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a b s t r a c t 

This paper provides a novel and applicable work that builds a real system for disinfecting the air 
and surfaces of the environment in a hospital room, with a non-contact measurement system for 
supporting contagious disease treatments in hospitals. The system is built on an intelligent mobile 
robot system that operates autonomously in a simulated real treatment room. The research team 

uses a new positioning algorithm. It is a combination of data from the Lidar sensor, encoder, 
and Extended Kalman filter. The program that applies segmentation and image feature extraction 
algorithms is developed to meet requirements of real-time environment mapping in the room. 
Control algorithms for moving and avoiding obstacles are also proposed. Next, techniques for 
collecting health data including patient identification, body temperature, and blood oxygen index 
via wireless sensor network are also mentioned in the article. Analysis and experimental results 
show qualified outcomes and promise. The main contribution of the paper can be listed as follows. 

• Design and build a new CEE-IMR, an intelligent mobile robot that can regconize patients, 
guide and lead them walking in hospitals, especially keep a safe distance avoiding contagious 
deseases. 

• A novel framework for controlling the robot is proposed. The robot can move flexible, avoid 
obstacles, etc. based on advanced control algorithms. A new control mechanism is also pro- 
posed. 

• Methods of collecting data and processing medical data to support either patients or doctors 
to improve the effecency in hospitals in contagious disease management. 
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Specifications table 

This table provides general information on your method. 

Subject area: Engineering 
More specific subject area: Autonomous robot (AR), control, AR assisted medical treatment, sensing systems 

Name of your method: Design an Intelligent Mobile Robot for Contagious Disease Treatments in Hospitals 

Name and reference of original method: All the reference papers are provided in the Ref. Section. 

Resource availability: All data of this work (e.g., equipment, data, software, hardware) can be shared upon request. 

Background 

Mobile robots provide a wide range of applications in both civil and military areas [ 1 , 2 ]. Mobile robots may detect, monitor, collect
and analyze data, navigate among other things, depending on their intended use. Since the outbreak of the coronavirus pandemic
2019 (COVID-19) occure in 2019, new approaches for robots in a contagious world are exploited rapidly to support either hospitals or
in public areas. The role of robots in the following COVID-related applications: disinfection, checking human temperature, monitoring 
public places, delivering food and other items, food preparation and personal interactions by distanced contacts [ 3–5 ]. The effective
control and prevention of this epidemic remain major challenges for the international community. In addition, contagious surfaces 
and environments are important sources of infection that promote the spread of the virus. Therefore, environmental disinfection in
healthcare facilities is important to reduce transmission, prevent hospital-acquired infections, and control disease outbreaks [ 6 , 7 ]. 

Currently, the global socio-economic development and health system reform have enabled the medical industry to move towards 
true "intelligence". The combination of artificial intelligence (AI) technques, 5 G and 6 G technologies, Internet of Things (IoTs), manu-
facturing robots, cyber-physical (CPS), and other new high technologies enrich the medical profession [ 8 ]. The advanced technologies
can fully support the equipments to fulfill their tasks in hospitals or in other environments to protect human from the virus. 

Prevention and control of hospital-acquired infections is a cornerstone of health safety and a core mission in improving the quality
of health services. The combination of engineering technology and infection management in hospitals has led to breakthroughs 
in infection control technology [ 9–14 ]. Healthcare organizations around the world have been optimizing hospital intelligence by 
gathering and organizing information from multiple perspectives to build innovative models in hospital development . Some results 
related to medical services avoiding contagious diseases have been shown separately due to specific missions. Robots are preferably 
deployed at a hospital’s front desk to spread information about the hospital’s various units/sections and to guide patients and visitors
[ 9 ]. Nursing robots in hospital and at home for elderly care are investigated in [ 10 ]. Robots also can provide immediate medical aid
after an accident is critical in order to prevent intensification of trauma [ 11 ]. Robots can help doctors far from patients to take all
the physiological parameters and diagnoses a disease using audiovisual aids [ 12 ]. Delivery services inside hospitals can be carried
out by mobile robots that serving food and beverages, dispensing of drugs, removing of unclean laundry, delivery of fresh bed linen,
and transportation of regular and contaminated waste etc. [ 13 ]. Cleaning robots for medical surroundings appear to be capable of
delivering the innovation that non-industrial robot creators predicted years ago [ 14 ]. These models help to reduce costs associated
with the prevention and control of hospital sterilization and only deal with specific functions. 

Recently published research works [ 15–18 ] have solved the problems of disinfecting and cleaning the environments, but have not
mentioned the problems of positioning and guiding or navigating robots that can operate correctly in disinfected environments. This
is a critical issue that the robot can come into direct contact with the patient to replace the human that has not been interested by
the authors. 

In this work, many functions are integrated into one mobile robot, called CEE-IMR. The mobile robot shows a manuverability to
move in an infected area to collect data from patients to be sent to doctors or a data processing center. The hardware and software
are designed significantly to be able to adapt to hospital environments. The robot receives orders and work independently. Technical
designs are different from existing work that can support effectively to either patients or doctors. 

As shown in Fig. 1 , we present the indirect control of blood oxygen levels (SpO2 is an important indicator to monitor and evaluate
the health of COVID-19 patients in the recommended treatment regimen [ 19 ] and patient body temperature through Ther-mal Image
Processing or Infrared (IR) spectral detection method [ 20 ]. Through these two parameters, the doctor does not need to have direct
contact with the patient, but can still monitor and evaluate the appropriate treatment regimen. 

The disinfection is performed by a system including spraying, mopping the floor surface, and UV-C lamp described in the design
of the robot body. In addition, controlling the robot to follow the trajectory to the desired locations and some theories related to
this test will be presented in the next sections. For the task of avoiding close obstacles in the local area, we have applied the VFH +
method [ 21–23 ] with a system of ultrasonic sensors and developed a control program that allows avoiding obstacles in the local area
from 0.3 to 4metters. 

The Lidar system allows the detection of features of the robot’s environment to combine with encoder sensor data, which allows
the robot to move precisely to the target locations. The measurement and experimental results are presented in section 3.1. With
these results, it is possible to open up the possibilities of applying intelligent robots for contagious disease treatments in practice. 

The rest of this work is organized as follows. The system models that combine all the functions in the robot is addressed. The pro-
posed methods including algorithms, calculations are provided. Next, experimental results including control problems, data collecting, 
proccessing and analyzing are addressed. Finally, conclusions and future developments are provided. 
2



H.T. Tran, D.TL. Tran, M.T. Nguyen et al. MethodsX 13 (2024) 102941

Fig. 1. (a) Image of robot model in the experiment, (b) Detailed mechanical drawing of the base of the robot, (c) Kinetic model of mobile robot. 

 

 

 

 

 

 

 

 

 

 

Method details 

+ A method of designing and building a new intelligent mobile robot, named CEE-IMR, that can regconize patients, guide and
lead them walking in hospitals, especially keep a safe distance avoiding contagious deseases. 

+ A method for controlling the robot is proposed. The robot can move flexible, avoid obstacles, etc. based on advanced control
algorithms. A new control mechanism is also proposed. 

+ A Method of collecting medical data and processing the data is proposed to support either patients or doctors to improve the
effecency in hospitals in contagious disease management. 

