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Abstract: Early life is characterized by developmental milestones such as holding up the head,
turning over, sitting up and walking that are typically achieved sequentially in specific time windows.
Similarly, the early gut microbiome maturation can be characterized by specific temporal microor-
ganism acquisition, colonization and selection with differential functional features over time. This
orchestrated microbial sequence occurs from birth during the first years of age before the microbiome
reaches an adult-like composition and function between 3 and 5 years of age. Increasingly, these
different steps of microbiome development are recognized as crucial windows of opportunity for
long term health, primarily linked to appropriate immune and metabolic development. For instance,
microbiome disruptors such as preterm and Cesarean-section birth, malnutrition and antibiotic
use are associated with increased risk to negatively affect long-term immune and metabolic health.
Different age discriminant microbiome taxa and functionalities are used to describe age-appropriate
microbiome development, and advanced modelling techniques enable an understanding and vi-
sualization of an optimal microbiome maturation trajectory. Specific microbiome features can be
related to later health conditions, however, whether such features have a causal relationship is the
topic of intense research. Early life nutrition is an important microbiome modulator, and ‘Mother
Nature’ provides the model with breast milk as the sole source of nutrition for the early postnatal
period, while dietary choices during the prenatal and weaning period are to a large extent guided
by tradition and culture. Increasing evidence suggests prenatal maternal diet and infant and child
nutrition impact the infant microbiome trajectory and immune competence development. The lack of
a universal feeding reference for such phases represents a knowledge gap, but also a great opportu-
nity to provide adequate nutritional guidance to maintain an age-appropriate microbiome for long
term health. Here, we provide a narrative review and perspective on our current understanding of
age-appropriate microbiome maturation, its relation to long term health and how nutrition shapes
and influences this relationship.

Keywords: microbiome; nutrition; immunity; infants; toddlers

1. Co-Development in Our Gut as a Strategy for Life

The first 1000 days, roughly from conception to the child’s second birthday, represent
a series of critical windows of opportunities for healthy development and long-term health.
During this period important foundations for immediate and long-term health are built.
Human biology is driven by interaction and communication processes including those from
and to our abiotic and biotic environment. Among the latter, the diversity and abundance
of different microbes are a key element. A distinctive microbial community present in a
defined habitat and their activity is generally referred to as microbiome. It is composed
of the microbiota, an assembly of microorganisms such as bacteria, archaea, protozoa,

Microorganisms 2021, 9, 2110. https://doi.org/10.3390/microorganisms9102110 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-3142-9542
https://orcid.org/0000-0003-4880-2750
https://doi.org/10.3390/microorganisms9102110
https://doi.org/10.3390/microorganisms9102110
https://doi.org/10.3390/microorganisms9102110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9102110
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9102110?type=check_update&version=2


Microorganisms 2021, 9, 2110 2 of 22

fungi and algae along with the products of their activity, such as microbial components,
metabolites and mobile genetic elements (e.g., transposons, phages) all embedded in a
specific habitat [1]. Most importantly, the microbial activities within a community, their
interactions among them and with their host habitat drive the dynamics and establishment
of a stable ecology. While the critical importance of the gut microbiome for health has been
recognized for at least a century with the groundbreaking work of Metchnikoff [2], only
recent years saw an increasing appreciation of the critical window represented by the highly
dynamic maturation of the infant gut microbiome. Lessons to this end stem primarily from
associations seen in case–control observational studies and from clinical observations that
involve early life microbiome disruptors (e.g., antibiotics) and modulators (e.g., nutrition).
The extent to which microbiome changes have a causal link to the observed developmental
and health outcomes requires mechanistic insight in the clinical setting or substantiation
using preclinical models such as gnotobiotic animals (transfer of infant microbiota) to
replicate clinical phenotypes.

Epidemiologic surveys led Barker and Osmond to indicate that poor nutrition in early
life increases the risk for later cardiovascular health and possibly other health conditions
such as bronchitis, for example [3]. Insight from nutritional studies with preterm born
infants led Alan Lucas to formulate the concept of ‘programming’, suggesting that a
stimulus or insult during a critical period of development exerts not only immediate, but
likely also lasting long-term effects that contribute to health and disease [4,5]. Together
with experimental findings from rodent models, this concept was further developed and
is today largely recognized and known as DOHAD (developmental origins of health and
disease) [6].

As recently reviewed, accumulating evidence demonstrates that the gut microbiome
contributes to this early life imprinting, particularly through its effects on the developing
immune system [7,8]. The establishment of the microbial-host symbiosis relies on the
mutualistic co-development of the host, microbiota and immune system from its very first
encounter and sets the stage towards a healthy trajectory. This ultimately begs the question
of what are the processes that are in place early in life to establish a successful partnership?
To answer this question, the two following concepts are currently discussed in the field [7,9]:
(i) There are critical time windows for microbial colonization and concomitant immune
development. In these windows, non-redundant priming of the immune system by the
microbiome directs the behavior of the immune system later in life. (ii) The right symbionts
need to colonize the intestine at the right time. Such an orchestrated sequence of microbial
colonization may ensure a cascade of immune development in a timely manner.

Figure 1 provides a general overview on microbiome-relevant determinants and features
at different stages during development in relation to immune development and nutrition.
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Figure 1. Schematic representation of the early life gut microbiome and immune development dynamics with feeding
recommendations and major risk factors.

