 different Twitter events into initiation, contribution, and
sharing action classes.

Table 1. Classification of GitHub and Twitter actions.

Initiation Contribution Sharing

GitHub CreateEvent

CommitCommentEvent,
GollumEvent, IssueCommentEvent,
IssuesEvent, PullRequestEvent,
PullRequestReviewCommentEvent,
PushEvent, DeleteEvent

ForkEvent, WatchEvent,
MemberEvent, PublicEvent,
ReleaseEvent

Twitter Tweet Reply, Quote Retweet

The extracted influence networks of GH-Crypto, TW-Crypto, GH-CVE, and TW-CVE
had 1406, 3365, 151, and 80 nodes (users), respectively. Each of these influence networks
consisted of 568, 2385, 111, and 45 users who were not socially influenced but influenced
others (root nodes).

3.3.2. Experimental Setup

We began our experiment by exploring the influence cascades in our empirical net-
works. For comparison, we constructed generic scale-free networks that were similar in
size as null models. As an example, we constructed a scale-free network with 1406 nodes as
a null model of GH-Crypto network which has 1406 users in its influence network. Python
3 and the NetworkX scale_free_graph library [47] were used to generate directed scale-free
networks. Except for the number of nodes, the other parameter values were kept constant
while producing the scale-free networks. Any loops and multi-edges that resulted were
removed. Next, for each resultant edge, nine random values from U[0, 1] were assigned
as the magnitude of the influence of the nine influence relationships. Given this network,
we extracted the influence cascades from root nodes by identifying those nodes that had
zero in-degree, i.e., no influencing nodes. For each network, we aligned all the influ-
ence cascades by level and aggregated the normalized total influence vector components
(Equation 5) by their median. For some examples of these cascades see Figure 3.

We explored the user distribution of influenced cascades by comparing the mean
number of users as well as the cumulative mean number of users per cascade level by
platform and community. The Jensen–Shannon (JS) Divergence test was performed to
measure the similarity of user distributions between influence cascades extracted from
empirical networks and their null models as well as between the platforms/communities.
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Figure 3. Examples of uniformly distributed influence cascades over scale-free networks of varying
network sizes.

In order to study the similarities of the structure of influence cascades in terms of
the distribution of influence from different extracted networks, we explored the residual
differences between the median normalized total influence values extracted from influence
cascades and those from influence cascades generated by the corresponding null model,
both within and across platforms, by influence relationship. A Spearman’s correlation
test was performed on these residuals by influence relationship, grouping by platform
and community, in order to infer the statistical significance of the observations. The
null hypothesis H0 tested, was that there is no correlation between the residuals in the
magnitude of influence of two platform-communities. In other words, if the comparison
was significant that means that two platforms or communities are significantly similar in
terms of the distribution of the magnitude of influence. As we have multiple comparisons,
we applied a Bonferroni correction to minimize the error rate. Therefore, we used a
significance level of 0.05/9 = 0.0055 in order to consider an individual test as significant.

The computer code for extracting influence cascades, visualizations, and experiments
was developed in a Jupyter notebook which is publicly available. The influence data
extracted from the OSNs and code is available at https://github.com/Csenevirathna/
InfluenceCascades. The versions of the software and packages which are used are as
follows: Python 3.6.3, pandas 1.0.1, NumPy 1.19.1, NetworkX 2.4, seaborn 0.9.0, Plotly 3.6.0
and, statsmodels 0.12.0.

4. Results

Comparisons of the mean number of users per influence cascade level by platform
and community are shown in Figure 4. Similarly, comparisons of the cumulative mean
number of users per cascade level by platforms and community are shown in Figure 5.
For both of these sets of measurements, the measurement of the corresponding scale-free
null-model, matched by network size, has been included as a control. We observed that
the user distributions for the CVE community closely followed that of their corresponding
scale-free null-model, in contrast to that of the cryptocurrency community, where a larger
deviation from the scale-free null-model was observed. This result is confirmed in Table 2,
where the JS-divergences for each platform-community from their corresponding scale-free
networks are shown. The JS Divergences for the CVE community networks is a magnitude
smaller than that of the cryptocurrency community networks, regardless of platform.