The proposed system models to support contagious disease treatments 

Fig. 2 is a block diagram of a mobile robotic system model for contagious disease treatment support. This model has 2 main
systems: The sensor system consists of turquoise blocks ( Fig. 2 ) presented in Section 2.1; The control system consists of orange and
blue blocks ( Fig. 2 ) presented in Section 1.2. 

Sensor systems 

Encoder 

The optical encoder has an LED light source, a light detector, a “code ” disc/wheel mounted on the shaft, and output signal
processor, Fig. 3 . The disc has alternating opaque and transparent segments and is placed between the LED and photodetector. As the
encoder shaft rotates, the light beam from the LED is interrupted by the opaque lines on the “code ” disk before being picked up by
the photodetector. This produces a pulse signal: light = on; no light = off. The signal is sent to the counter or controller, which will
then send the signal to produce the desired function. 

In mobile robotics, the encoder is used to measure the movement (direction and speed) of each of the wheels of the robot.
Determining the position of the robot by this encoder is a popular method in the world called the Odometry method. 
3
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Fig. 2. Block diagram of CEE-IMR system. 

Fig. 3. Structure of the rotary encoder. 

 

 

 

 

Lidar (Light detection and ranging) 

To increase the efficiency of positioning we use the Lidar sensor. Lidar is a method for determining ranges (variable distance) by
targeting an object with a laser and measuring the time for the reflected light to return to the receiver. In this research, as shown in
Fig. 4 , the research team used the lidar method to locate the robot in the hospital using the RPLIDAR A1 sensor. 

The RPLIDAR A1 is a low-cost 360° 2D laser scanner (LIDAR) solution developed by SLAMTEC. The system can perform a 360° scan
within the 12 m range. The produced 2D point cloud data can be used in mapping, localization, and object/environment modelling .
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Fig. 4. (a) RPLIDAR A1 System Composition, (b) The RPLIDAR A1 Working Schematic. 

Fig. 5. Ultrasonic sensor. 

Fig. 6. Logitech BRIO 4 K. 

 

 

 

 

 

 

 

 

 

 

 

Ultrasonic sensor 

An ultrasonic sensor is an electronic device that measures the distance of a target object by emitting ultrasonic sound waves, and
converts the reflected sound into an electrical signal. Ultrasonic waves travel faster than the speed of audible sound (the sound that
humans can hear). Ultrasonic sensors have two main components: the transmitter (which emits the sound using piezoelectric crystals) 
and the receiver (which encounters the sound after it has travelled to and from the target). 

In a hospital environment, there are many people and obstacles on the way, so the robot must be aware to avoid that obstacle. The
ultrasonic sensors are used primarily as proximity sensors. They can be found in automobile self-parking technology and anticollision
safety systems. Therefore, we use ultrasonic sensor SRF05 for the robot so that the robot can avoid obstacles, as illustrated in Fig. 5 .

RGB camera 

The robot is designed in addition to the functions mentioned above, it also has the function of guiding the patient to move in the
hospital. Accordingly, the robot both moves and tracks the patient’s face to maintain a distance from the patient during movement.
If the patient stops or slows down, the robot will stop to wait, which is made possible by a method that predicts the distance from the
image sensor to the person’s face using the monocular camera. We use the Logitech BRIO 4 K Camera, as shown in Fig. 6 , installed
on the robot to capture the patient’s face image. 

Infrared thermal image sensor and SpO2 sensor 

The temperature sensor used in this research is Panasonic’s AMG8833, as shown in Fig. 7 . An infrared thermal image sensor with
64 thermal pixels distributed into a 2D 8 × 8 matrix, can measure the temperature of an object in the range of from 0 °C to 80 °C.
5
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Fig. 7. (a) Infrared thermal image sensor – AMG8833 sensor Node, (b) Case for the AMG8833 sensor Node. 

Fig. 8. (a) Infrared thermal image sensor – MAX30102 sensor Node, (b) Case for the MAX30102 sensor Node. 

 

 

 

 

 

 

 

 

 

 

Non-contact infrared sensor with measuring distance up to 7 m under ideal conditions. Sensor measuring angle up to 60° in both
horizontal and vertical. The sampling rate is 10 fps (frame per second). 

The robot is set to move at a speed of 0,2 m/s to 0,6 m/s. Therefore, under ideal conditions, it is possible to collect temperature
data even while the robot is moving. 

The SpO2 sensor, as shown in Fig. 8 , is the MAX30102 MH-ET LIVE module that integrates the MAX30102 heart rate and SpO2
sensor. The MAX30102 sensor contains two light-emitting diodes (LEDs), one infrared (peak wavelength 880 nm) and the other red
(peak wavelength 660 nm); along with a photodiode that is specific for wavelengths between 600 and 900 nm. The values measured
by the sensor are transmitted with a checksum, such that the validity of the data is verified when it is received by the supporting
microcontroller (3). According to Fig. 8 , this sensor is worn on the patient’s finger. 

The control system 

The sensory information network of the robot is shown in Fig. 2 , in which the computer is the central control unit. Due to the
characteristics of different information rates between sensors (the information here is point-to-multipoint), a special design for the 
communication network in the robot has been implemented. As shown in Fig. 2 , the ultrasonic sensors, RPlidar and robot actuators
(motors) are connected to the robot’s control unit (serial communication RS-232C); The RGB camera sensor is connected to the
control unit via a high-speed communication channel; Other path (Modules Relay, UV germicidal irradiation, disinfectant spray 
pump). These blocks connect to the control board (via RS-485 communication standard) with a point-to-multipoint line according to
the Modbus/RTU polling protocol. 
6
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The control program for the system to collect patient data and disinfect the floor during robot movement can be summarized as
follows: 

Starting from the hardware configuration shown above, the software that collects information from the sensors can be divided 
into modules with the following specific tasks: 

- The program for collecting and processing data from the sensor RPLidar is a special type developed specifically with the C ++
language; 

- Camera image information is collected directly into the computer and processed through an image processing program, which is
developed in Visual C ++ environment with Intel’s OpenCV tool; 

- Control program for two optical encoder measuring circuits (mounted on motor shafts) connected directly to a microcomputer 
(via RS-232C); 

- The remaining information is transmitted and received between 14 network nodes and control nodes from the computer (2 nodes
for channels Relay module, 12 node for 12 ultrasonic sensors) via transmission line RS-485 using Modbus/RTU protocol; 

Fig. 9 shows an overview of the navigation process for a mobile robot, which can be summarized as follows. 

1. Robot collects data through sensors; 
2. Determine the position of the robot; 
3. Mapping (if necessary or import existing global maps); 
4. plan the way; 
5. Control the moving robot to follow the trajectory to the destination and avoid obstacles (if any). 

Collection of patient health data for medical treatment 

As mentioned above, SpO2 index and body temperature are two important measurements in monitoring and treating covid 19
patients. Our robot will collect these two kinds of data automatically. Data collection is done automatically. The robot moves close
to the patient’s bed within a radius of 1 meter, the sensor nodes will automatically connect to the Wi-Fi network emitted by a router
placed on the robot. And those nodes actively send measured data to the central computer according to the MQTT protocol [ 24 ]. A
typical MQTT is a TCP-based protocol uses a topic-based publish-subscribe architecture, as illustrated in Fig. 10 . It’s used to establish
communication between multiple devices. This communication protocol is suitable for transferring data between resource-constrained 
devices with low bandwidth and low power requirements. Therefore, this messaging protocol is widely used for communication in
IoT Framework. 