2. Establishment of the Gut-Microbiome Mutualism

The exposure to microbiome elements begins prenatally through maternal microbial
components and metabolites. However, if and to what extent the fetus is exposed to life
microbes, challenging the paradigm of a sterile womb, is highly debated [10,11]. Exposure
of the normally developing fetus to metabolites and components, possibly including DNA
yet only sparsely found, from the maternal microbiome is plausible, while exposure to
life microbes is not. During gestation, microbial metabolites affect the developing fetus
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as suggested by different studies. For example, intake of a poor and inadequate diet
characterized by high sugar and low fiber content, likely affecting the gut microbiome,
was associated with a higher risk for severe viral respiratory infections in infants [12]. It is
not established whether these effects were due to an in utero priming through microbial
metabolites or to an inadequate seeding of microbes from mother to infant. In another study
focusing on preeclampsia condition, the microbially produced maternal short chain fatty
acid (SCFA) acetate was linked to fetal plasma acetate and regulatory T-cell development
with lasting postnatal effects [13]. In concordance with this study, gestational carriage
of Prevotella copri, an acetate producing microbe, is strongly linked to a decreased risk of
infant food allergy manifestation independent of infant Prevotella copri carriage [14]. Of
note, different clades of Prevotella copri are described and their presence in populations with
a Westernized lifestyle seems strongly reduced [15]. Possibly, such Prevotella copri clade
diversity informs as to why in some studies Prevotella copri has been related to inflammatory
conditions while in other studies it was linked with health promoting effects [16]. These
observations may partly be due to different microbial component exposure in utero and to
dysbiotic microbiota seeding at birth. As recently shown in mice, higher maternal SCFA
(e.g., acetate) was shown to reduce the allergy risk of their offspring mediated through
regulatory T-cell expansion and function [17]. Similarly, in a rodent model, maternal intake
of aryl hydrocarbon receptor (AHR) ligands reduces postnatal TLR4 signaling in pups
and thereby protects from NEC [18]. Microbial metabolites such as indole-lactate derived
from tryptophan can activate AHR, indicating that maternal microbial metabolites may
also influence neonatal gut immune compartments through AHR signaling. At birth, the
microbiome-host interaction intensifies and becomes more direct with the initiation of a
bona fide microbial colonization of the infant [19–21]. At delivery, the microbiologically
essentially sterile infant is exposed to a multitude of microbes from the mother and the
environment. In the context of microbiome inheritance, it is important to note that sig-
nificant maternal gut microbiota changes were reported to occur over pregnancy, such as
an expansion of some taxa, such as Actinobacteria and Proteobacteria, as well as a higher
interindividual diversity [22] towards the third trimester, in line with the physiological
changes and adaptions in immune function. Interestingly, women’s diet during pregnancy
relates to some extent to the observed microbial communities in their infant when vaginally
delivered, highlighting the importance of vertical microbiota transmission [23]. Primarily,
the infant gut is colonized by maternal gut and skin microbes, during birth and breastfeed-
ing, with additional microbial input from the environment including siblings, father and
other household members [19,24–26].

‘Birth seeds, breast milk feeds’ captures the current thinking on the early life mi-
crobiome development in the infant gut. This concept, with microbiome inheritance
and nurturing as foundations, can be further characterized by progression and mainte-
nance [27–29]. The gut is colonized progressively and sequentially with distinct microbial
populations during infancy and early childhood from an aerobic to an anaerobic milk-
oriented microbiome first, then to a more diverse adult-like microbiome [24]. This concept
is reinforced by the observation that the intra-individual alpha diversity of an infant’s gut
microbiome is low during early life and increases over time with a concomitant reduction in
inter-individual beta-diversity [24]. Not surprisingly, the compositional changes also reflect
to some extent microbial functional competencies, as illustrated by marked changes in the
abundance of microbial carbohydrate active enzymes (CAZymes) [30] and other metabolic
pathways [29]. These illustrate microbiome changes as an adaptation to exogenous factors
such as diet as well as endogenous to the microbial ecology including the interaction with
the developing gut. Gut immune components, such as secretory immunoglobulin (Ig) A
and defensins, together with epithelial and mucous glycosylation patterns change while
the gut develops and likely play an important role in setting the stage for the development
of host-microbiome mutualism.

The intestinal barrier built of mucus and underlying epithelial cells is primarily consid-
ered a physical barrier contributing together with numerous immune defense components,
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including secretory IgAs and defensins, to modulate the microbiome and host relationship.
The physicochemical properties of the mucous barrier are largely driven by the abundance
of diverse glycan structures [31]. Developmental changes in glycosylation patterns on mu-
cosal surfaces are expected to guide microbiome maturation including mucous-associated
microbes that potentially interact closest with the developing gut and immune system [32].
Specific microbes dwell on glycans exposed on mucous, which can be considered as feed-
ing from inside, as opposed to feeding through diet, and this mechanism may greatly
contribute to establishing an appropriate gut ecology.

3. Microbiome Maturation Windows of Opportunity for Immune Development

Appreciation of the importance of the microbiome in immune system development
stems mainly from observations related to microbiome risk factors or perturbations. These
can be exogenous factors, such as inadequate microbial component exposure during
gestation, Cesarean (C)-section birth and antibiotic exposure, or endogenous conditions,
such as gut developmental immaturity due to premature birth [33–37].

Preterm infants generally show a delayed and irregular microbiome maturation com-
pared to term infants [33,34]. For term infants, C-section delivery, often in conjunction
with antibiotic use, is one of the primary disruptors of the early life microbiome matura-
tion [35]. Of note, an elective and emergency C-section may not bear the same risks for an
appropriate microbiome establishment [36] with an emergency C-section possibly having
additional underlying risks, besides the birth mode per se. Often, a delay in establishing a
‘Bifidobacterium peak’ around 3 months of age is observed in infants exposed to micro-
biome disruptors, such as preterm birth, C-section birth and early antibiotic use [38]. While
the exact role of the Bifidobacterium peak is not fully established, a promising hypothesis
is that Bifidobacterium-specific metabolites contribute to the immune and mucosal barrier
function development. For example, the tryptophan metabolite indole-lactate produced by
Bifidobacterium species, such as B. longum, B. bifidum and B. breve typically present during
the breastfeeding period, was shown to activate the aryl hydrocarbon receptor (AHR) and
hydrocarboxylic acid receptor 3, thereby contributing to appropriate mucosal immune
development [39,40]. Bifidobacterium longum subsp. infantis related metabolites including
indolelactate were also reported to skew T cell polarization, providing a molecular link to
immune regulation [41]. In addition, acetate, a typical Bifidobacterium metabolite, has been
shown to protect from infections in basic research models, in part through the type one
interferon signaling pathway [42,43].