Instead, we found that the distributions of users across levels were similar for the
cryptocurrency community, regardless of platform. In particular, we observed that on
average the user distributions culminate at level 4 for both cryptocurrency networks,
producing influence cascades that are much shorter than are expected based on their
comparison against the corresponding scale-free null-models. In other words, the mean
user distributions over influence cascades for the cryptocurrency community were robust
across platforms, while those for the CVE community were more platform-sensitive. This
result is further confirmed in Table 3, where the Jensen–Shannon divergence between each
platform-community is displayed. According to this comparison, the JS divergence is
lowest within communities rather than within platforms. Furthermore, the JS divergence is
lower when comparing across platforms within the cryptocurrency community, rather than
the JS divergence when comparing across platforms within the CVE community. Also, we
see that the JS divergence between the cryptocurrency and CVE communities on Twitter
is much lower than that on GitHub. In other words, the influence structures within the

https://github.com/Csenevirathna/InfluenceCascades
https://github.com/Csenevirathna/InfluenceCascades


Entropy 2021, 23, 160 10 of 26

cryptocurrency community are more robust across platforms than the CVE community,
and the influence structures on Twitter are more robust across communities in comparison
to those on GitHub.

Figure 4. The mean total number of users at each level by platforms and communities for empirical
networks and their scale-free networks. The user distribution of the common vulnerable exposure
(CVE) community follows the scale-free null model closer than the cryptocurrency community.

Figure 5. The cumulative sum of the mean total number of users at each level by platforms and
communities for empirical networks and their scale-free networks. The cumulative user distribution
of CVE community follows the scale-free null model closer than cryptocurrency community.
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Table 2. Jensen–Shannon Divergence test statistics for each empirical network from its corresponding
scale-free null model. Jensen–Shannon (JS) divergences are the smallest within the CVE communities
and their scale-free null models, in comparison to that of the cryptocurrency communities.

Community Platform JS-Divergence

CVE GitHub 0.0964
Crypto GitHub 0.1765

CVE Twitter 0.0858
Crypto Twitter 0.2138

Table 3. Jensen–Shannon Divergence test statistics between each empirical network. JS divergences
are the least within communities and across varying platforms, in comparison to within platforms
across varying communities.

Community 1 Platform 1 Community 2 Platform 2 JS-Divergence

Crypto GitHub Crypto Twitter 0.1634
CVE GitHub CVE Twitter 0.1944

Crypto Twitter CVE Twitter 0.1983
Crypto GitHub CVE GitHub 0.3414

We then compare the distributions of influence over cascade level by action for the
empirical networks against their corresponding scale-free null models matched by network
size. Figure 6 displays the median normalized total influence exerted from lower to higher
levels by action (I, C, and S) for the four empirical networks. The same measurements for
their corresponding scale-free null models are shown in Figure 7. Figure 6 shows a clear
distinction between how different influence relationships are distributed along the cascades
within platforms and across platforms. Despite the closeness of user distributions of the
CVE networks to their corresponding scale-free null models, we observe that how influence
is distributed among this community differs from that expected through the scale-free null
models. We observe a similar difference in influence distribution from the scale-free null
models for the cryptocurrency community. We observed that GH-Crypto, TW-Crypto, and
TW-CVE have a common shape to their influence cascade, with the highest fraction of
influence flow for most relationships in these platform-communities happening towards
the middle of the cascade. However, for GH-CVE this happens at the head of the cascade.
Interestingly, the distribution of influence seen in GH-CVE, which has a smaller influence
network size (151 users), is similar to that seen in the larger networks of GH-Crypto and
TW-Crypto scale-free null models (1406 and 3365 users respectively).

These results indicate that root nodes in GH-CVE are more influential compared to
all of the other users in the cascade, whereas root nodes in the cryptocurrency community
and the TW-CVE community are not very different from the other users in the cascades
in terms of the amount of influence they exert on others. This can be explained by the
popularity of and interest towards cryptocurrencies among all the users regardless of
platform and difference in the interest of users on CVE’s in different platforms. Moreover,
these results indicate that influence cascades of empirical networks have less similarity with
the scale-free null models by further confirming the effect of communities and platforms
on influence cascades.