As shown in Fig. 11 , there are, 1- the publishers, which are IoT devices, usually sensors that share data; 2- the subscribers, which
are IoT devices that receive shared data by the publishers; 3- the brokers, which are entities that manage topics and message exchange,
and can be implemented within any device in the network, including the publishers and subscribers. When new data is generated,
publishers send messages to the broker, in order to update a given topic. Every time a topic is updated, the broker broadcasts the
new data to every subscriber of that topic. Fig. 11 represents a sequence diagram regarding the message exchange in the MQTT
protocol. With the above technical characteristics, MQTT can work in unstable transmission conditions. Hence it is suitable for our
robot model. 

In Fig. 11 , the wireless sensor data collection system is set up with 3 clients in which AMG8833 and MAX30102 are 2 sensor
nodes (called MQTT clients) that collect data independently of each other and with the robot. Every time the sensor nodes "find" the
Wi-Fi network emitted by the robot, they connect to a server (which is an open-source Mosquitto broker application that runs in the
background inside the robot’s computer- https://mosquitto.org/ ). All collected sensor data is stored in the software on the computer
to provide medical treatment data to the doctor. 

The proposed methods 

Program to merge data of sensors for mobile robot positioning 

Positioning for robots using extended Kalman filters 

As shown in Fig. 1 (c) the coordinate system and parameter symbols of the mobile robot are designed to move on the flat floor
in the room, where (XG ,YG ) are the axes of the global coordinate system of the room, (XR ,YR ) are local coordinate system axes that
match the robot’s center. Let the angular velocities of the right and left wheels be 𝜔R and 𝜔L respectively, and the sampling interval
Δt is sufficiently short. So that the input control signals that are the displacement increments applied to these wheels are: 

Δ𝑠𝑅 = Δ𝑡𝑅𝜔𝑅 
Δ𝑠𝐿 = Δ𝑡𝑅𝜔𝐿 (1) 

From here, the distance increment of the robot center Δs is: 

Δ𝑠 =
Δ𝑠𝑅 + Δ𝑠𝐿 

2 
(2) 
7

https://mosquitto.org/


H.T. Tran, D.TL. Tran, M.T. Nguyen et al. MethodsX 13 (2024) 102941

Fig. 9. Flowchart of navigation process for mobile robot. 

 

And the angular increment in which the robot rotates Δ𝜃 is: 

Δ𝜃 =
Δ𝑠𝑅 − Δ𝑠𝐿 

𝐿 
(3) 

So the equation of state of the robot at time k in the global coordinate system updated from time k–1 is as follows: ⎡ ⎢ ⎢ ⎣ 
𝑥𝑘 
𝑦𝑘 
𝜃𝑘 

⎤ ⎥ ⎥ ⎦ =
⎡ ⎢ ⎢ ⎣ 
𝑥𝑘 −1 
𝑦𝑘 −1 
𝜃𝑘 −1 

⎤ ⎥ ⎥ ⎦ +
⎡ ⎢ ⎢ ⎣ 
Δ𝑠𝑘 𝑐𝑜𝑠

(
𝜃𝑘 −1 + Δ𝜃𝑘 ∕2 

)
Δ𝑠𝑘 𝑠𝑖𝑛

(
𝜃𝑘 −1 + Δ𝜃𝑘 ∕2 

)
Δ𝜃𝑘 

⎤ ⎥ ⎥ ⎦ (4) 

The displacement increments ΔsR and ΔsL (proportional to the set speeds of the 2 wheels 𝜔R and 𝜔L as measured by the crankshaft
encoder sensors) are input variables affected by errors systematic and random errors. 

In practice, the system (4) encounters systematic errors (such as dimensional errors of mechanical parts, shaft offsets, encoder 
resolution limits, …) and non-systematic errors. In this paper, the errors are proportional to the two-wheel displacement increments 
8
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Fig. 10. Message exchange in the MQTT protocol. 

Fig. 11. Diagram of sensor data exchange using MQTT protocol. 

 

 

 

 

 

 

ΔsR and ΔsL , these increments when subjected to noise can be expressed as the sum of the two components including the value
identification and interference: 

Δ𝑠𝑅 = Δ𝑠𝑅 0 + 𝜀𝑅 
Δ𝑠𝐿 = Δ𝑠𝐿 0 + 𝜀𝐿 (5) 

where Δ𝑠𝑅 0 and Δ𝑠𝐿 0 are the nominal values of the input signal; 𝜀𝑅 and 𝜀𝐿 are the values of the white noise process, which are
independent, have zero mean and are normally distributed. 

The equation of state (4) can be written in more detail as follows: 

⎡ ⎢ ⎢ ⎣ 
𝑥𝑘 
𝑦𝑘 
𝜃𝑘 

⎤ ⎥ ⎥ ⎦ =
⎡ ⎢ ⎢ ⎣ 
𝑥𝑘 −1 
𝑦𝑘 −1 
𝜃𝑘 −1 

⎤ ⎥ ⎥ ⎦ +
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
Δ𝑠𝑅 0( 𝑘) +𝜀𝑅( 𝑘) 

)
+
(
Δ𝑠𝐿 0( 𝑘) +𝜀𝐿( 𝑘) 

)
2 cos 

( 

𝜃𝑘 −1 +
(
Δ𝑠𝑅 0( 𝑘) +𝜀𝑅( 𝑘) 

)
−
(
Δ𝑠𝐿 0( 𝑘) +𝜀𝐿( 𝑘) 

)
2 𝐿 

) 

(
Δ𝑠𝑅 0( 𝑘) +𝜀𝑅( 𝑘) 

)
+
(
Δ𝑠𝐿 0( 𝑘) +𝜀𝐿( 𝑘) 

)
2 sin 

( 

𝜃𝑘 −1 +
(
Δ𝑠𝑅 0( 𝑘) +𝜀𝑅( 𝑘) 

)
−
(
Δ𝑠𝐿 0( 𝑘) +𝜀𝐿( 𝑘) 

)
2 𝐿 

) 

(
Δ𝑠𝑅 0( 𝑘) +𝜀𝑅( 𝑘) 

)
−
(
Δ𝑠𝐿 0( 𝑘) +𝜀𝐿( 𝑘) 

)
𝐿 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(6) 

Due to the cumulative nature of systematic errors, the accuracy of the position estimation will be worse as the robot moves. Many
studies have tried to increase the reliability of this positioning, including the use of the Kalman filter. We also applied sensor fusion
using the Kalman filtering algorithm for positioning to the robot and obtained results that improved the quality of these measurements
significantly [ 25 , 26 ]. It can be summarized as follows: 

If the state vector 𝐱 ∈ ℜn of a controlled process is represented by Eq. (12) . This nonlinear equation has the form: 

𝒙 𝑘 = 𝑓
(
𝒙 𝑘 −1 , 𝒖 𝑘 −1 ,𝒘 𝑘 −1 

)
(7) 

where f is a system function with 𝒙 = [𝑥 𝑦 𝜃]𝑇 is the state vector, 𝒖 = [Δ𝑠𝑅 Δ𝑠𝐿 ]𝑇 is the input control vector and 𝒘 = [𝜀𝑅 𝜀𝐿 ] is the
process noise. 
9
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This state is observed by several measurements that make up the output vector z : 

𝒛 𝑘 = ℎ
(
𝒙 𝑘 , 𝒗 𝑘 

)
(8) 

where h is the measurement function and 𝒗 = [𝜀𝑅 𝜀𝐿 ] is the measurement noise affecting the readings of displacement increments
from the rotary axis encoders. 

wk and vk are independent, are white noise, have a normal probability distribution with covariance matrices Q and R respectively: 

𝑃
(
𝒘 𝑘 

)
∼ 𝑵 

(
0 ,𝑸 𝑘 

)
; 𝑃

(
𝒗 𝑘 

)
∼ 𝑵 

(
0 ,𝑹 𝑘 

)
; 𝐸

(
𝒘 𝑖 𝒗 𝑗 

𝑇 
)
= 0 (9) 

Define matrices in sensor fusion steps 

The speed and distance of the robot are shown in Fig. 1 (c) is measured by the Odometry method based on the function f in the
system Eq. (7) . 

