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Abstract
Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of

the person. Assume the platform satisfies Hooke’s law. As the platform moves, the person

reacts and moves its body attempting to keep its balance. We develop a simple model to

study this phenomenon and show that the person, while attempting to keep its balance,

may do positive work on the platform and increase the amplitude of its oscillations. The

studies in this article are motivated by the oscillations in pedestrian bridges that are some-

times observed when large crowds cross them.

Introduction
Consider a person walking in a straight direction. The sagittal plane refers to the plane that
contains the direction perpendicular to the ground and the direction toward the person is
walking. As the person walks, its center of mass oscillates, both in the vertical direction (per-
pendicular to the ground) and the lateral direction (perpendicular to the sagittal plane). While
small, these lateral oscillations are the cause of some observed, undesired and unexpected
motions of pedestrian bridges when too crowded. The physics behind the wobbling of these
bridges is understood to some degree. The following is believed:

Since the center of mass of each pedestrian oscillates laterally as the pedestrian walks over
the bridge, the bridge is exerting lateral forces on the pedestrians, and thus, the action-reaction
principle implies the pedestrians exert lateral forces on the bridge. The forces each pedestrian
exerts on the bridge are oscillating and close to periodic.

Assume N pedestrians are crossing the bridge. They all walk with similar frequencies but
not in phase and thus, the forces the pedestrians apply on the bridge partially cancel. However,
the Central Limit Theorem of probability asserts that all those forces do not add up to zero.

Instead, they add up to a force that would result from having of the order of
ffiffiffiffi
N

p
pedestrians

walk in phase, i.e. a force of the order of magnitude
ffiffiffiffi
N

p
times the force due to one pedestrian.
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When N is large large enough, and the frequency of the walkers is close enough to the natu-
ral frequency of the bridge, the force described in the last paragraph is large enough to cause
the bridge to begin to wobble.

As the bridge wobbles, the pedestrians react in an attempt to keep their balance. As a conse-
quence of their response, the frequency of the walkers becomes closer to the natural frequency
of the bridge and the pedestrians walk mostly in phase. In other words, the walk of most pedes-
trian is now synchronized. Thus, the forces they exert on the platform no longer partially can-
cel. Instead, these forces add up to a net force on the bridge that is larger than when the bridge
is not moving and the pedestrians walk out of phase. Moreover, to try to keep their balance,
not only the pedestrians walk in synchrony, but the amplitude of the oscillations of their center
of mass increases because their steps are wider. As a consequence of these changes in the pedes-
trians gait, the amplitude of the oscillations of the bridge increases even further.

We refer the reader to [1–7] for more detail discussions on the wobbling pedestrian bridges.
Synchronization of oscillators on moving platforms also occurs in other contexts. Examples

include the famous Huygens’ system of pendula [8–10] and the synchronization of metro-
nomes [11, 12]. Thus, these mentioned works are relevant to the study of the dynamics of
pedestrians-bridges systems. In this work, however, as explained below in this introduction, we
will not consider collections of pedestrians, only a single standing biped on a moving platform.

The above discussion on the wobbling of pedestrian bridges raises some questions. In partic-
ular: How do pedestrians adjust their gait to keep their balance when they walk on a platform
that is moving laterally?We do not attempt to answer this question in this article. Instead, we
study the following simpler, but still challenging and relevant problem.

Assume a person is standing on an oscillating platform that satisfies Hooke’s law. The per-
son keeps its feet in the same position, somewhat wide apart, on the platform at all times. How-
ever, the person is free to bend its knees and move its trunk and arms as necessary to keep its
balance.What is the dynamics of the person-platform system? In particular: Does the amplitude
of the oscillations of the platform increase due to the person-platform interactions?

In this article, we introduce a model to argue on possible answers to the two questions of the
last paragraph. Our analysis shows a possible feedback mechanism that leads to an increase in
the amplitude of the oscillations of the platform. Our results suggest experiments to further
understand this phenomenon and they also provide guidelines to undertake the more complex
study of the pedestrians-bridge interaction that motivates this article.