Furthermore, it was observed that not all nine influence relationships existed between
every consecutive level of the influence cascades for any of the social networks, unlike that
observed in the scale-free null models. This means that influence exerted by users is not
uniform and depends on the type of action they are more inclined to perform given their
platform and community, and also that the preference for certain actions is heterogeneous
among users of a particular platform and community. Specifically, we observed that
influence cascades of Twitter have a more equal distribution of influence through all three
actions. Instead, we observe that contribution actions have more influence throughout the
cascades observed on GitHub. This result can be explained by the differences in the nature
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of GitHub and Twitter. That is, GitHub is a platform for developers that are intensively
involved in open source software development, but Twitter serves as a platform to share
and post short discussions.

Figure 6. The median normalized total influence, by activity types I, C and S, along with the levels of
the influence cascades of the GitHub (GH)-Crypto, GH-common vulnerable exposure (CVE), Twitter
(TW)-Crypto, and TW-CVE empirical networks. The typical influence cascade in GH-CVE is much
longer than the other platform-communities and is dominated by contribution actions influenced by
contribution actions.

Figure 7. The median normalized total influence, by activity types I, C and S, along with the levels
of the uniformly distributed influence cascades over the scale-free null models corresponding to
GH-Crypto, GH-CVE, TW-Crypto, and TW-CVE influence networks by equal network size.

The residuals between the median normalized total influence values by relationship,
over cascade level, of the empirical networks when compared to those of their correspond-
ing scale-free null models across both platforms and communities are shown in Figure 8.
Again we observe that the distribution of influence on GH-CVE is very different compared
to that of the other three networks for almost all relationship types, except for C → S.
Furthermore, we see that the differences between cryptocurrency community influence
cascades on GitHub and Twitter occur through S→ C and C → S relationships.
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Figure 8. The residuals between the median normalized total influence values by relationship, over cascade level, of the
empirical networks when compared to those of their corresponding scale-free null models. Most relationships in the
cryptocurrency community seem correlated despite the difference in platform.

In the case of Spearman’s correlation tests, the null hypothesis for our experiments
is that there is no correlation between the residuals in the magnitude of influence of two
platform-communities when examined by the nine action-action relationships. The results
of this test at original significance = 0.05 (Bonferroni-corrected significance = 0.0055) are
shown in Table 4. The only significant correlations were observed between GitHub and
Twitter within the cryptocurrency community for most influence relationship types, with
the exception of C → S and S → C. In other words, how influence was propagating
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within the cryptocurrency community over both Twitter and GitHub were similar with the
exception of contribution and sharing events. This result can be explained by the higher
importance that contribution events (such as commits, and commit comments) have within
GitHub, compared against the popularity that sharing (or retweeting) has on Twitter. In
contrast, we can state that how influence is propagated within the CVE community differs
based on the platform, Twitter or GitHub, upon which the users interact. We can also state
that there are no similarities in how influence is propagated when comparing between the
two communities on either platform. Appendix A.1 provides further visual validation via
scatter graphs for each test above. It must be noted that an ANOVA could not be applied
in place of the above correlation test as the residuals of the influence relationships failed to
satisfy the normality assumption (Further information in Appendix A.2).

Table 4. Spearman’s correlation for the H0: there is no correlation between the residuals in magnitude of influence of two
platform-communities by relationship, at original significance = 0.05 (Bonferroni-corrected significance = 0.0055). For each
platform-community, the results for the influence relationships compared are sorted in descending order of correlation
coefficient. The only significant correlations are observed between the influence relationships of the cryptocurrency
community on Twitter and GitHub, with the exception of C → S and S→ C.

Community 1 Platform 1 Community 2 Platform 2 Influence Relationship ρ p-Value

Crypto GitHub Crypto Twitter

I → I 1 0
I → C 1 0
I → S 1 0
C → I 1 0
C → C 1 0
S→ I 1 0
S→ S 1 0
C → S 0.8 0.2
S→ C 0.4 0.6

CVE GitHub CVE Twitter

I → I 0.4 0.6
I → S 0.4 0.6
C → C 0.4 0.6
S→ S 0.4 0.6
I → C 0.2 0.8
C → I 0.2 0.8
S→ I 0.2 0.8
S→ C 0.2 0.8
C → S −0.2 0.8