• Starting phase: From step k = 0, the robot starts from a known initial position with a posterior state estimate ̂𝐱0 and the covariance
of the error estimate P0 . 

• Prediction phase: At each time step k , the filter propagates the state x and covariance P of the system in the previous step to the
current step using the time update equation: 

�̂� − 
𝑘 
= 𝑓

(
�̂� 𝑘 −1 , 𝒖 𝑘 −1 , 𝟎 

)
(10) 

𝑷 − 
𝑘 
= 𝑨 𝑘 𝑷 𝑘 −1 𝑨 

𝑇 
𝑘 
+𝑾 𝑘 𝑸 𝑘 −1 𝑾 

𝑇 
𝑘 

(11) 

Here, input control signals 𝒖 = [Δ𝑠𝑅 Δ𝑠𝐿 ]𝑇 measured by the encoder sensor. 
To get the filter’s matrix P , the matrices Q and A are defined as follows: 

○ Qk is the input noise covariance matrix with size [2 × 2], we have: 

𝑸 𝑘 = 𝑐𝑜𝑣𝑎𝑟
(
Δ𝑠𝑅( 𝑘) , Δ𝑠𝐿( 𝑘) 

)
=

[ 

𝛿𝑅 
|||Δ𝑠𝑅( 𝑘) ||| 0 
0 𝛿𝐿 

|||Δ𝑠𝐿( 𝑘) |||
] 

(12) 

Here, 𝛿R and 𝛿L are error constants representing the uncertainty parameters of the motor control circuit and the interaction of the
wheel with the floor, and they are independent of each other. Thus, the variance of the process noise is proportional to the absolute
value of the increments distance travelled by each wheel ΔsR and ΔsL . These scale constants depend on the structure of the robot and
the environment. They are determined experimentally as 𝛿𝑅 = 𝛿𝐿 ≡ 𝛿= 0 , 0003 . 

○ Ak is a matrix of size [3 × 3], calculated by: 

𝑨 𝑘 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕𝑓𝑥 

𝜕𝑥 

𝜕𝑓𝑥 

𝜕𝑦 

𝜕𝑓𝑥 

𝜕𝜃
𝜕𝑓𝑦 

𝜕𝑥 

𝜕𝑓𝑦 

𝜕𝑦 

𝜕𝑓𝑦 

𝜕𝜃
𝜕𝑓𝜃

𝜕𝑥 

𝜕𝑓𝜃

𝜕𝑦 

𝜕𝑓𝜃

𝜕𝜃

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 0 −Δ𝑠𝑘 sin 

( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

0 1 Δ𝑠𝑘 cos 
( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(13) 

○ Wk is a matrix of size [3 × 2], calculated by: 

𝑾 𝑘 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 
cos 

( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

+
Δ𝑠𝑘 
2 𝐿 

sin 
( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

1 
2 
cos 

( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

+
Δ𝑠𝑘 
2 𝐿 

sin 
( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

1 
2 
sin 

( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

+
Δ𝑠𝑘 
2 𝐿 

cos 
( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

1 
2 
cos 

( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

−
Δ𝑠𝑘 
2 𝐿 

sin 
( 

𝜃𝑘 −1 +
Δ𝜃𝑘 
2 

) 

1 
𝐿 

− 1 
𝐿 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(14) 

• Correction phase: The filter corrects the a priori state estimate with zk measurements by the following measure update equations:

𝑲 𝑘 = 𝑷 − 
𝑘 
𝑯 

𝑇 
𝑘 
(𝑯 𝑘 𝑷 

− 
𝑘 
𝑯 

𝑇 
𝑘 
+𝑹 𝑘 )−1 (15) 

�̂� 𝑘 = �̂� − 
𝑘 
+𝑲 𝑘 

(
𝒛 𝑘 − 𝒉 

(
�̂� − 
𝑘 

))
(16) 

𝑷 𝑘 =
(
𝑰 −𝑲 𝑘 𝑯 𝑘 

)
𝑷 − 
𝑘 

(17) 
10
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Fig. 12. Lidar sensor measures 2 parameters of a straight line in the environment. 

 

 

 

 

 

 

 

 

 

In this case we use an absolute measurement using the RPLIDAR sensor. This sensor allows the detection of features of the
environment around the robot, which are lines detected in the environment (for example, a line that cuts across a flat wall in a
room). 

By a transformation such as the Hough transform, we have two parameters of distance r from the line to the origin and angle 𝜓 
between the line as shown in Fig. 12 . The global map of the built environment consists of a set of Line segments are described by the
parameters 𝛽 j and 𝜌j . The equation of the straight line in canonical form is: 

𝑥𝐺 cos 𝛽𝑗 + 𝑦𝐺 sin 𝛽𝑗 = 𝜌𝑗 (18) 

As the robot moves, a local map of the environment is built with coordinates mounted on the robot. It also includes a set of line
segments described by the equation: 

𝑥𝑅 cos 𝜓𝑖 + 𝑦𝑅 sin 𝜓𝑖 = 𝑟𝑖 (19) 

where 𝜓 i and ri are the parameters of the ith line among N. 
Line segments of the local and global environment will be detected as matches. Line segments that are matched to the local map

will be collected into vector zk , used as input for the EKF editing step: 

𝒛 𝑘 = [𝑟1 𝑘 , 𝜓1 𝑘 , ..., 𝑟𝑁𝑘 , 𝜓𝑁𝑘 ]𝑇 (20) 

Calculate the matrices R, h and V 

From the coordinates and direction of the robot estimated by the odometry method, the parameters 𝛽 j and 𝜌j of the jth line segment
in the global map are converted to parameters ri and 𝜓 i according to the local coordinate system of the robot. They are calculated
by: [ 

𝑟𝑖 
𝜓𝑖 

] 
=

[ |||𝐶𝑗 |||
𝛽𝑗 − 𝜃 + 𝜋

(
−0 , 5 𝑠𝑖𝑔𝑛

(
𝐶𝑗 

)
+ 0 , 5 

)] 

; 

𝐶𝑗 = 𝜌𝑗 − 𝑥 cos 𝛽𝑗 − 𝑦 sin 𝛽𝑗 (21) 

𝜓 i and ri are the measurements that are directly affected by the measurement noises of the RPLIDAR sensor. Call these measurement
disturbances 𝜀r and 𝜀𝜓 , then the measured component vector from the laser sensor when including the interferences will be: [ 