Importantly, such risk factors during early life have been correlated in a compelling
number of studies and meta-analyses to elevated risk for inappropriate immune compe-
tence and/or metabolic development [44–49]. Accordingly, C-section birth was considered
a genuine, although modest, risk for allergic outcomes in children, with asthma having
an odds ratio (OR) of about 1.16 (95% CI 1.14–1.29), food allergy/food atopy an OR of
1.32 (95% CI 1.12–1.55) and allergic rhinitis an OR of 1.23 (95% CI 1.12–1.35), while for
eczema and atopic eczema as well as inhalant atopy, no significant risk was seen in the
meta-analysis [48]. Similarly, a recent population-based study reported a link between the
incidence of asthma at 5 years of age and antibiotic use during the first year, which altered
microbiome structures [49]. This confirms earlier observations on microbiota disruption
driven by frequent antibiotic treatment during neonatal life leading to immune dysregula-
tion and increased susceptibility to allergy later in life [50]. Such observations highlight the
importance of the early life microbiome for appropriate immune competence development.

Following the exclusive breast milk feeding period in early life, we increasingly
appreciate the weaning period as being critically important in the imprinting of the immune
system and representing one of the windows of opportunity. As mentioned, the cessation
of breastfeeding and consequent transition to other food types leads to increased bacterial
diversity and functional maturation and expansion of the gut microbiota [24]. Appropriate
microbiome diversification and progression is critical for appropriate immune competence
development as suggested by the observed associations to atopy and asthma later in
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life [27,51]. Pre-clinical evidence in mice demonstrates that increased bacterial richness
during the weaning period leads to a strong immune reaction characterized by a transient
pro-inflammatory IFNγ/TNFα-driven immune response accompanied by the induction
of microbiota-driven RORγt+ Foxp3+ regulatory T cells (Treg) [52]. Interfering with
this so-called ‘weaning reaction’ results in an inappropriate imprinting of the immune
system and subsequent increased susceptibility to allergy, colitis and cancer later in life.
Furthermore, microbial colonization after the weaning period cannot compensate for the
lack of microbiota-induced immune stimulus in early life and the weaning reaction.

Since microbiome–host immune system interactions in early life dictate long-term
immune functionality [53], it is a highly conceivable postulate that the right symbionts
need to colonize the intestine at the right time. Recently, an epidemiologic study described
higher gut microbiota maturity below 10 weeks of age and lower gut microbiota maturity
above 30 weeks of age as risks for atopic dermatitis [27]. Whether the ‘right’ symbiont
or commensals can generally be described through their taxonomy or functional capacity
needs to be established. A timely choreography of microbial colonization ensures that
microbiota-derived signals do not overwhelm the developing immune system in early life
and that these signals can be interpreted correctly for the development of both the innate
and adaptive immune system. In parallel, the intestinal T cell compartment in neonates
is characterized by high levels of suppressive regulatory T cells (as opposed to adults) to
control immune responses and maintain gut immune homeostasis [54]. Ultimately, what
we define as an immature immune system during neonatal life [55] may in fact be the result
of the orchestrated co-development of the microbiota and immune system with both key
components being in synchrony.

4. Specific Immune Triggers and Homeostasis for the Gut Microbiome Development

Given the co-development of the microbiome and the immune system, it is paramount
that microbial-derived signals are interpreted correctly by gut epithelial sensor cells and
the immune system. To this purpose, innate immune cells use a diversity of pattern
recognition receptors (PRRs) to recognize conserved molecular patterns of microbes and
these receptors are also expressed in a timely manner [56,57]. PPRs include Toll-like
receptors (TLR), nucleotide-binding oligomerization domain (NOD)-like receptors and
leptin-like receptors. Signaling of these receptors may then act as developmental triggers
for the gut microbiome.

In mice, TLR4 expression in the intestinal epithelium is downregulated before birth
coupled with an upregulation of TLR9 expression (which counteracts LPS-mediated TLR4
signaling) to prevent inappropriate immune stimulation [58,59]. Consequently, there
is a lack of intestinal epithelial cell response to LPS stimulation that is thought to pro-
mote host-microbial immune homeostasis after birth, a period during which the first
microbes start to colonize the intestine [60]. Similarly, human blood monocytes are repro-
grammed to promote immune tolerance following exposure to TLR4 ligands S100A8/A9
(calprotectin) [61]. Consistent with the need for a timed expression of different PRRs for
appropriate microbiota-immune signaling, TLR5 expression in murine gut epithelium is
restricted to the neonatal period [56]. Intestinal epithelial TLR5 is critical in shaping the
microbiome composition in early life. A lack of TLR5 expression in neonatal mice results in
an altered microbiota that persists during adulthood, resulting in increased risk of disease
development [62–64].

The compartmentalization of PRRs adds another layer of regulation to ensure correct
interpretation of microbial-derived signals. In humans, epithelial expression of TLR1-10
can be found in the small intestine, whereas the colonic epithelial cells display preferential
expression of TLR3 and, to a certain extent, TLR2 and TLR4 [65,66]. This reduced TLR4
expression coupled with lower levels of MD2, an element needed to react to LPS, leads
to intestinal epithelial cells hypo-responsiveness to LPS stimulation, which is known to
induce a pro-inflammatory response [67]. Additionally, location of epithelial TLR4-MD2
complexes in the intestine are restricted to the crypts, resulting in strategic compartmen-
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talization that may promote immune silence to gut microbial-derived signals and restrict
immune activation solely to organisms capable of reaching the deeper layers of the mucosal
epithelium [68].

Additionally, different specialized sensor cells are interspersed in the gut epithelia.
Among them are enteroendocrine and Tuft cells. These sensor cells have multiple functions,
such as local regulatory roles for gut function, systemic regulation of metabolism and food
intake, for example. Recently, thanks to single cell gene expression analysis, Tuft cells
regained interest as they specifically express several receptors and pathways relevant for
immune regulation [69–72]. For instance, the specific Tuft cell succinate receptor SUCNR1
(GPR91) through which the microbially produced succinate triggers a type two immune
response also leads to the expansion of mucus producing Paneth cells [73]. Interestingly,
the highest level of succinate in stool is reported in the first 6 months of age [74]. The role of
Tuft cells as immune sentinels in early life to shape the developing immune system remains
to be studied in detail. An important role may be expected in view of the microbiome
communities that change rather dramatically over the first postnatal year.