Crypto Twitter CVE Twitter

I → I 0.8 0.2
I → C 0.8 0.2
I → S 0.8 0.2
C → I 0.8 0.2
S→ I 0.8 0.2
S→ C 0.8 0.2
S→ S 0.8 0.2
C → S 0.4 0.6
C → C −0.2 0.8

Crypto GitHub CVE GitHub

C → S 0.4 0.6
I → I 0 1
I → S 0 1
C → C 0 1
S→ S 0 1
I → C −0.4 0.6
C → I −0.4 0.6
S→ I −0.4 0.6
S→ C −0.4 0.6
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5. Discussion

We examine social networks through the perspective of influence propagation based
on user actions, and compare four social networks, the cryptocurrency and CVE communi-
ties of Twitter and GitHub. In order to facilitate cross-platform comparison, we categorized
actions into three abstract types that existed on multiple social media platforms: initiation,
contribution, and sharing. The influence of these actions by users on further actions by
other users was measured for all nine resulting relationships. We propose a novel method
to measure and visualize the social influence exerted by users through these actions over
time. We illustrate how transfer entropy can be used as the measurement of influence
to estimate the degree to which causal relationships existed between user actions. User
pairs that had at least one influence relationship of non-zero magnitude formed the basis
of a network of influence. Users of this network that were not influenced by others, but
did exert influence on others were selected as the roots of influence cascades. The users
influenced by these root influencers were identified recursively, extracting cascades of
influence, propagated via all nine relationships. The extracted empirical influence cascades
were compared against uniform influence cascades on scale-free networks of equal node
count, as null models.

Our results indicate that the manner in which influence cascades through online social
media is affected by the social media platform and the online community. In particular, we
find that the cryptocurrency community exhibits influence structures that are similar across
both GitHub and Twitter, while this is not true for the CVE interest community. More
specifically, within the cryptocurrency community, we notice that the only significant differ-
ence in influence cascades exist between relationships where contribution actions influence
sharing actions, and vice versa. In other words, the influence relationships that exist be-
tween users engaged in cryptocurrency related development on GitHub and the influence
relationships that exist between users engaged in cryptocurrency discussions are similar,
with the exception of contribution actions influencing sharing actions (or sharing influenc-
ing contribution). The fact that code-development on GitHub is driven primarily through
contribution actions, such as commits and pull-requests, while Twitter is driven by sharing
actions, specifically retweets, offers an explanation for this exception. This technique and
visualization enable the automatic identification and analysis of these differences.

In contrast, there is no similarity between the influence relationships on GitHub and
Twitter within the CVE community. Additionally, we see that the influence cascades of
the CVE developers on GitHub are longer than those of the CVE discussions on Twitter.
This leads us to conclude that CVE developers on GitHub are generally more responsive to
social influence than users discussing CVE related topics on Twitter. Further, we observe
generally longer cascades of contribution actions influencing contributions actions within
the CVE community on GitHub. In other words, individuals of the CVE community are
more likely to engage in contributions to GitHub projects in the CVE domain than engage
in CVE related discussions on Twitter.

Finally, we find evidence that the influence structures of Twitter show higher similarity
across communities, compared to those of GitHub. However, we do not find any individual
influence relationships across the two communities on Twitter that show significantly
similar progressions of the magnitude of influence over cascade level.

Some of these differences in platforms versus communities may have to do with
the nature of the communities themselves. Cryptocurrencies have been a growing topic
since Bitcoin was introduced to the financial market as a medium of exchange. Hence, we
could explain the similar organizational structure in the Crypto community as a fact of the
popularity of the cryptocurrencies in both Twitter and GitHub. However, the structural
differences in the relationships where contribution actions influence sharing actions and
sharing actions influence contribution actions can be explained as a result of the different
nature of the contribution and sharing actions in GitHub and Twitter.

However, unlike cryptocurrencies, discussions of cyber-vulnerabilities maybe very
different on Twitter and GitHub. On Twitter, CVE discussions may be interesting to one



Entropy 2021, 23, 160 16 of 26

group of users who are interested in the news around CVEs, while on Github, the most
active users may be individuals who are actively trying to develop solutions to CVEs. This
disparity between the types of users engaged on Twitter versus Github is greater for the
CVE community than the Cryptocurrency community.