𝑟𝑖 
𝜓𝑖 

] 
=

[ |||𝐶𝑗 |||
𝛽𝑗 − 𝜃𝑟 +

(
−0 , 5 𝑠𝑖𝑔𝑛

(
𝐶𝑗 

)
+ 0 , 5 

)
𝜋

] 

+
[ 
𝜀𝑟 
𝜀𝜓 

] 
(22) 

Thus, when adding a Lidar sensor, the measurement function h is added 2 N components ri and 𝜓 i . When k is hidden, we have
the following matrices: 

- The matrix Hodl has size [(2 N) × 3] and is equal to: 

𝐻𝑜𝑑𝑙 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕𝑟1 
𝜕𝑥 

𝜕𝑟1 
𝜕𝑦 

𝜕𝑟1 
𝜕𝜃

𝜕𝜓1 
𝜕𝑥 

𝜕𝜓1 
𝜕𝑦 

𝜕𝜓1 
𝜕𝜃

⋮ ⋮ ⋮ 
𝜕𝑟𝑁 

𝜕𝑥 

𝜕𝑟𝑁 

𝜕𝑦 

𝜕𝑟𝑁 

𝜕𝜃
𝜕𝜓𝑁 

𝜕𝑥 

𝜕𝜓𝑁 

𝜕𝑦 

𝜕𝜓𝑁 

𝜕𝜃

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−𝑐1 cos 𝛽1 −𝑐1 sin 𝛽1 0 
0 0 −1 
⋮ ⋮ ⋮ 

−𝑐1 cos 𝛽𝑁 −𝑐1 cos 𝛽𝑁 0 
0 0 −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(23) 
11
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where ci is the sign function sign(Ci ) . 

- The matrix Vodl has size [(2 N) × 3] and is equal to: 

𝑉𝑜𝑑𝑙 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕𝑟1 
𝜕𝜀𝜑 

𝜕𝑟1 
𝜕𝜀𝑟 

𝜕𝑟1 
𝜕𝜀𝜓 

𝜕𝜓1 
𝜕𝜀𝜑 

𝜕𝜓1 
𝜕𝜀𝑟 

𝜕𝜓1 
𝜕𝜀𝜓 

⋮ ⋮ ⋮ 
𝜕𝑟𝑁 

𝜕𝜀𝜑 

𝜕𝑟𝑁 

𝜕𝜀𝑟 

𝜕𝑟𝑁 

𝜕𝜀𝜓 
𝜕𝜓𝑁 

𝜕𝜀𝜑 

𝜕𝜓𝑁 

𝜕𝜀𝑟 

𝜕𝜓𝑁 

𝜕𝜀𝜓 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 
0 0 1 
⋮ ⋮ ⋮ 
0 1 0 
0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(24) 

- The matrix Rodl has size [(2 N) × (2 N)] and is equal to: 

𝑅𝑜𝑑𝑙 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑣𝑎𝑟
(
𝑟1 
)

0 0 ⋯ 0 0 
0 𝑣𝑎𝑟

(
𝜓1 

)
0 ⋯ 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0 0 ⋯ 0 𝑣𝑎𝑟

(
𝑟𝑁 

)
0 

0 0 ⋯ 0 0 𝑣𝑎𝑟
(
𝜓𝑁 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(25) 

Identification of Kalman filter’s parameters from the Lidar 

This section describes the algorithm to extract line segments from a set of points based on the least square quadratic (LSQ) method.
The point cloud was obtained from a scanner with an 360° field of view and a 1° angular resolution. The data collected by the RPLIDAR
was first converted into Cartesian coordination and stored in an array according to the equation: 

𝑥 = 𝑟 cos 
(
𝜑
𝜋

180 

)
; 𝑦 = 𝑟 sin 

(
𝜑
𝜋

180 

)
(26) 

where r and 𝜑 are the range and bearing from robot position to obstacles respectively. 
Points that lie too close to robot position ( < 40 cm) were treated as noise and were eliminated. Because the RPLIDAR scans from

right to left, neighboring points have high chance to lie on a same landmark such as on the wall. The LSQ was applied to a group
of N1 consecutive laser readings starting from the first points to find the best fit line of these points. A distance threshold disT was
predefined and compared with the distance from each point in the group to the best fit line. If there were more than N2 of the points
in the group (in our research, N2 = 0,75 N1 ), the distance of which is fewer than the disT , a line was detected and a new best fit line
was calculated based on these points. The point with the smallest index would be saved as one end of the line segment. The slope m
and intercept k of the line were computed using the formula: 

𝑚 =

∑
𝑥𝑦 −

(∑
𝑥 
)(∑

𝑦 
)

𝑛 ∑
𝑥2 −

(
∑
𝑥 ) 2 

𝑛 

; 𝑘 = �̄� − 𝑚�̄� (27) 

where n is the total number of data points, �̄� and �̄� are the mean of the x- and y- coordinates of the data points respectively. The
algorithm would then be used to find the remaining points of the cloud to add more points to the line segment. Points that lie too far
from their previous neighbors in the array would be ignored. The last point that met the distance threshold was then treated as the
other end of the found line segment. The algorithm was repeated with the new group until all elements of the collected point cloud
were checked. 

Nevertheless, a fixed threshold disT did not work for all scans. Experiment results show that in about 10% of the scans, the
threshold of the distance from one point to the best fit line should be larger in order to detect lines from data points. However, if the
threshold applied for all scans was too large, extracted line segments would be not smooth and could affect the matching result. In
this paper, a simple dynamic threshold was developed to solve this problem. A maximal threshold disTmax was defined as the largest
distance to determine if a point belongs to a line. For each group of points, instead of comparing the distance from each point to
the best fit line with fixed disT , all distances would be stored in an array and sorted in an ascending order. If the N2 th distance was
smaller than the maximal threshold disTmax , it would be chosen as the distance threshold for this line segment. Therefore, the number
of distance threshold in each scan would be the same as the number of detected line segments. 

Local and global maps matching 

The extracted line segments of same landmarks from local and global maps are then matched together using a straight-forward
algorithm. The extracted line segments from global map Gj and local map Lj are described as follows: 

𝐺𝑗 = 

[
𝑥1 𝐺, 𝑗 𝑥2 𝐺, 𝑗 𝑦1 𝐺, 𝑗 𝑥2 𝐺, 𝑗 

]
𝑗 = 1 … 𝑛𝐺 
12
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Fig. 13. The range and bearing of global and local line segments to robot’s position in robot’s coordinate. 

Fig. 14. The overlapping parameters between global and local line segments. 

 

 

 

 

 

𝐿𝑖 = 

[
𝑥1 𝐿, 𝑖 𝑥2 𝐿, 𝑖 𝑦1 𝐿, 𝑖 𝑦2 𝐿, 𝑖 

]
𝑖 = 1 … 𝑛𝐿 (28) 

where ( x1 ,y1 ) and ( x2 ,y2 ) are Cartesian coordinate of two end points of extracted line segments respectively, nG and nL are number
of extracted global and local line segments. 