The study of balance and stability of standing bipeds has captured the attention of many
researchers [13–21]. Most investigations study the role of the ankles and hips in keeping the
balance of standing persons on non-moving platforms [22–25]. As the up right equilibrium of
an inverted pendulum, standing is inherently unstable. While standing, even if the person is
not performing any other task and is trying to stay still on a non-moving floor, its center of
mass is in constant motion. This motion is of small amplitude, sometimes unnoticeable to the
naked eye. Nevertheless, this motion is there and the person avoids falling and keeps its balance
by using its joints, ankles, hips and knees, to apply forces and torques [26–33]. A large amount
of work in the literature is concerned with the understanding of these unconscious “strategies”
used by persons to keep balance while standing. While most of the works encountered in the
literature focus on the motion in the sagittal plane and on persons standing on non-moving
floors [34–40], motions of the center of mass in all directions [41–45], not just restricted to the
sagittal plane, and persons standing on moving platforms [46–49], have also been considered.

Experimental studies on the motions of humans standing on moving platforms were studied
in [50–52], but these platforms did not move laterally, they moved in the direction the persons
were facing. The need to take a step to keep balance on an accelerating platform was studied in
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[53]. We mention that lateral balance and control during walking was studied in [40, 54–58]
and during running in [59].

This article is organized as follows. We first describe the basics of our model. We then ana-
lyze the case when there is no relative motion between the center of mass of the person and the
platform. We next consider platforms that satisfy Hooke’s law, model the reactions of persons
to changes in the accelerations of platforms, derive the equations governing the dynamics of
a person-platform system, and analyze those equations. We finish the article with a small
discussion.

The model
Wemodel the person as a point massm and two straight segments. The massmmodels the
center of mass of the person and the two segments its legs. Both legs have the massm as a com-
mon end point. The other end points of the legs are the feet. To model the ability of the person
to bend its knees and to move its center of mass in general, the legs are allowed to change their
length over time individually. We will refer to our model as themodel person ormodel biped.

The model person is illustrated in Fig 1. The massm is the dark solid circle. The legs are the
solid thin lines. The horizontal solid line is the platform where the person stands. The feet are
somewhat wide apart. The distance between both feet is 2a. The vertical dashed line is the line
perpendicular to the platform that contains the midpoint between the feet. The distance from
this line to the massm is j�z j. We take �z > 0 ifm is to the right of the mentioned dashed line
and �z � 0 otherwise. In the example of Fig 1, �z > 0. The angles that the right and left legs
make with the platform are θr and θℓ respectively (see Fig 1). h is the height of the model per-
son, i.e. the distance from the mass to the platform. Note that we are modeling a two-dimen-
sional person that is looking into the page. The platform is one-dimensional, it is a segment.

We denote the time by �t . The platform may move only in the horizontal direction, i.e. in the
direction parallel to itself. Thus, it is only necessary to keep track of the position of only one
point in the platform, say the midpoint between the feet. We denote by �x the position of that
point. �x increases as the platform moves to the right. Note that �x , �z , θr and θℓ are all functions
of time �t .

In summary, �x is the position of the midpoint between the feet in a non-moving reference
frame outside the platform, �z is the lateral displacement of the massm relative to the midpoint
between the feet and thus, �x þ �z is the horizontal component of the position of the massm in
the non-moving reference frame outside the platform (see Fig 1).

Assumption 1 Each foot remains on the same point of the platform at all times, i.e. the feet
move with the platform, but not relative to the platform.

Assumption 2We assume that the mass does not move beyond the feet, i.e. j�z j < a or equiva-
lently 0< θℓ < π/2 and 0< θr < π/2 for all �t .