6. Conclusions and Future Work

We present one of the first general methods of tracking influence cascades, as opposed
to information cascades, on social media, by using a platform-independent action classifi-
cation and measuring the transfer entropy between timeseries of these actions. We extend
the existing literature by discarding the traditional monolithic notion of influence, and
by providing new insights into the differences and similarities of how social influence
propagates within and across different communities and platforms. Overall, our study
contributes to the literature and science by (1) presenting a novel method to track influence
relationships caused by actions of OSNs, (2) providing new insights to improve state-of-art
methods that assume a monolithic notion of influence and homogeneous populations, (3)
characterizing influence cascades caused by actions of social network media across plat-
forms and communities and, (4) presenting the evidence to show that depth and structure
of influence cascades are determined by the platform and community.

Although in this study we have analyzed networks within the confines of a specific
platform and community, this technique does not limit us from analyzing cross-platform
influence cascades. For example, this could happen if a user on GitHub reads a Tweet criti-
cal of a CVE, but decides to respond to it not by tweeting, but by modifying or commenting
on code pertaining to the respective vulnerability on GitHub instead. Accordingly, future
work will extend the current analysis by exploring the characteristics of such cross-platform
influence cascades. Moreover, it is also exciting to explore the influence cascades of other
communities and platforms in future work.
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CVE Cyber-vulnerabilities
GH GitHub
TW Twitter
JS Jensen–Shannon

Appendix A. Statistical Tests

Appendix A.1. Spearman’S Correlation Test

We present here scatter plots corresponding to each Spearman’s correlation test which
we performed. We observe that except for the Crypto community (Figure A1) neither CVE
community (Figure A2) nor GitHub (Figure A3), Twitter (Figure A4) platforms have a
clear monotonic relation. Further, we observe that contribution to sharing and sharing
to contribution influence relationships in the Crypto community do not show a clear
monotonic relation.

Figure A1. The scatter plot of residuals of median total influence values of GitHub and Twitter platforms in the Crypto
community.
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Figure A2. The scatter plot of residuals of median total influence values of GitHub and Twitter platforms in the CVE com-
munity.
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Figure A3. The scatter plot of residuals of median total influence values of the Crypto and CVE community on GitHub.
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Figure A4. The scatter plot of residuals of median total influence values of the Crypto and CVE community on Twitter.

Appendix A.2. Factorial ANOVA Test

We examine the use of the factorial ANOVA test as a statistical significance test to infer
the similarities of the structure of the influence cascades across platforms and communities.
Forty influence cascades are chosen randomly from the set of influence cascades extracted
from each empirical influence networks. The residual values between total normalized
influence vector components and the median total normalized influence vector components
of the influence cascades from the corresponding scale-free network are calculated. Data
is grouped by platform-community, influence relationships, and level, and the normality
of each data set was examined using the Shapiro-Wilk test. The p-values are compared
with 0.05. Not all the data sets were able to satisfy the normality assumption as shown
in Tables A1–A4 . Also, the normality of the residual of the factorial ANOVA model is
examined using the Shapiro-Wilk test. However, the test is failed with a p-value of less than
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0.05. and the Figure A5 shows the nonlinear relationship between theoretical quantities
and sample quantities, which support the non-normality of the residuals.

Table A1. Test statistics of factorial ANOVA (Part I).