The detected global line segments are first transformed into local map with the equation: 

𝐺𝑇𝑗 = 𝑮 

( [ 
𝑥1 𝐺,𝑗 𝑦1 𝐺,𝑗 
𝑥2 𝐺,𝑗 𝑦2 𝐺,𝑗 

] 
−

[ 
𝑥0 𝑦0 
𝑥0 𝑦0 

] ) 

(29) 

where 𝑮 =
( 

cos 𝜑0 − sin 𝜑0 
sin 𝜑0 𝑐𝑜𝑠𝜑0 

) 

is the conversion matrix, 
[
𝑥0 𝑦0 𝜃0 

]𝑇 
are indicators of robot’s position in global map estimated by 

Odometry. Each local line segment Li is compared with all transformed global line segments GT,j , and two line segments are considered
as “matched ” if their range and bearing to robot position are approximately the same and the overlapping rate between them is less
than previous defined threshold [ 27 ]. 

The range and bearing of global and local line segments to robot position in robot’s coordinate are presented as ( 𝜌G,j , 𝜓G,j ) and
( 𝜌,Li , 𝜓L,i ), respectively as shown in Fig. 13 . 

The overlapping rate between the local line segment Li and the transformed global line segment GT,j is defined as follows: 

𝑂𝑘 
(
𝑎𝑘 , 𝑏𝑘 

)
= |||𝑎𝑘 + 𝑏𝑘 − �̄�𝑇 ,𝑗 |||

𝑂𝑘 
(
𝑐𝑘 , 𝑑𝑘 

)
= |||𝑐𝑘 + 𝑑𝑘 − �̄�𝑇 ,𝑗 |||

𝑘 = ( 𝑗 − 1 ) 𝑛𝐿 + 𝑖 

𝑘 = 1 , 2 , ..., 𝑛𝐿 𝑛𝐺 − 1 , 𝑛𝐿 𝑛𝐺 𝑘 = 1 , 2 , ..., 𝑛𝐿 𝑛𝐺 − 1 , 𝑛𝐿 𝑛𝐺 (30) 

where GT,j is the length of transformed global line segment; ak , bk , ck and dk are Euclidean distances between the end points of the
line segments Li and GT,j as shown in Fig. 14 . 
13
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The inequations below represent conditions for matching local and transformed global line segments in robot’s coordinate. Two 
line segments Li and GT,j are matched if all following conditions are met: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑂𝑘 
(
𝑎𝑘 , 𝑏𝑘 

)
< 𝑇 

𝑂𝑘 
(
𝑐𝑘 , 𝑑𝑘 

)
< 𝑇 

(𝜌𝐿,𝑖 − 𝜌𝐺,𝑗 ) 2 < 𝑇𝜌
(𝜓𝐿,𝑖 − 𝜓𝐺,𝑗 ) 2 < 𝑇𝜓 

(31) 

where T, T𝜌, T𝜓 , are predefined threshold. 

Estimation of line parameter’s covariances 

In order to compute the measurement covariance for the EKF, each extracted line segment could be presented as ( 𝜌, 𝜓) parameters
where 𝜌 stands for the perpendicular distance from robot’s position to the line and 𝜓 is the line orientation: 

𝜌 = |− 𝑘 |√
𝑚2 + 1 

; 𝜓 = arctan 2
( 

𝑘 

1 + 𝑚2 ,
− 𝑚𝑘 

1 + 𝑚2 

) 

(32) 

where (m,k) are slope and intercept of detected line which were computed in (33). 
From the solution give by Derich [ 28 ], the measurement covariance matrix, R , can be calculated with the assumption that each

data point has the same Cartesian uncertainty: 

𝑅𝑖 =
𝑎𝑖 𝜎

2 
𝑦𝑦 

− 𝑏𝑖 𝜎2 𝑥𝑦 + 𝑐𝑖 𝜎
2 
𝑥𝑥 

(𝑎𝑖 − 𝑐𝑖 ) 2 + 𝑏𝑖 2 

( 

1 − 𝑒 

− 𝑒 𝑒2 

) 

+
⎛ ⎜ ⎜ ⎝ 
0 0 

0 
𝜎2 
𝑦𝑦 
cos 2 𝜑𝑖 + 𝜎2 

𝑥𝑥 
sin 2 𝜑𝑖 − 2 𝜎2 

𝑥𝑦 
sin 𝜑𝑖 cos 𝜑𝑖 

𝑛 

⎞ ⎟ ⎟ ⎠ ≅
[ 
𝑣ar 

(
𝑟𝑖 
)

0 
0 𝑣ar 

(
𝜓𝑖 

)] 
where ∶ 𝑒𝑖 = �̄� cos 𝜓𝑖 − �̄� sin 𝜓𝑖 ;𝜑𝑖 =

(
𝜓𝑖 +

𝜋

�̄� 

)
; �̄� = 1 

𝑛 
𝑥𝑗 ; �̄� =

1 
𝑛 
𝑦𝑗 ; 𝑎𝑖 =

∑
(𝑥𝑗 − �̄� ) 2 ; 𝑏𝑖 = 2

∑(
𝑥𝑗 − �̄� 

)(
𝑦𝑗 − �̄� 

)
; 

𝑐𝑖 =
∑

(𝑦𝑗 − �̄� ) 2 (33) 

Control the robot to track the trajectory 

The main goal is to control the mobile robot to track a certain trajectory. A different trajectory with a path with time constraints
added to it, which makes the control target not only minimize the distance between the robot and the path, but also to ensure the
travel time. We define the actual robot state as: 𝑋 = [ 𝑥 𝑦 𝜃] 𝑇 and according to the pattern trajectory is: 𝑋r = [xr yr θr ]T 

When the robot moves, the error will appear: 

𝑒 =
⎡ ⎢ ⎢ ⎣ 
𝑒1 
𝑒2 
𝑒3 

⎤ ⎥ ⎥ ⎦ =
⎡ ⎢ ⎢ ⎣ 
cos 𝜃 sin 𝜃 0 
− sin 𝜃 cos 𝜃 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑥𝑟 − 𝑥 

𝑦𝑟 − 𝑦 

𝜃𝑟 − 𝜃

⎤ ⎥ ⎥ ⎦ (34) 

From the kinetic and derivative model (40) , we get the error model as follows: 

⎡ ⎢ ⎢ ⎣ 
�̇�1 
�̇�2 
�̇�3 

⎤ ⎥ ⎥ ⎦ =
⎡ ⎢ ⎢ ⎣ 
cos 𝑒3 0 
sin 𝑒3 0 
0 1 

⎤ ⎥ ⎥ ⎦ 
[ 
𝑣𝑟 
𝜔𝑟 

] 
+

⎡ ⎢ ⎢ ⎣ 
−1 𝑒2 
0 −𝑒1 
0 −1 

⎤ ⎥ ⎥ ⎦ 
[ 
𝑣 

𝜔 

] 
(35) 

where vr , 𝜔r are the linear and angular velocity of the robot according to the trajectory. 
The controller for the robot is built as follows: [ 

𝑣 

𝜔 

] 
=

[ 
𝑣𝑟 cos 𝑒3 
𝜔𝑟 

] 
+

[ 
𝑣𝑓𝑏 
𝜔𝑓𝑏 

] 
(36) 

where vfb , 𝜔fb are the feedback signal of the controller, are selected as follows: 

𝑣𝑓𝑏 = 𝑘1 𝑒1 

𝜔𝑓𝑏 = 𝑘2 𝑣𝑟 
sin 𝑒3 
𝑒3 
𝑒2 + 𝑘3 𝑒3 (37) 

where k1 > 0, k2 > 0 and k3 are the coefficients. 
Then the control law for tracing the trajectory will be rewritten as: [ 

𝑣 

𝜔 

] 
=

⎡ ⎢ ⎢ ⎣ 
𝑣𝑟 cos 𝑒3 + 𝑘1 𝑒1 

𝜔𝑟 + 𝑘2 𝑣𝑟 
sin 𝑒3 
𝑒3 
𝑒2 + 𝑘3 𝑒3 

⎤ ⎥ ⎥ ⎦ (38) 
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Fig. 15. (a). Layout diagram of ultrasonic sensors; (b) Update the Histogram Grid by continuously sampling the ultrasonic sensors while moving. 