Assumption 2 is just a modeling assumption. It is well understood that the center of mass
could be temporarily beyond the feet without the person losing balance. In the context of our
model person, as we explain later in this section, each leg exerts a force on the center of mass
that is parallel to that leg and pointing away from its foot. Thus, if the center of mass is beyond
the right foot, the horizontal component of both forces from the legs will be pointing to the
right. A quick thought would lead to believe that the mass will move toward the right further
and the model person lose its balance. However, the trajectory of a particle depends not only
on the forces acting on the particle, but also on its initial velocity. In our context, if the center
of mass is beyond the right foot but its initial velocity is to the left, the center of mass will decel-
erate but continue moving to the left for some period of time. Thus, if the initial speed was
large enough or the center of mass was only slightly to the right of the right foot, the center of
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mass may return to a position between both feet. More detail explanations and analysis on this
effect known as the condition for dynamic stability are given in the work [14]. Later in the text,
we return to a discussion justifying Assumption 2.

Note that h, �z , θℓ and θr are related to each other through the following two equations

tan y‘ ¼
h

aþ �z
and tan yr ¼

h
a� �z

: ð1Þ

Assumption 3We assume that h, the distance from the mass to the platform, is constant
(independent of �t).

Assuming that h is independent of time is not fundamental or necessary, but does slightly
simplify the calculations, and nothing is gained by allowing h to change with �t .

The forces acting onm are the force of gravity, Fg, the force due to the left leg, Fℓ, and the
force due to the right leg Fr. The magnitude of Fg ismg, where g is the acceleration due to grav-
ity. The legs are mass-less and thus, the net force and net torque on each leg are zero, which
implies that Fℓ and Fr are parallel to the left and right leg respectively.

The feet are not glued to the ground. It is the force of friction that keeps them in place. This
is only possible if Fℓ and Fr point from the mass in the direction opposite to the left and right
foot respectively. Otherwise, if for example Fr points from the mass to the right foot, the
action-reaction principle would imply that the right foot would feel a force pointing toward the
center of mass. This force would lift the foot of the ground and Fr would become 0 immedi-
ately. As it will be explained later in the text, if Fℓ or Fr become 0, our model predicts the model
person losses balance at that point in time. The magnitudes of Fℓ and Fr will be denoted by Fℓ
and Fr respectively.

We denote by rm ¼ rmð�tÞ the position of the massm at time �t . According to the above dis-
cussions and Newton’s third law

mr00m ¼ F‘ þ Fr þ Fg ; ð2Þ

where primes denote derivatives with respect to �t .
The acceleration of the massm in the horizontal direction is �x 00 þ �z 00 (positive to the right).

On the other hand, since h remains constant, the acceleration ofm in the vertical direction is 0.

Fig 1. Model person and forces acting onm. The thick horizontal line is the platform. 0 denotes the origin
of the non-moving reference outside the platform. �x is the position of the midpoint between the feet in this
reference frame. �x and �z change with time.

doi:10.1371/journal.pone.0157675.g001
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Thus, the vector Eq (2) can be written as the following two scalar equations:

mð�x 00 þ �z 00Þ ¼ F‘cosy‘ � Frcosyr ð3Þ

0 ¼ F‘siny‘ þ Frsinyr �mg: ð4Þ

The magnitude of the forces are non-negative and thus, we have the following restrictions:

F‘ � 0 and Fr � 0: ð5Þ

No relative motion between the mass and platform
In this section, we consider the case when there is no relative motion between the mass and the
platform. That means �z is constant, independent of time. Thus, �z 00 ¼ 0. In other words, the
model person keeps the length of its legs constant. Note that the angles θℓ and θr are also inde-
pendent of time in this case.

Under these conditions, we can use Eqs (3) and (4) to solve for Fℓ and Fr

F‘ ¼ m
ð�x 00sinyr þ gcosyrÞ

sinðy‘ þ yrÞ
ð6Þ

Fr ¼ m
ð��x 00siny‘ þ gcosy‘Þ

sinðy‘ þ yrÞ
: ð7Þ

Since 0< θℓ < π/2 and 0< θr < π/2, the last two equations imply that Fℓ > 0 and Fr > 0 if
�x 00 ¼ 0. Note that both Fℓ and Fr are linear functions of �x 00 with positive and negative slope
respectively (see Eqs (6) and (7)). The zeros of Fℓ and Fr are �x 00 ¼ �g cot yr and �x 00 ¼ g cot y‘

respectively. Thus, the constrains of Eq (5) translate into the following constrains on �x 00:

�g cot yr � �x 00 � g cot y‘: ð8Þ

The physical meaning of the constrains of Eq (8) is the following. When �x 00 ¼ g cot y‘, we
have that Fr = 0 and Fℓ =mg/sin θℓ. In particular, the vertical component of Fℓ ismg. If �x 00

increases any further, Fℓ would also have to increase for the mass to move with the platform.
That would mean that the vertical component of Fℓ would be larger thanmg and thus, since Fr
can not become negative, the mass would accelerate upward and the feet would leave the
ground, which would immediately set Fℓ = 0. This is impossible.

Instead, what happens is that the mass can not keep up with the platform. If the length of
the left leg remains constant, once �x 00 increases beyond the critical value of g cot θℓ, the right
foot loses contact with the ground, and the left leg and the mass behave like an inverted pendu-
lum, with the mass moving counterclockwise, i.e. to the left relative to the platform. Shortly
after the mass falls to the ground. In short, the model person losses its balance and falls.

From Eqs (6) and (7) we see that, if the platform acceleration is positive, �x 00 > 0, and both
angles are equal, θℓ = θr, the model person requires Fℓ > Fr to keep up with the platform. The
model person will feel that its left leg is exerting a force with larger magnitude than its right leg.
This is an undesirable feeling, as the model person wants to feel that both legs are exerting
forces of similar magnitude, which would give the model person a better sense of stability.

The above paragraph raises the question: Given a platform acceleration �x 00, what pair of
angles θℓ and θr make the magnitude of the forces from both legs equal?. The answer is obtained
by setting Fℓ = Fr and using Eqs (6) and (7). The pair of angles θℓ and θr that make Fℓ = Fr satisfy
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�x 00 ¼ gð cos y‘ � cos yrÞ=ð sin y‘ þ sin yrÞ in addition to Eq (1). According to the previous par-
agraph, this pair of angles would give the model person the optimal sense of stability. Note that
this optimal pair of angles satisfy θℓ < θr if �x 00 > 0, and θℓ > θr if �x 00 < 0. To achieve θℓ < θr, the
model person needs to move its center of mass to the right of the vertical line through the mid-
point of the feet (the dashed vertical line in Fig 1) and analogously, to achieve θℓ > θr, the
model person needs to move its center of mass to the left of the mentioned line.

Given the above discussion, we expect the model person to try to keep its center of mass to
the right of the vertical line through the midpoint of the feet when �x 00 > 0 and to the left of this
line when �x 00 < 0. Note that this reaction can be also further justified from Eq (8). If �x 00 > 0,
moving the center of mass to the right lowers θℓ, and thus, increases g cot θℓ, making the range
of positive platforms accelerations that the model person can tolerate larger.

For future reference, we summarize the lessons learned from above discussion in the next
Observation.
Observation 4

1. If �z00 ¼ 0, the model person losses its balance if �x00 > g cot y‘ or �x00 < �g cot yr.

2. The smaller θℓ, the larger positive platform accelerations the model person can tolerate with-
out losing its balance. The smaller θr, the larger, in absolute value, negative platform accelera-
tions the model person can tolerate without losing its balance.

3. If the platform acceleration is positive, �x00 > 0, the model person wants to have its center of
mass to the right of the vertical line through the midpoint of the feet, i.e. the model person
wants �z > 0. If �x00 < 0, the model person wants �z < 0.

While simple, the above are key observations in our modeling.

Platformsmoving according to Hooke’s law
We remind the reader that the platform is only free to move in the horizontal direction. Third
Newton’s law (force = mass x acceleration) says that the horizontal component of the forces of
the legs on the massm add up tomð�x 00 þ �z 00Þ because �x 00 þ �z 00 is the horizontal component of
the acceleration of the massm. Since the legs of the model person are mass-less, the total force
on the legs is zero. Thus, due to the action-reaction principle, the legs exert on the platform a
total force whose horizontal component is�mð�x 00 þ �z 00Þ.