Platform-Community Influence Relationship Level Statistics p-Value H0

GitHub-CVE contributionTocontribution 1 0.78 2.72 × 10−6 rejected
GitHub-CVE contributionTocontribution 2 0.9 1.79 × 10−3 rejected
GitHub-CVE contributionTocontribution 3 0.93 1.53 × 10−2 rejected
GitHub-CVE contributionTocontribution 4 0.8 8.28 × 10−6 rejected
GitHub-CVE contributionToinitiation 1 0.39 1.04 × 10−11 rejected
GitHub-CVE contributionToinitiation 2 1 1.00 × 100 not rejected
GitHub-CVE contributionToinitiation 3 1 1.00 × 100 not rejected
GitHub-CVE contributionToinitiation 4 1 1.00 × 100 not rejected
GitHub-CVE contributionTosharing 1 0.23 3.25 × 10−13 rejected
GitHub-CVE contributionTosharing 2 0.64 1.05 × 10−8 rejected
GitHub-CVE contributionTosharing 3 0.61 4.91 × 10−9 rejected
GitHub-CVE contributionTosharing 4 1 1.00 × 100 not rejected
GitHub-CVE initiationTocontribution 1 0.39 1.04 × 10−11 rejected
GitHub-CVE initiationTocontribution 2 1 1.00 × 100 not rejected
GitHub-CVE initiationTocontribution 3 1 1.00 × 100 not rejected
GitHub-CVE initiationTocontribution 4 1 1.00 × 100 not rejected
GitHub-CVE initiationToinitiation 1 1 1.00 × 100 not rejected
GitHub-CVE initiationToinitiation 2 1 1.00 × 100 not rejected
GitHub-CVE initiationToinitiation 3 1 1.00 × 100 not rejected
GitHub-CVE initiationToinitiation 4 1 1.00 × 100 not rejected
GitHub-CVE initiationTosharing 1 1 1.00 × 100 not rejected
GitHub-CVE initiationTosharing 2 1 1.00 × 100 not rejected
GitHub-CVE initiationTosharing 3 1 1.00 × 100 not rejected
GitHub-CVE initiationTosharing 4 1 1.00 × 100 not rejected
GitHub-CVE sharingTocontribution 1 0.23 3.25 × 10−13 rejected
GitHub-CVE sharingTocontribution 2 1 1.00 × 100 not rejected
GitHub-CVE sharingTocontribution 3 1 1.00 × 100 not rejected
GitHub-CVE sharingTocontribution 4 1 1.00 × 100 not rejected
GitHub-CVE sharingToinitiation 1 1 1.00 × 100 not rejected
GitHub-CVE sharingToinitiation 2 1 1.00 × 100 not rejected
GitHub-CVE sharingToinitiation 3 1 1.00 × 100 not rejected
GitHub-CVE sharingToinitiation 4 1 1.00 × 100 not rejected
GitHub-CVE sharingTosharing 1 1 1.00 × 100 not rejected
GitHub-CVE sharingTosharing 2 1 1.00 × 100 not rejected
GitHub-CVE sharingTosharing 3 1 1.00 × 100 not rejected
GitHub-CVE sharingTosharing 4 1 1.00 × 100 not rejected

Table A2. Test statistics of factorial ANOVA (Part II).

Platform-Community Influence Relationship Level Statistics p-Value H0

GitHub-Crypto contributionTocontribution 1 0.73 3.02 × 10−7 rejected
GitHub-Crypto contributionTocontribution 2 0.89 1.32 × 10−3 rejected
GitHub-Crypto contributionTocontribution 3 0.91 3.21 × 10−3 rejected
GitHub-Crypto contributionTocontribution 4 0.3 1.36 × 10−12 rejected
GitHub-Crypto contributionToinitiation 1 0.42 2.43 × 10−11 rejected
GitHub-Crypto contributionToinitiation 2 0.77 2.07 × 10−6 rejected
GitHub-Crypto contributionToinitiation 3 0.77 2.11 × 10−6 rejected
GitHub-Crypto contributionToinitiation 4 1 1.00 × 100 not rejected
GitHub-Crypto contributionTosharing 1 1 1.00 × 100 not rejected
GitHub-Crypto contributionTosharing 2 0.95 5.75 × 10−2 not rejected
GitHub-Crypto contributionTosharing 3 0.95 5.75 × 10−2 not rejected
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Table A2. Cont.