 

 

 

 

 

 

 

 

 

 

 

 

Controlling the robot to avoid obstacles with VFH + using ultrasonic sensors 

Along the way, the robot must be able to detect and avoid unexpected obstacles. For these cases, a proximity sensor system is
used. That is 12 ultrasonic distance sensors installed on the robot as shown in Fig. 15 (a), allowing to detect obstacles in front and
two sides of the robot. 

The VFH + method uses a histogram grid to map the environment around the robot. This map is continuously updated with distance
to obstacle data obtained from the ultrasonic sensors mounted on the robot as shown in Fig. 15 (b). The method will find the optimal
direction of movement when encountering obstacles, and appropriate velocity control for the robot (linear velocity, angular velocity). 

Histogram grid 

In this step, a two-dimensional Cartesian histogram grid (C) is generated containing the information transmitted from the ultrasonic
sensors (the selected C has dimensions of 81 × 81 and a resolution of 0.1 m/cell). Each grid cell C[ i, j ] contains a value ci,j representing
the reliability of the existence of an obstacle at the coordinate position ( i, j ). The grid is filled using distances measured by ultrasonic
sensors, each of which updates the value of only one cell at a time. 

Polar histogram 

In the second step, a window C ∗ has a fixed orientation, whose center is attached to the robot and moves along its motion (the
selected C ∗ is 33 × 33). It is called the active window and it overlays the histogram grid C at the robot’s current position. The content
of each active cell in the map grid is treated as an obstacle vector, its direction 𝛽 being towards the center of the active region (robot
center point (RCP)): 

𝛽𝑖,𝑗 = tan −1 
( 

𝑦𝑖 − 𝑦𝑜 
𝑥𝑖 − 𝑥0 

) 

(39) 

The vector magnitude of an active cell C[ i, j ] is given by: 

𝑚𝑖,𝑗 = 𝑐2 
𝑖,𝑗 

(
𝑎 − 𝑏𝑑2 

𝑖,𝑗 

)
(40) 

where a and b are positive constants, ci , j is the certainty value of an active cell ( i, j ), di, j distance from each cell to the center of the
active area (RCP), mi, j is the magnitude of the obstacle vector at the cell ( i, j ), ( x0 , y0 ) is the coordinate of the robot center, ( xi , yi ) is
the coordinate of each cell ( i, j ). 

Based on the obstacle vectors, the Primary Polar Histogram Hp is built. Hp has an arbitrary angular resolution 𝛼 so that n = 360°/ 𝛼
is an integer. Each angular sector k corresponds to a discrete angle k 𝛼. 

For each obstacle cell, the enlargement angle 𝛾 i, j is defined by: 

𝛾𝑖,𝑗 = arcsin 𝑟 
𝑑𝑖,𝑗 

(41) 

where r is the radius of the robot’s safe zone. 
For each sector k , the polar obstacle density is then calculated by: 

𝐻
𝑝 

𝑘 
=

∑
𝑚𝑖,𝑗 ℎ

′
𝑖,𝑗 

(42) 

with: 

ℎ′
𝑖,𝑗 

=
{ 

1 𝑖𝑓𝑘𝛼 ∈
[
𝛽𝑖,𝑗 − 𝛾𝑖,𝑗 , 𝛽𝑖,𝑗 + 𝛾𝑖,𝑗 

]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(43) 
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Fig. 16. The method of determining the focal length of the camera. 

Fig. 17. Determine the distance using the triangle similarity method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the Polar Histogram we can find out which direction is free so that the robot can move in that direction without encountering
obstacles. The polar chart is updated according to the following rules: 

𝐻𝑏 
𝑘,𝑖 

=
⎧ ⎪ ⎨ ⎪ ⎩ 

1 𝑖𝑓𝐻𝑝 
𝑘 
> 𝜏ℎ𝑖𝑔ℎ 

0 𝑖𝑓𝐻𝑝 
𝑘 
< 𝜏𝑙𝑜𝑤 

𝐻𝑏 
𝑘,𝑖 −1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(44) 

where 𝜏high and 𝜏 low are high thresholds and low thresholds are chosen to ensure that obstacles too far away from the robot do not
affect the robot’s movement, even though the obstacle is in front of the moving direction. 

Patient identification 

To guide the patient by maintaining the distance between the robot and the patient during the robot movement, we apply the
face detection technique [ 29 ]. From there, determine the height of the face in the image and calculate the distance from the image
sensor to the face of the person standing in front of the camera, applying the principle of similarity of 2 triangles as shown in Figs.
16 and 17 . 

Determine the distance d from the formula 𝑎 ∕𝑓 = tan 𝜃1 = ℎ ∕𝑑. We can calculate the distance of d as: 

𝑑 = ℎ × 𝑓 
𝑎 

(45) 

where a is the height of the human face in the image, f is the focal length, h is the height of the actual human face, d is the distance
from the person to the camera. 

Disinfection and sterilization 

The sterilization and disinfection components of the robot are described in Fig. 1 (a) and 1(b). In which the UV lamp is equipped
at the back for the purpose of sterilization. UV lamp with a power of 36 W, wavelength 253.7 nm, the glass shell of the lamp has a
filter function of 185 nm wavelength to create ozone in the air. 

Disinfection is carried out as follows: in front of the robot body, there is a container of disinfectant solution with a capacity of
20l Disinfectant solution containing 0.1% active Chlorine (as recommended [ 30 ]. And will be evenly sprayed on the surface of the
disinfected special treatment room with a dosage of 0.3 – 0.5l/m2 by two nozzles that have been arranged under the front chassis
of the robot. With the equipment arrangement as shown in Fig. 1 (b), the disinfectant solution will be sprayed forward and diffused
lower than the patient’s lying position as recommended by medical authorities. With 1 meter of movement of the robot, the amount
of sprayed solution will be equivalent to 1 ml (at each nozzle). Thus, with the carrying of 20l of the solution, the robot will disinfect
an entire room with a charge of 60m2 over 150 times. 

In addition to disinfection, the robot is also specially equipped with a floor cleaning function according to the robot’s movement
diagram. Below the robot is arranged 4 rotating brushes with a diameter of 170 mm. The brush rotates passively through the drive
force from the wheel, and the mopping mechanism is pressed against the floor by a spring, to ensure that there are no gaps or gaps
between the floor and the brush surface. The brush can be simply removed for cleaning or replacement. 
16
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Fig. 18. (a) Medical room plan; (b) The path of the robot in different configurations when following the trajectory . 