5. The Microbiome and Immune System Symbiosis and Its Long-Term Implications

Given the impact of the host microbiome in guiding immune system functionality,
it is critical for the host to ‘learn’ how to tolerate the microbiome. While it is abundantly
evident that early events of the microbiota-immune system co-development sets the stage
for immune imprinting, maintaining this symbiosis provides the foundation to sustain
health throughout life.

The epithelial barrier, with its immune sentinels, provides and maintains a critical
interface separating the microbiome from the underlying immune cells. Gut microbes
induce IL-22 production by intestinal innate lymphoid cells resulting in fucosyltransferase
Fut2 mediated fucosylation of epithelial cells. These fucosylated carbohydrate moieties can,
in turn, be used by the gut microbiota with fucose catabolizing capabilities as an energy
source. This mechanism was shown to promote host-microbiome symbiosis during Cit-
robacter rodentium infection [75] and enhance protection following Salmonella typhimurium
exposure [76]. In infants, a possible link between intestinal fucosylation deficits and necro-
tizing enterocolitis (NEC) was recently shown and replicated in an animal model [77]. In
preterm infants, generally a delay in microbiome maturation is observed [33,34]. However,
the extent to which the preterm microbiome may relate to intestinal fucosylation and risk
for NEC remains unknown.

Adaptive immune mechanisms involving B cell antibody production is also important
in establishing and maintaining a host–microbiota–immune dialog. The first source of
antibodies in early life is derived from the mother’s milk. This passive transfer of maternal
IgA in cooperation with IgG was shown to dampen mucosal T cell responses against
newly acquired microbes in mice [78]. Consistent with this, murine T cells still display a
naïve phenotype up to the third week of life, despite the increased exposure to microbial
antigens [79]. In infants, naïve T cells are phenotypically distinct to adult naïve T cells with
no sign of converging to an adult phenotype up to 6 months of life [80]. Within the same
cohort, it was further shown that the presence of HMO utilizing bifidobacteria correlated
with a decrease in systemic inflammation as well as intestinal T helper (Th) 2 and Th17
responses [41].

With the introduction of solid food in the diet, there is a dramatic expansion in
the diversity of gut microbes and antigens [81]. IgA is the most predominant antibody
expressed in the human intestine and plays a key role in shaping the gut microbiome
composition [82]. Using antibody repertoire sequencing, it was found that long-lived
memory B cells diversify their repertoire to adapt to the presence of microbiota [83]. By
shaping the microbiome composition and promoting microbial diversity, IgA indirectly
promotes the generation of Foxp3+ Treg cells, which are key for immune regulation and
the host’s ability to tolerate the presence of microbes [84]. These regulatory T cells, in
turn, regulate IgA responses by differentiating into T helper follicular cells to perpetuate
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a positive feedback loop, which all together promote gut–immune homeostasis. Of note,
immune encounters with bacterial-derived antigens favor the generation of Treg in the
intestine [85]. The unique repertoire of intestinal Treg as opposed to their counterparts
in other organs demonstrates that the microbiota directly shapes the repertoire of these
cells and reinforces the concept that the immune system adapts to tolerate the presence of
non-self-antigens [85]. On the other hand, higher levels of the microbial produced lipid
12,13-diHOME reduced the expansion of intestinal Treg and was related to higher risk for
later asthma manifestation [86,87].

Learning to tolerate the microbiome provides long-term health benefits by keeping
a balance between immune silence to innocuous stimuli and immune responsiveness
to pathogens. Although the mechanisms of microbiota-induced protective effects are
not completely elucidated, it is generally accepted that microbially derived metabolites
play a key role in this process. As these metabolites can reach systemic compartments,
the induced immune benefits can extend beyond the gut. Several microbial produced
metabolites, such as desaminotyrosine (DAT), promote the induction of type I interferon
responses, which protect mice against influenza infection and decrease infection-mediated
lung immunopathology [88]. Importantly, treatment with DAT prior but not after influenza
infection prevented mortality in mice, suggesting that such microbiota metabolites promote
a protective immune response. Similarly, the pretreatment of mice with a high fiber diet
that leads to increased microbial short chain fatty production or providing short chain
fatty acids prior to infection improves viral clearance following influenza or respiratory
syncytial virus infection by enhancing a local antiviral response while dampening im-
munopathology [42,89]. In addition, propionate administration to neonatal mice with
depleted plasmacytoid DCs ameliorates pneumovirus-induced bronchiolitis and subse-
quent asthma [90]. In short, keeping a balance between immune stimulation and silence
is key to be ready to respond when needed. This principle is nicely exemplified by the
gut–lung axis driven protection from viral respiratory infection via type 1 IFN protective
stimulation through gut microbial metabolites [42].

Overall, these data add to the concept that an established mutualism with the mi-
crobiome primes the host immune system to be ready for a pathogen encounter and
appropriate immune competence development. The extent to which fighting or feeding
the microbiome by endogenous as well as exogenous factors directs the establishment of a
mutually beneficial relationship warrants to be understood as an important basis to design
meaningful preventive and corrective interventions.

6. Modelling the Gut Microbiome Maturation toward a Universal Discriminant
of Health

As mentioned before, the early life microbiome changes rapidly and dramatically in
the first years of life, reflecting to some extent the infant’s development. Hence, the quest is
to characterize an appropriate gut microbiome maturation profile that starts with a rather
limited number of taxa during the first months after birth and then expands to reach a richer
and eventually more stable microbiome community after about 3 to 5 years [27,29,91–94].
Different metrics can be used to describe and characterize this dynamic process.