Platform-Community Influence Relationship Level Statistics p-Value H0

GitHub-Crypto contributionTosharing 4 1 1.00 × 100 not rejected
GitHub-Crypto initiationTocontribution 1 0.15 6.64 × 10−14 rejected
GitHub-Crypto initiationTocontribution 2 0.6 3.49 × 10−9 rejected
GitHub-Crypto initiationTocontribution 3 0.57 1.13 × 10−9 rejected
GitHub-Crypto initiationTocontribution 4 1 1.00 × 100 not rejected
GitHub-Crypto initiationToinitiation 1 1 1.00 × 100 not rejected
GitHub-Crypto initiationToinitiation 2 0.63 7.16 × 10−9 rejected
GitHub-Crypto initiationToinitiation 3 0.23 3.25 × 10−13 rejected
GitHub-Crypto initiationToinitiation 4 1 1.00 × 100 not rejected
GitHub-Crypto initiationTosharing 1 1 1.00 × 100 not rejected
GitHub-Crypto initiationTosharing 2 0.6 3.26 × 10−9 rejected
GitHub-Crypto initiationTosharing 3 0.15 6.64 × 10−14 rejected
GitHub-Crypto initiationTosharing 4 1 1.00 × 100 not rejected
GitHub-Crypto sharingTocontribution 1 0.65 1.72 × 10−8 rejected
GitHub-Crypto sharingTocontribution 2 0.65 1.68 × 10−8 rejected
GitHub-Crypto sharingTocontribution 3 0.77 1.70 × 10−6 rejected
GitHub-Crypto sharingTocontribution 4 1 1.00 × 100 not rejected
GitHub-Crypto sharingToinitiation 1 0.15 6.64 × 10−14 rejected
GitHub-Crypto sharingToinitiation 2 0.29 1.19 × 10−12 rejected
GitHub-Crypto sharingToinitiation 3 1 1.00 × 100 not rejected
GitHub-Crypto sharingToinitiation 4 1 1.00 × 100 not rejected
GitHub-Crypto sharingTosharing 1 1 1.00 × 100 not rejected
GitHub-Crypto sharingTosharing 2 0.15 6.64 × 10−14 rejected
GitHub-Crypto sharingTosharing 3 1 1.00 × 100 not rejected
GitHub-Crypto sharingTosharing 4 1 1.00 × 100 not rejected

Table A3. Test statistics of factorial ANOVA (Part III).

Platform-Community Influence Relationship Level Statistics p-Value H0

Twitter-CVE contributionTocontribution 1 0.15 6.64 × 10−14 rejected
Twitter-CVE contributionTocontribution 2 1 1.00 × 100 not rejected
Twitter-CVE contributionTocontribution 3 1 1.00 × 100 not rejected
Twitter-CVE contributionTocontribution 4 1 1.00 × 100 not rejected
Twitter-CVE contributionToinitiation 1 0.15 6.64 × 10−14 rejected
Twitter-CVE contributionToinitiation 2 0.62 5.59 × 10−9 rejected
Twitter-CVE contributionToinitiation 3 0.15 6.64 × 10−14 rejected
Twitter-CVE contributionToinitiation 4 1 1.00 × 100 not rejected
Twitter-CVE contributionTosharing 1 0.22 2.81 × 10−13 rejected
Twitter-CVE contributionTosharing 2 0.63 7.17 × 10−9 rejected
Twitter-CVE contributionTosharing 3 0.61 4.53 × 10−9 rejected
Twitter-CVE contributionTosharing 4 1 1.00 × 100 not rejected
Twitter-CVE initiationTocontribution 1 0.59 2.07 × 10−9 rejected
Twitter-CVE initiationTocontribution 2 0.65 1.67 × 10−8 rejected
Twitter-CVE initiationTocontribution 3 1 1.00 × 100 not rejected
Twitter-CVE initiationTocontribution 4 1 1.00 × 100 not rejected
Twitter-CVE initiationToinitiation 1 0.79 4.87 × 10−6 rejected
Twitter-CVE initiationToinitiation 2 0.85 9.62 × 10−5 rejected
Twitter-CVE initiationToinitiation 3 0.74 4.97 × 10−7 rejected
Twitter-CVE initiationToinitiation 4 1 1.00 × 100 not rejected
Twitter-CVE initiationTosharing 1 0.62 6.69 × 10−9 rejected
Twitter-CVE initiationTosharing 2 0.8 7.55 × 10−6 rejected
Twitter-CVE initiationTosharing 3 0.64 1.21 × 10−8 rejected
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Table A3. Cont.