 

 

 

 

 

 

 

 

 

 

 

 

 

SpO2 sensor and AMG8833 sensor 

First of all, blood oxygen saturation (SpO2) was calculated using a formula supplied in the Maxim IntegratedTM sample code [ 24 ].
The AC and DC 

Component of the pulsative waveform was calculated for both the red and infrared channels and stored in integer variables (ACRed ,
ACIR , DCRed , DCIR ) as a mean of 5 consecutive peaks/valleys. A ratio (R) of the AC and DC was then calculated from the mean AC
and DC values using Eq. (46) , and the SpO2 value was calculated by the Eq. (47) : 

𝑅 =
𝐴𝐶Red ÷𝐷𝐶Red 
𝐴𝐶IR ÷𝐷𝐶IR 

(46) 

𝑆𝑝𝑂2 = −45 , 060𝑅2 + 30 , 345 𝑅 + 94 , 845 (47) 

Next, the AMG8833 sensor measures the temperature of an object based on the thermal radiation emitted by that object. The
Stefan-Boltzmann law describes the power emitted by an object using the formula (48) : 

𝑃 = 𝜀𝐴𝜎𝑇 4 (48) 

where P is the power radiated from an object; T is the temperature of the object; A is surface area; 𝜎 is Stefan–Boltzmann constant, 𝜀
is the emissivity of the object (it gets values from 0 to < 1 for objects which do not absorb all incident radiation - grey object; If it is
an absolute black object then equal 1). 

Applying Moghaddam’s formula [ 31 ], we calculate the temperature of a grey body as follows: 

𝑉𝑜𝑢𝑡 = 𝑘
(
𝑇 4 
𝑜 
− 𝑇 4 

𝑠 

)
(49) 

where Vout is the output voltage of the sensor, T0 is the surface temperature of the object being measured, Ts is the temperature of
the sensor’s thermistor, k is the empirical constant representing the parameters A, 𝜀 , 𝜎 as well as the electronic noise that may exist
during the measurement (calibrating the sensors). 

Based on (49) , the surface temperature of the object will be calculated by the formula (50) : 

𝑇𝑜 = (𝑉𝑜𝑢𝑡 ∕𝑘 + 𝑇 4 
𝑠 
)1∕4 (50) 

Experimental results 

Experimenting with a robot that follows the trajectory and avoids obstacles 

With the shape and size of the hospital room as shown in Fig. 18 (a), we can draw a map and set the trajectory for the robot as
shown in Fig. 18 (b), the arrow direction is the direction of movement. The robot will both follow the trajectory and disinfect (the
disinfecting road surface is 0,65 m wide), when approaching the hospital beds, the robot will collect data without contacting the
patient. The robot is tested with sensor fusion cases without lidar and when lidar is present. In order to avoid obstacles appearing
unexpectedly on the robot’s trajectory, the Vector Field Histogram + (VFH + ) method [ 21–23 ] is applied. The real path of the robot is
actually measured. 
17
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Fig. 19. The data is obtained from the Lidar and the line segments are matched to the map. 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 19 , the result showing the robot’s path in 3 cases: the green line is the real trajectory, the red line is obtained when
using only Encoder and the blue line is when adding the Lidar sensor. When using only Encoder, the robot moves away from the
real trajectory when the trajectory is longer due to the accumulation of accumulated error noise, leading to the robot colliding with
equipment in the room before going all the way and having to end the journey. When fusing both Encoder and Lidar sensors, the
result for the robot’s path is closest to the true trajectory by the positioning method based on the Kalman filter. This method is based
on the data obtained from the Lidar which is matched to the global map. 

Fig. 19 shows the data obtained from the lidar sensor along the trajectory, the red lines are the lines extracted from the points and
matched to the map. The Kalman filter will use the matched segments to compute the values of the matrices for the filter to locate. 

Experimental results show that the effectiveness of the Kalman filter when adding more sensors, the position estimation results 
are closer to the real line values. 

Fig. 20 provides the result of moving when the robot encounters an obstacle blocking the trajectory. The robot uses the VFH +
method to avoid obstacles based on data from ultrasonic sensors mounted on the robot. The results show that the robot avoids
obstacles effectively and keeps track of its trajectory after avoiding obstacles. 

Collect patient temperature and SpO2 data 

Based on the robot’s movement map, stop points are established along the way for the robot to stop and collect sensor data as
shown in Fig. 21 . We arranged the tester to lie on the bed corresponding to the stop points that will perform sensor data collection. 

The data collection process follows the following steps: Every time the robot moves to a stop, it will perform 2 to 3 rotations at
the center. 

• First, at stop position 1, the robot will rotate to the right at an angle of 45° relative to the direction of the path following the red
arrow. This is the direction that is determined from the center of the image sensor to the face of the patient lying on the bed (the
18
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Fig. 20. Robot avoids obstacles by the VFH + method. 

Fig. 21. Map of breakpoints for robot data collection; The yellow point marks the stop position; Directional arrow for AMG8833 sensor node that 
collects body temperature data. 

 

 

 

 

patient’s lying position are supine, upright, and facing the ceiling). At each rotation, the robot stops for 3 s (determined through
actual testing) so that the AMG8833 sensor reads the temperature data of the right patient. The next turn to the left 90° to collect
the temperature of the patient on the left. In the third rotation, the robot continues to rotate left by an angle of 135° to come out
of the stop and continue the route. 

• At stop position 2, the robot performs the same action as stop position 1 to collect data of 2 patients on both sides. 
• At stop position 3, the robot only performed 2 left rotations at an angle of 45° for the first time and an angle of 135° for the second

time to collect data of the left patient. 
19
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Fig. 22. Final data sample of test participants in bed 2. 

Fig. 23. Final data sample of test participants in bed 3. 

 

 

 

• After each rotation, the sensor data will be sent to the computer. As shown in Figs. 22 and 23 , we can see that every time the
robot stops at a stop, the sensor data will be sent to the computer every 0,5 s. In there: 

• For the temperature graph, the red pixels represent temperatures above 35 °C, which is also the location of the tester. The group
of red pixels is skewed to the right for the test participant in bed 2 and to the left for the test participant in bed 3. 

• For the SpO2 chart, every 3 s, there will be 06 data samples sent to the computer. The space between the 2 groups of data on the

SpO2 and Heart Rate charts shows the time it took the robot to rotate 45° from bed 2 direction to bed 3 direction in 06 s. 
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Conclusions and future developments 

This article presents a novel design of a mobile robot, called CEE-IMR. The research provides a smart disinfection system and
indirect measurement system for mobile robots supporting Covid-19 or contagious disease treatments in hospitals. Smart disinfection 
robots can improve the shortcomings of existing sterilization methods, improve sterilization quality, and reduce the probability of 
infection. The robot model uses intelligent photo recognition, independent sensors to monitor the sterilization process in real-time, 
and intelligently plan moves independently. The evaluation of the results proves the effectiveness of the proposed method. Automated
air and surface disinfection and non-human patient monitoring have reduced unnecessary direct contact between infected people and 
healthcare workers. The results can be developed for real applications in hospitals and show promise. 

In the future developments, we will deploy more AI techniques and security methods into the systems. The system can operate
more independently and adapt with sudden changes in flexible working environments. More facilities could be embedded in the 
system to provide necessary services for either patients and doctors in hospitals. 

Method validation 

All Results and Discussion are provided in the above Section, Method details. The results are from real robots running in hospitals
that can validate the methods. The corresponding discussions are provided at every steps to validate the methods. 

Limitations 

The current limitation of this work is that the robot has not been trained with AI techniques to be able to adapt with either the
environments or the people around. This can lead to more functions for the robot and be more effective while working in contagious
disease environments. 
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