The microbiome development can be described by trajectories of individual taxa or
their functional capacity [94]. This works well when focusing on higher taxonomic levels or
when focusing on selected taxa and features only. However, with more detailed information
such as species, subspecies or even strain level information, this approach becomes limited.
Additionally, microbes dwell in close relations within diverse communities interdependent
with the infant host. Eventually, this needs to be considered when describing the gut
microbiome maturation, for example, by describing covarying taxa over time that allow
distinct microbial networks to be described [95].

Diversity assessments considering richness, evenness, as well as phylogenetic distance
measures between taxa also help to understand and describe the development of the
microbiome as a whole [29]. Similar, models such as Dirichlet multinomial mixtures
(DMM) can identify patterns or microbiome communities and describe their change and
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succession over time [29,96]. However, DMM is strongly data structure dependent. For
example, the number of time bins can change the optimal number of distinct communities,
which limits its use to describe more universally valid and dataset independent trajectories.

Alternatively, machine learning classification methods can help to further build our
understanding of important features for specific time bins and health conditions during
development, therefore allowing us to describe the normal gut microbiome maturation
trajectory. One such approach that gained much interest in microbiome research is based
on Random Forest (RF) models. Analogous to the WHO child growth curves used as a
calibration measure to monitor a child’s anthropometric development over time, the micro-
biome data collected longitudinally were used to predict a child’s age [97]. The derived
‘microbiota age’ or ‘microbiota maturity’ is based on an abundance of key age discriminant
microbes or functional capacity modules. Plotted against the infant’s chronological age, it
proved useful to track normal microbiota development over time and to differentiate the
mode of delivery, breastfeeding status, specific health conditions such as atopic dermatitis
and asthma as well as malnutrition status [27,29,97–100]. Malnutrition, for example, makes
infants fall off the normal early life microbiome trajectory. Interestingly, the microbiota
age-based trajectory also helped to monitor how a nutritional intervention in malnourished
infants corrects their microbiome toward the normal trajectory [97].

In a pioneering study of Bangladeshi infants, about 20 bacteria taxa were chosen as
important by a machine learning algorithm to capture the relation of microbiota with infant
age from birth to 24 months [97]. Among the top ones were Faecalibacterium (F.) prausnitzii,
Ruminococcus species, Bifidobacterium longum, Lactobacillus species and other Bifidobacterium
species. Using the same approach in another study of different geographic locations, a
similar number of taxa were considered important by the machine learning algorithm to
capture the relation of microbiota with infant age from 3 to 40 months [29]. Among the top
taxa were Anaerostipes species, Ruminococcus species, Faecalibacterium species, Eubacterium
hallii group, Lachnospiraceae, Subdoligranulum species, Alistipes species and Bifidobacterium
species. Of note, only some of the key microbiota taxa picked by the model were the
same between these studies. On the technical side, the models captured about 70% of the
variance using a similar number of 20 odd bacteria as features to predict the microbiota age.

As indicated, the taxa richness increases with a marked shift seen after 6 months
of age [29,94,97]. Identified key age discriminant taxa higher in the first 6 months and
decreasing thereafter are Bifidobacterium species, such as B. longum, but also Staphylococcus,
Enterobacter and Escherichia [29,97]. The other main age discriminant taxa increase from
10 months with Faecalibacterium, Anaerostipes and Lachnospiraceae coming up earlier and
Eubacterium, Ruminococcus and Alistipes later.

The discrepancy of taxa used in the gut microbiota modeling between different studies
is perhaps due to environmental differences, although methodological variations also
need to be considered [101,102]. Differences among geographies have been reported
for early life microbiota but tend to diminish with age [103]. Yet, also in adults some
variation pertains as their gut microbiome associates with geographic location [104,105].
To overcome possible geographic differences, in a meta-analysis, Ho et al. used only the
common bacterial taxa across seven different studies to describe the microbiota age using an
RF model [99]. Among the top taxa were Blautia species, Lachnospiraceae, Prevotella species,
Clostridiales, Staphylococcus species, Dialister species, Lactobacillus species, Haemophilus
species, Bifidobacterium species, Actinomyces species, Dorea species and others. This modified
model still explained 65% of the variance for the data from Bangladeshi infants for which
the original model explained 70% of the variance.

These models are useful to describe the microbiome maturation, yet they are not
perfect as they, in general, capture only about 70% of the variance. The curves are sig-
moidal with a linear range of prediction from about 6 months to 18 months followed
by a plateau from about 2 years onwards [29,97]. Hence, a good fit between microbiota
age and chronological age is achieved primarily during the linear part of the trajectory
curve of infancy and toddlerhood. Similarly, when the microbiota age is translated into



Microorganisms 2021, 9, 2110 10 of 22

microbiota-for-age z-scores (MAZ), the first 2 years of age showed for most infants a MAZ
with a standard deviation within −2 to +2. Thereafter, the standard deviation went into
large negative values. One possible explanation is that the approach of modeling the
microbiota age as a proxy for infant gut microbiota development only works reliably in
an age span characterized by significant compositional changes with time. Indeed, this
may reflect that the microbiota will become more stable after about 2 years of age [29]. In
adults, due to a more stabilized microbiota, RF-based microbiota age modeling was far less
accurate in predicting the chronological age [106].

Describing microbiota maturation that is universally valid and accurate enough to dif-
ferentiate the impact of infant maturity at birth, mode of delivery, diet and current or future
health conditions is a general ambition. To overcome the possible issue with taxonomic
differences across different geographies, a model may be built based on universally present
taxa [99] or, alternatively, on functional data, such as metagenomics functionality [100] and
possibly metabolites. Assuming the functionalities are redundant among different taxa and
better reflect the physiology of the gut ecology, such an approach may be more accurate and
universal. Gut microbiota functional capacity data from Bangladeshi infants were recently
used to model microbiota age [100]. Some of the top pathway modules used by this model
were lipoate biosynthesis, pyridoxine and pyridoxal uptake, folate biosynthesis, riboflavin
biosynthesis, folate uptake and biotin uptake. The model accuracy was comparable to
the microbiota age derived from taxonomic data. It remains to be seen whether models
based on microbiome functional data from different geographies have these same pathway
modules and, thus, present more similarity with each other as compared to models based
on microbiota compositional data.