Platform-Community Influence Relationship Level Statistics p-Value H0

Twitter-CVE initiationTosharing 4 1 1.00 × 100 not rejected
Twitter-CVE sharingTocontribution 1 0.15 6.64 × 10−14 rejected
Twitter-CVE sharingTocontribution 2 0.54 5.09 × 10−10 rejected
Twitter-CVE sharingTocontribution 3 0.23 3.25 × 10−13 rejected
Twitter-CVE sharingTocontribution 4 1 1.00 × 100 not rejected
Twitter-CVE sharingToinitiation 1 0.45 4.74 × 10−11 rejected
Twitter-CVE sharingToinitiation 2 0.7 1.17 × 10−7 rejected
Twitter-CVE sharingToinitiation 3 0.44 3.48 × 10−11 rejected
Twitter-CVE sharingToinitiation 4 1 1.00 × 100 not rejected
Twitter-CVE sharingTosharing 1 0.33 2.45 × 10−12 rejected
Twitter-CVE sharingTosharing 2 0.71 1.30 × 10−7 rejected
Twitter-CVE sharingTosharing 3 0.46 6.44 × 10−11 rejected
Twitter-CVE sharingTosharing 4 1 1.00 × 100 not rejected

Table A4. Test statistics of factorial ANOVA (Part IV).

Platform-Community Influence Relationship Level Statistics p-Value H0

Twitter-Crypto contributionTocontribution 1 0.36 5.16 × 10−12 rejected
Twitter-Crypto contributionTocontribution 2 0.65 1.40 × 10−8 rejected
Twitter-Crypto contributionTocontribution 3 0.56 8.47 × 10−10 rejected
Twitter-Crypto contributionTocontribution 4 1 1.00 × 100 not rejected
Twitter-Crypto contributionToinitiation 1 0.53 3.80 × 10−10 rejected
Twitter-Crypto contributionToinitiation 2 0.69 7.75 × 10−8 rejected
Twitter-Crypto contributionToinitiation 3 0.52 2.98 × 10−10 rejected
Twitter-Crypto contributionToinitiation 4 1 1.00 × 100 not rejected
Twitter-Crypto contributionTosharing 1 0.26 6.03 × 10−13 rejected
Twitter-Crypto contributionTosharing 2 0.61 4.73 × 10−9 rejected
Twitter-Crypto contributionTosharing 3 0.55 6.01 × 10−10 rejected
Twitter-Crypto contributionTosharing 4 1 1.00 × 100 not rejected
Twitter-Crypto initiationTocontribution 1 0.42 1.96 × 10−11 rejected
Twitter-Crypto initiationTocontribution 2 0.36 5.14 × 10−12 rejected
Twitter-Crypto initiationTocontribution 3 0.36 5.42 × 10−12 rejected
Twitter-Crypto initiationTocontribution 4 0.15 6.64 × 10−14 rejected
Twitter-Crypto initiationToinitiation 1 0.45 4.32 × 10−11 rejected
Twitter-Crypto initiationToinitiation 2 0.36 5.45 × 10−12 rejected
Twitter-Crypto initiationToinitiation 3 0.22 2.70 × 10−13 rejected
Twitter-Crypto initiationToinitiation 4 0.15 6.64 × 10−14 rejected
Twitter-Crypto initiationTosharing 1 0.31 1.83 × 10−12 rejected
Twitter-Crypto initiationTosharing 2 0.25 5.11 × 10−13 rejected
Twitter-Crypto initiationTosharing 3 0.24 3.90 × 10−13 rejected
Twitter-Crypto initiationTosharing 4 0.15 6.64 × 10−14 rejected
Twitter-Crypto sharingTocontribution 1 0.67 2.85 × 10−8 rejected
Twitter-Crypto sharingTocontribution 2 0.64 1.25 × 10−8 rejected
Twitter-Crypto sharingTocontribution 3 0.58 1.52 × 10−9 rejected
Twitter-Crypto sharingTocontribution 4 0.15 6.64 × 10−14 rejected
Twitter-Crypto sharingToinitiation 1 0.75 7.77 × 10−7 rejected
Twitter-Crypto sharingToinitiation 2 0.79 4.20 × 10−6 rejected
Twitter-Crypto sharingToinitiation 3 0.49 1.37 × 10−10 rejected
Twitter-Crypto sharingToinitiation 4 1 1.00 × 100 not rejected
Twitter-Crypto sharingTosharing 1 0.71 1.30 × 10−7 rejected
Twitter-Crypto sharingTosharing 2 0.58 1.55 × 10−9 rejected
Twitter-Crypto sharingTosharing 3 0.48 1.06 × 10−10 rejected
Twitter-Crypto sharingTosharing 4 0.15 6.64 × 10−14 rejected
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Figure A5. The normal probability plot of residuals of the factorial ANOVA model.
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