Here and in the rest of this article, we assume that the platform follows Hooke’s law and
that �x ¼ 0 corresponds to its equilibrium position. Thus, denoting byM the mass of the plat-
form, and according to the discussion of the last paragraph, the equation describing the motion
of the platform is

M�x 00 ¼ �k�x �mð�x 00 þ �z 00Þ; ð9Þ
where κ is the stiffness constant of the platform.

We have neglected dumping. This is a simplifying modeling assumption. All real systems
contain some dumping. When forced at its natural frequency, the amplitude of a linear oscilla-
tor is limited by its dumping. If dumping is completely neglected, the amplitude is predicted to
grow indefinitely. This will be the case in our analysis. Thus, by neglecting dumping, we will be
not be able to predict the amplitude of the platform at which the system settles, assuming it set-
tles before the model person loses balance. Nevertheless, we elected to neglect dumping to
simplify the analysis and to isolate the effect of our interest in this article, namely, how the reac-
tions of the model person to keep its balance affect the dynamics of the platform. Future more
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comprehensive studies, where more than one individual is considered and they may be walk-
ing, will certainly have to include dumping in the analysis.

We introduce the following dimensionless variables x, z, t by

�x ¼ ax; �z ¼ az; and �t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þm

k

r
t; ð10Þ

and the dimensionless parameter ε =m/(M +m), which we assume small

ε ¼ m
M þm

� 1: ð11Þ

Eq (9) becomes

€x ¼ �x � ε€z; ð12Þ
where dots denote derivatives with respect to t.

If ε = 0, the general solution of Eq (12) is x = A sin(t − ϕ), where A and ϕ are constants,
which is a periodic function of t with period 2π. In this case, we expect the reactions of the
model person to also be periodic with period 2π. In other words, if ε = 0, we expect that any
reasonable rules on how the model person reacts to the motion of the platform will lead to a
solution z(t) that is a periodic function of t with period 2π. However, ε 6¼ 0. Nevertheless, ε is
small, so we expect the dynamics of the platform to not differ much from the ε = 0 case. In fact,
the reader experienced in two-time scales asymptotic techniques may guess at this point that x
will asymptotically be of the form A sin(t − ϕ), where A and ϕ are no longer constants, but
change slowly with t. Similarly, we expect the reactions of the model person to lead to a solution
z(t) that is close to a periodic function of t, where the precise meaning of close in this context is
given in the next assumption.

Assumption 5 Given that the platform satisfies Hooke’s law, we assume that the reaction
rules lead to an asymptotic approximation of z(t) of the form

zðtÞ � z0ðt; εtÞ when ε � 1; ð13Þ

where z0 = z0(t, τ) is a function of two variables that is 2π-periodic on t.
Note that the asymptotic approximation of z is obtained by replacing τ by εt in the second

argument of z0.
Whether or not Assumption 5 is satisfied, depends on the reaction rules adopted by the

model. This assumption will certainly be satisfied in our example of next section, and it should
be satisfied by any reasonable set of rules.

The function z0 in Eq (13) depends on the particular rules adopted to model the reactions of
the model person to the dynamics of the platform. An example in detail is given in the next sec-
tion. In this section, we will proceed in generality so our results are available to be applied by
future models.

Using a standard two-time scales asymptotic analysis, in the Appendix we obtain the
asymptotic form of the long time dynamics of the platform-model person system. Our results
are: Let A = A(τ) and ϕ = ϕ(τ) be the solutions of the following system of first order differential
equations

dA
dt

ðtÞ ¼ ð�1Þ
2p

Z 2p

0

@2z0
@t2

ðt; tÞcosðt � �ðtÞÞdt ð14Þ

d�
dt

ðtÞ ¼ ð�1Þ
2pAðtÞ

Z 2p

0

@2z0
@t2

ðt; tÞsinðt � �ðtÞÞdt; ð15Þ
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subjected to the initial conditions

�Að0Þ sin ð�ð0ÞÞ ¼ xð0Þ; Að0Þ cos ð�ð0ÞÞ ¼ _xð0Þ; ð16Þ
where A(0)� 0. In the appendix A we show that

xðtÞ � AðεtÞ sin ðt � �ðεtÞÞ in the regime ε � 1: ð17Þ

Before moving any further and solving the set of Eqs (14) to (17), we need to describe the
motion of the center of mass of the model person relative to the platform, i.e. we need the rules
that determine the dynamics of z(t).