As mentioned, mode of delivery, breastfeeding status, nutritional status and health
conditions such as asthma and atopic dermatitis were related to an altered gut micro-
biota maturation trajectory. Several statistical methods may be considered to assess the
impact of different factors and conditions on the early life microbiome maturation tra-
jectory [107–109]. It remains to be established if describing the microbiome maturation
through the ‘microbiota age’ robustly captures alterations related to different health con-
ditions as was shown for breastfeeding status using a meta-analysis approach [99]. To
this end, its prognostic power would be of highest interest in order to design corrective
actions. For certain health conditions with a supposed contribution of the gut microbiome
development, we suggest advanced analytical models need to be envisaged that integrate
most differentiating microbiome features in the modeling.

Timely progression is characteristic of the microbiome maturation, and it is conceivable
that passing too fast, too slow or not at all through a specific microbiome ecology influences
subsequent dynamics. The first indications to this end were observed using microbiota
age in relation to atopic dermatitis [27]. Lastly, interdependence and interactions between
different microbes and the infant host affect the microbiome dynamics and ecology in
the gut. Network analysis of covarying microbiome features is one approach to capture
microbial dynamics [95]. Integration of infant host parameters in such models may be one
way forward to further establish the mechanistic underpinning of the microbiome-host
interactions for appropriate development and health. Lastly, nutrition and dietary patterns
need to be integrated as major modulators of the gut microbiome maturation.

7. Infant Feeding Recommendations and Realities across the Globe

Adequate infant feeding is key for healthy growth and development. The WHO and
UNICEF recommend an early initiation of breastfeeding within 1 hour of birth; exclusive
breastfeeding for 6 months, continued breastfeeding until 2 years of age or beyond, with
complementary diet introduced no later than 6 months of age [110]. While those recom-
mendations have been adopted globally, about 60% of infants are still not breastfed in the
first hour, and two in three infants are not exclusively breastfed for the recommended first
6 months [110].
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At around 4 months of age, an infant’s renal and gastrointestinal physiology is mature
to receive non-milk foods and at around 6 months of age, breast milk alone does not provide
sufficient nutrients and energy for the infant’s needs [110,111]. Therefore, complementary
food should be introduced to adequately support an infant’s growth and development.
Complementary diets composed of food items other than breast milk or infant formula are
introduced to provide nutrients and are often modified to a texture appropriate for the in-
fant’s developmental readiness [111]. In Europe, the exact timing to initiate complementary
feeding varies as some countries align with the WHO guideline to start complementary
feeding around 6 months (e.g., UK and Sweden), while others recommend starting between
4 and 6 months of age (e.g., Belgium and Spain) in alignment with the European Society
for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Committee on
Nutrition. According to the ESPGHAN committee, complementary foods should not be
introduced before 4 months and should not be delayed beyond 6 months of age, including
allergenic foods [111]. Similar conclusions were reported in a recent review on foods
related to IgE-mediated food allergies [112] and also in a scientific opinion published by the
EFSA (European Food Safety Agency) Panel on Nutrition, Dietetic Products and Allergies
(NDA) [113].

Recently, the EFSA NDA panel published a systematic review on the relationship
between the timing of complementary food introduction and numerous aspects related to
health conditions. These included physical development such as body weight and growth,
risks of developing diseases or symptoms (e.g., allergies, coeliac disease and type 1 diabetes
mellitus), nutrient status (e.g., iron), food preferences and eating behaviors later in life [113].
Based on the reviewed 283 publications, the panel concluded that there was no convincing
evidence for adverse health effects following the introduction of complementary foods in
term infants before 6 months of age, if nutrient composition and texture were appropriate,
and foods were prepared using good hygiene practices. Additionally, the panel also found
no clear evidence for any benefit of introducing complementary foods before 6 months of
age, except for infants at risk of iron depletion. Accordingly, there is no uniform age to
initiate complementary feeding. Rather, the appropriate age depends on each individual
infant’s developmental stage, guided by the acquisition of the neuromotor skills necessary
to progress from a liquid to a diversified, semi-solid and solid diet [114].

Other aspects of complementary feeding that need to be considered are feeding
frequency, types of foods and their consistency. For the types of foods other than a mother’s
milk, a minimum dietary diversity score of four is recommended in children 6–24 months
of age. This means a child consumes four out of the following seven food groups: (1) grains,
roots and tubers, (2) legumes and nuts, (3) dairy products (milk, yogurt, cheese), (4) meat,
fish, poultry and liver/organ meats, (5) eggs, (6) vitamin A rich fruits and vegetables
and (7) other fruits and vegetables [110]. A positive association between diet diversity
score and mean micronutrient density adequacy was shown supporting the use of the
diversity score as a diet quality indicator in populations not regularly consuming fortified
foods [115]. As recommended by the China Nutrition Society, complementary feeding
should start from iron rich foods, slowly increasing the diversity and allowing adaption to
any new food item for around 2–3 days before introducing a new food item [116]. Similar,
the Centers for Disease Control and Prevention (CDC) in the United States recommends
introducing one food at a time allowing a 3–5-day interval before introducing a new
one [117]. Concerning the energy provided by complementary foods, the China Nutrition
Society recommends that for 7–12 months old infants, 30–50% of the energy should be
provided through complementary foods [116]. Food and drinks with added sugars or that
are high in salt should be avoided or limited before 12 months of age [117], and cow’s milk
is among foods that should be limited in early age due to the increased risk of developing
iron deficiency anemia [118].

Despite existing guidelines and recommendations for appropriate feeding habits,
the reality is often different. In Mexico and the US, for example, already before their
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first birthday, 13 and 35% of infants consume undiluted fruit juice and sugar sweetened
beverages, respectively, and many also consume cow’s milk [119,120].

Deviations from appropriate nutrition and recommendations may represent impor-
tant risks for an age-appropriate microbiome development and maturation. This seems
particularly relevant for recognized microbiome modulators such as dietary fibers. Their
definition has evolved over the years and is subject to slightly nuanced definitions around
the world. Yet, all contain the basic notion that dietary fibers are non-digestible carbo-
hydrates and lignins, including all carbohydrate components occurring in foods that are
non-digestible in the human small intestine and pass into the large intestine [121]. The
recommended amount of fiber intake varies from country to country and ranges for adults
from 18 to 38 g/day [121]. The reference intake in infants 6 to 12 months is 5 g/day [122].
Although the average dietary fiber intake in 6–12-month-old US infants increased over the
years, from 5.3 g/day in 2002 to 6.5 g/day in 2016 [123], there are still over 25% of children
below the recommended amount [124]. In China, the mean intake of fiber was reported
as 2 g/day, much lower than the recommendation [125]. In 1–2-year-old toddlers, dietary
fiber intake is about 10 and 5 g/day in the US and China, respectively [124,125]. However,
due to the increased recommended adequate intake of 19g/day, over 80% of toddlers do
not reach the recommendation in the US, China and Mexico [126,127]. Such dietary rec-
ommendations and especially the realities of infant and toddler diets regarding adequate
intake need to be considered when investigating the early life microbiome development
and maturation and their relation to health conditions.

8. Influence of Infant and Toddler Dietary Factors on the Gut Microbiome
8.1. Exclusive Breastfeeding Period and Early Infancy

Breast milk generally provides the reference nutrition for all infants, and exclusive
breastfeeding for the first six months is recommended. The feeding mode, exclusive or par-
tial breastfeeding versus no breastfeeding during early infancy, has well-recognized effects
on the gut microbiome composition and function [99]. Hence, the health benefits observed
for breastfed infants may partly be explained by a more appropriate gut microbiome matu-
ration. Among those benefits are protection against infections, increased intelligence as
well as probable reductions in becoming overweight and diabetes development later in life,
while the situation for allergies such as asthma and atopies needs more clarification [128].
Breastfeeding, in particular when exclusive, leads to a higher abundance of bifidobacteria
and lesser predominance of Enterobacteriaceae as well as lower alpha diversity compared
to formula-fed infants [24,92,129,130].

The composition of consumed infant formula has also been shown in numerous ob-
servational cohort studies and randomized controlled trials to have a considerable impact
on the microbiome. Among infants observed from birth to 8 months of age, a soy formula
was associated with a diminished abundance of bifidobacteria and higher alpha diversity,
in comparison to a cow’s milk-based formula [129]. A small study comparing older 12-
to 24-month-old infants fed rice, soy and cow’s milk-based formulas showed a decreased
abundance of Bacteroides and Bifidobacterium species associated with feeding a plant-based
formula [131]. However, this observation may have been confounded by a suspected cow
milk protein allergy, a primary reason to have used a plant-based formula. The addition
of individual human milk oligosaccharides (HMOs) in starter infant formula resulted
in a gut microbiome composition closer to that of breastfed infants with an increased
abundance of Bifidobacterium species [132]. The HMO-driven microbiome community at
3 months of age was associated with a reduced risk of infections, as seen by the reduced
need for antibiotics up to 12 months of age. This indicated that, indeed, a nutritionally
modified early life microbiome maturation can impact later health. Other oligosaccharides
such as bovine milk-derived galactooligosaccharides (GOS), for example, added to infant
formula also showed a robust effect on the gut microbiome, increasing primarily bifidobac-
teria [133,134]. Most studies testing the effect of probiotics show more modest effects on
the gut microbiome compared to prebiotics. However, studies in preterm and Cesarean
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section delivered infants found more pronounced effects [135,136]. Supplementation with
a probiotic Bifidobacterium longum subsp. infantis in breastfed infants resulted in a higher
abundance of the supplemented strain and an altered gut ecology [137].

8.2. From Introduction of Complementary Foods to Consumption of Family Foods

Cessation of breastfeeding and introduction of complementary foods drive rather
rapid and substantial changes in the infant gut microbiome [24,29]. Even though the
introduction of complementary foods clearly remodels the gut microbiome, the knowledge
on how particular foods and nutrients impact the developing microbiome is rudimentary
and fragmented. Only a few longitudinal as well as cross sectional cohort studies examined
associations between dietary intake and the gut microbiome with some evidence coming
from intervention studies with prebiotics and probiotics. Intervention studies evaluating
the impact of dietary intake are rare.

An interesting comparative study of 1–6-year-old children from Burkina Faso and
Italy reported substantial differences in numerous taxa of the gut microbiota, as well as
their metabolite profiles [138,139]. Prevotella was highly predominant, constituting more
than 50% of the total microbiota in rural Burkina Faso, while it was nearly absent (<1%) in
Italy. The opposite pattern was observed for Bacteroides. In parallel, short-chain fatty acids
content was several folds higher in the stools of children from Burkina Faso compared to
those from Italy. Not surprising, the dietary intakes were fundamentally different. Children
in Burkina Faso consumed a predominantly plant-based vegetarian type diet, rich in fibers
and plant-polysaccharides, low in fat, animal protein and simple sugars. On the other hand,
children in Italy had a typical Western style diet. Similar patterns were seen comparing
the adult gut microbiome of Westernized and traditional societies [140]. Although it is
likely that dietary differences were the main factor leading to the distinct gut microbiomes,
many other lifestyle, hygiene and ethnic differences between these populations may also
have contributed to the observed differences. Among one-year-old infants of different
ethnic background living in Canada, a higher abundance of lactic acid bacteria in South
Asians and a higher abundance of genera within the order Clostridiales in Caucasians were
observed [141]. However, the magnitude of these differences was relatively small and a
link to their dietary habits could not be established.