Modeling the reaction of the model person to the motion of the
platform
There are several options to model the reactions of the model person to the motion of the plat-
form. In fact, different persons may react differently, and even the same person may react dif-
ferently at different times. For example, if the platform is oscillating, the person’s memory or
experience is likely to lead to somewhat different reactions after each oscillation, improving its
strategy to keep its balance.

In this article we will select a class of reaction rules described below that is motivated by
Observation 4. We hope our analysis will motivate experiments to test how realistic our rules
are, and improve on them.

While we will study only one class of reaction rules, our analysis can be easily adapted to
study other types reactions rules, that will ideally result from measurements from experiments
in the future. So we do not regard the conclusions we will obtain from our model as the final
word, but rather as an opening for further studies.

Note that z = 1 corresponds to having the massm directly above the right foot, i.e. θr = π/2.
But according to our assumptions this never happens. We have assumed that j�zj < a at all
times. In other words, we have the restriction |z|<1.

According to our discussion which was summarized in Observation 4, a reasonable strategy
the model person may adopt is that it moves its center of mass to its right, z> 0, each time the
acceleration of the platform is positive, €x > 0, and viceversa, it moves its center of mass to its
left, z< 0, each time the acceleration of the platform is negative, €x < 0.

There are many possible rules compatible with this strategy. For simplicity and to be con-
crete, we assume there is a number λ such that 0< λ< 1 and that the model person moves its
center of mass to z = λ when it feels positive platform acceleration, €x > 0, and viceversa, the
model person moves its center of mass to z = −λ when it feels a negative platform acceleration,
€x < 0.

Our next step is to be more precise and prescribe a rule or modeling assumption on how the
model person moves its center of mass from z = λ to z = −λ as it senses that €x becomes negative.
That rule is given in Assumption 6, or equivalently, Eq (20). There is nothing special about that
rule other that it is in accordance to the discussion of this section and its functional form is
simple enough to allow us to carry out calculations in detail.

We remind the reader of the approximation of Eqs (14), (15), (16) and (17), from where we
get

€xðtÞ � �A sin ðt � �Þ; ð18Þ
where A = A(εt) and ϕ = ϕ(εt) and again, the above equation means that −A sin(t − ϕ) is the
asymptotic approximation of €xðtÞ in the regime ε� 1. We do not explicitly show in Eq (18)
that A and ϕ are evaluated in εt because in the subsequent calculations, we will treat them as
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constants, which is asymptotically correct since ε� 1. This last equation and the discussion
preceding it are our motivation for our next modeling assumption.

Assumption 6 Let k be any integer.We define ϕk = ϕ + 2πk. We assume the response of the
model person to the platform accelerations given by Eq (18) results in a dynamics of z(t) that in
the time interval [ϕk, ϕk+1] is determined by the following: z(ϕk) = λ; _zð�kÞ ¼ 0; and that there
exists α> 0 and T> 0 related by αT2 = 2λ and satisfying the constrain T� π/2 such that

€zðtÞ ¼

�a if �k < t < �k þ T

a if �k þ T < t < �k þ 2T

0 if �k þ 2T < t < �k þ p

a if �k þ p < t < �k þ pþ T

�a if �k þ pþ T < t < �k þ pþ 2T

0 if �k þ pþ 2T < t < �k þ 2p:

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

Note that €zðtÞ is well defined because T� π/2. Note also that Eq (19) together with the con-
ditions z(ϕk) = λ and _zð�kÞ ¼ 0 can be integrated at once to give the following explicit formula
for z(t)

zðtÞ ¼

l� a
2

t � �kð Þ2 if �k < t < �k þ T

�aT t � ð�k þ TÞð Þ þ a
2

t � ð�k þ TÞð Þ2 if �k þ T < t < �k þ 2T

�l if �k þ 2T < t < �k þ p

�lþ a
2

t � ð�k þ pÞð Þ2 if �k þ p < t < �k þ pþ T

aT t � ð�k þ pþ TÞð Þ � a
2

t � ð�k þ pþ TÞð Þ2 if �k þ pþ T < t < �k þ pþ 2T

l if �k þ pþ 2T < t < �k þ 2p:

ð20Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
The motivation behind the Assumption 6 is easier explained with the aid of Fig 2. The thin

solid line in that figure is the plot of €x ¼ �A sin ðt � �Þ vs t. The thick solid line is the plot of
z(t) vs t. Note that, for t< ϕk but t close enough to ϕk, we have that €xðtÞ > 0 and z(t) = λ. Note
also that t = ϕk is a zero of €x and €xðtÞ < 0 for ϕk < t< ϕk + π. In other words, €xðtÞ changes
from being positive to being negative as t increases and goes through the value t = ϕk. Thus, in
accordance to our previous discussions, and as it can be seen in Fig 2, the model person starts
moving its center of mass to the left once t> ϕk. In fact, z(t) decreases from the value of λ to
the value of −λ as t increases from t = ϕk to t = ϕk + 2T. Note that 2T is the time the model per-
son needs to move its center of mass relative to the platform from z = λ to z = −λ. This time is
related to α, the absolute value of €z while z decreases. Easy calculations lead to the relation pre-
viously mentioned that we repeat for future reference

aT2 ¼ 2l: ð21Þ

The magnitude of the forces the legs exert on the massm are limited by the fact that the
height of the model person remains constant and thus, the sum of the vertical components the
forces the legs exert on the massm is always equal to the magnitude of the force due to gravity.
As a consequence, the motion of the center of mass from z = λ to z = −λ can not be
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instantaneous, as an instantaneous change in position would mean infinite accelerations and
thus infinite forces. In fact, in the Appendix B we obtain the following lower bound on T

T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lhk
ðM þmÞgð1� lÞ

s
: ð22Þ

Note that the period of oscillation of the bridge-person system is Tspring ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þmÞ=kp

.

Note also that the time an object needs to fall to the ground due to gravity from an initial height

of h is Tgravity ¼
ffiffiffiffiffiffiffiffiffiffi
2h=g

p
. Thus, the bound of Eq (22) on T together with the fact that T� π/2,

can be written as

Tb ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

ð1� lÞ

s
Tgravity

Tspring

� T � p
2
: ð23Þ

Needless to say, we need Tb< π/2 so that the range of values T can take is not empty. Note
that h, the height of the mass, can be interpreted as modeling the height of the hips of a person.
Assuming the person spreads its legs so that its hips are at a height of about 1/2 a meter, we have
that Tgravity is about 1/3 seconds and thus, πTgravity is about 1 second. Thus, assuming a value

of λ� 1/5, we get that 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð1� lÞp

Tgravity is about to 1 second. Thus, requiring Tb < π/2 is

approximately equivalent to requiring Tgravity> 2/π seconds. Or roughly speaking, that the
period of oscillations of the platform is about 1 second or more.

The need for this lower bound on the the period of oscillations of the platform is so that the
person has enough time to move its center of mass from side to side. Note that other reaction
rules may lead to different restrictions on the period of oscillations. In fact, other reaction rules
may lead to restrictions on the platform accelerations, not on the period. In short, there will
always be some restrictions on the motion of the platform because if the acceleration of the
platform is too large, the model person will lose its balance. In the example of this section, the
restriction is Eq (23) or that the period of the platform should be of the order of one second or
more.

We note that the Assumption 5 is immediately satisfied with the reaction rules we have
adopted that lead to Eq (20).