Several studies examined associations between dietary intakes and gut microbiome in
infants and children of varying ages within the same cultural background. In two Danish
cohorts, protein and fiber intakes, as well as ‘family foods’, were positively associated
with gut microbiota alpha diversity at 9 months, while fat intake showed an inverse
association [142]. In Australian infants aged 6–24 months, dairy intake was positively
associated with the Firmicutes to Bacteroidetes ratio but was inversely associated with
microbial species richness and diversity [143]. In a recent study of Indian slum-dwelling
infants aged between 10 and 18 months, a positive association of fat and iron intake on
alpha diversity was observed [144]. In addition, a log ratio of Lactococcus to Anaerococcus
was significantly higher in the group who reported consuming oils and fats. In children
aged 1 to 2 years, Lachnospiraceae and Bacteroides were positively associated with fruit
consumption, but inversely associated with processed meat and savory snacks [145]. In
older children, aged 4–8 years, the consumption of food grouped into different dietary
patterns were reported to have different microbiome profiles [146]. Specifically, the dietary
patterns characterized by the intake of refined carbohydrates, and the intake of sugar and
sweets showed an inverse association with gut microbiota alpha diversity indexes. On the
other hand, the intake of fruit was positively correlated with the relative abundance of
Bacteroides. In US children aged 2–9 years, the total fruit and fiber intake was associated
with the relative abundance of Lachnospira species [147]. In another study of 5-year-old
children, the strongest association observed was between the intake of nuts, seeds and
legumes as well as meat and poultry and the microbiota community type characterized by
a high abundance of F. prausnitzii [148]. F. prausnitzii is one of the age discriminant taxa
increasing in abundance with the introduction of complementary diet, and it represents
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one of the most abundant anaerobic bacteria in the adult’s gut microbiota [149]. It is a
main butyrate producer and plays an important role to maintain gut health [150]. Several
nutrients have been reported to be associated with its abundance, among them the prebiotic
fructooligosaccharides (FOS) [151,152]. As a strictly anaerobic species, F. prausnitzii copes
with oxygen near the gut epithelia using a flavin-thiol electron shuttle [153]. Flavins,
typical plant metabolites, may, therefore, favor the establishment of bacteria such as
Faecalibacterium. Of note, low food diversity intake up to 1 year relates to a higher risk
for asthma and food allergy later in life, which was also related to lower butyrate and
propionate formation by the colonic gut microbiota [154,155]. Overall, only a few consistent
patterns were observed, with a possible exception of the association of fruit intake with
the abundance of Bacteroides, which was reported by two independent studies. However,
most studies are small, and the dietary intakes are relatively homogenous among study
participants making it difficult to find associations.

Several intervention studies with older infants and children tested supplementation
with prebiotic fibers such as GOS and FOS, sometimes combined with probiotics [145].
Similar to observations made in younger infants, supplementing with prebiotic oligosac-
charides resulted in a higher abundance of bifidobacteria [156–158]. Despite the modest
effect size, the effect appeared to be quite consistent among the studies.

Infants and children with a dysbiotic gut microbiome, for example, upon antibiotic
treatment, show a more pronounced response to microbiome active dietary supplementa-
tion [159]. In a randomized controlled trial conducted among 9- to 18-month-old children
who were at risk for iron deficiency, the addition of vitamin E to an iron fortification was
tested. Vitamin E was supposed to help reduce gut inflammation linked to an excess of iron
intake. It is noteworthy that the vitamin E addition resulted in an increase in the relative
abundance of Roseburia species, a typical butyrate producer [160]. As mentioned above
mal- or undernourished children show an altered gut microbiome maturation. A series of
elegant experiments combining results from observational studies with children and animal
models led to the design of several microbiota-directed therapeutic foods. These were sub-
sequently tested in children with severe acute malnutrition in Bangladesh. The combination
of chickpea flour and raw banana, together with peanut flour and soy flour was the most ef-
fective in modulating the abundances of targeted bacteria for age-appropriate microbiome
maturation, and additionally positively associated with biomarkers for growth [100,161].

Although the data are fragmented, nutritional guidance and designed nutritional
solutions are a promising means to positively modulate the gut microbiome maturation
trajectory of infants and children.

9. Outlook

The importance of an age-appropriate gut microbiome development and maturation
is generally acknowledged. The extent to which an accelerated or delayed microbiome
maturation profile affects the health of a child starts to be understood and individual
microbial taxa and their metabolites emerge as causal agents. Despite the great progress in
describing and understanding the early life gut microbiome, several key questions warrant
to be understood. To this end, simultaneous investigation of the microbiome maturation
trajectory in conjunction with immune and host–microbiota co-metabolites during early
life may help to better define the neonatal windows of opportunity in humans.

The immune system development starts prenatally, and microbial metabolites and
components from the mother are involved. What are the key factors and how do nutrition,
environment and inherent physiological and genetic conditions affect these? Eventually,
how malleable are prenatally set conditions after birth and how do the set conditions
contribute to risks for health conditions later in life? During the exclusive breastfeeding
period, a mother’s milk provides the reference standard for nutrition. Yet, C-section and
antibiotics are relatively recent acquisitions of human culture. The question is, does a
mother’s milk provide all that is needed to cope with those ‘new’ risks for an appropriate
microbiome development? Reaching the age of needing complementary diets to fulfill
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an infant’s and child’s physiological needs, an inappropriate diet represents additional
risks to an appropriate microbiome development. We have some understanding of what
represents an appropriate microbiome in this age group, but many questions remain
to be answered. How does the microbiome and co-developing immune system during
the exclusive breastfeeding period drive subsequent development? Beyond fibers, what
are other key nutrients, for which children often show inadequate intake, contributing
to an appropriate microbiome for long-term health? Generally, for children starting a
complementary diet, the knowledge on the impact of specific foods and dietary patterns is
fragmented and warrants intensified research.

The extent to which the identified microbes and metabolic pathways are indicators of
suboptimal host gut–microbiome mutualism and are causally linked to health conditions
remains to be more generally established. It bears the obvious question to what extent
corrective actions will work. Culture and tradition are key drivers in food choices influ-
encing the maturing microbiome [102]. Importantly, which nutrients and food groups
favor an appropriate gut microbiome maturation and eventually enable the development
of appropriate immune competence are of broad research and public health interest.
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