Fig 2. Plots of ẍ vs t (see Eq (18)) and z vs t (see Eq (20)) with parameter values λ/A = 0.7 and T = π/4.

doi:10.1371/journal.pone.0157675.g002
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Effects on the platform oscillations due to the reactions of the
model person
Given our model of the dynamics of z, Eq (20), we can compute the effect of the reactions of
the model person (in the context of our model) on the dynamics of the platform. We will
assume that the amplitude of oscillations of the platform is initially small. Our main objective
is to understand whether the amplitude of the oscillations will increase in time or not.

More precisely, using Eqs (19) and (21) and simple algebra, Eqs (14) and (15) become

dA
dt

ðtÞ ¼ 4l
p
sinT

ð1� cosTÞ
T2

ð24Þ

d�
dt

ðtÞ ¼ 2l
pAðtÞ

ð1� 2cosT þ cosð2TÞÞ
T2

: ð25Þ

Note that the right hand side of Eq (24) is positive, which leads to the following observation.
Observation 7 The amplitude of oscillations of the platform increases linearly with t. More

precisely, setting A0 ¼ Að0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð0Þ þ _x2ð0Þp

(see Eq (16)), we have

xðtÞ � A0 þ εftð Þ sin ðt � �ðεtÞÞ; ð26Þ
where

f ¼ 4l
p

sinT
1� cosTð Þ

T2
ð27Þ

where ε is as defined in Eq (11).
Note that f = f(T) is non-negative in the interval 0� T� π/2, and the only zero of f in the

interval 0� T� π/2 is T = 0. We know form the inequality of Eq (23) that T can not be arbitrarily
small. In fact, T� Tb, where Tb was defined in Eq (23). Thus, studying the parameter regime
T� 1 makes sense only if Tb� 1. Assuming that this is the case, Eqs (26) and (27) reduce to

xðtÞ ¼ A0 þ
2

p
lTεt

� �
sin ðt � �ðεtÞÞ; if T � 1: ð28Þ

Note that the faster the person can move its center of mass from side to side, the slower the
rate at which the amplitude of the platform oscillations increases. If this motion of the center of
mass were instantaneous, the person would not affect the dynamics of the platform. But we
know this is impossible and thus, at least within our model, the amplitude of the platform oscil-
lations always increases.

Discussion
In this article, we studied how a person standing on an oscillating platform that satisfies
Hooke’s law moves its body, and thus its center of mass, to keep its balance, and how those
movements of its center of mass affect the motion of the platform. We introduced and analyzed
a simple mathematical model. We showed that, within our model, the motions of the model
person lead to an increase of the amplitude of oscillations of the platform in time, an undesir-
able side effect from the point of view of the person.

A critical part of our modeling consists in prescribing rules on how the model person reacts
to the dynamics of the platform. We motivated and proposed a set of rules, but many other
rules are possible. Thus, while we believe the rules we proposed are reasonable, the conclusion
obtained with our rules, namely that the amplitude of the platform oscillations increases with
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time, should be considered as a possibility in real systems, and not as definite final word. The
rules proposed here also serve as an example to illustrate how the analysis presented in this arti-
cle can be used, since our analysis can be easily adapted to different rules. The rules used in this
study did not result from experimental measurements, but rather from thoughtful consideration
and speculation on how we expect persons to react when standing on moving platforms.

We accomplished our two goals, namely, to introduce a method to analyze the dynamics of
the platform-person system, and to show that, as a result of the platform-person interactions,
an increase of the amplitude of the oscillations of the platform with time is possible, even
though that is not the intention of the person. In fact, the intention of the person is to keep its
balance and thus, it would prefer that the platform does not move.

With this article, we hope to motivate further research in two directions. On the theoretical
side, we plan to extend the analysis presented here to persons walking on moving platforms
instead of just standing, and to study the interactions of platforms with several persons, instead
of just one. After all, the wobbling of pedestrian bridges is the phenomenon that motivated this
article.

On the experimental side, we hope experimentalists will design and perform experiments to
better understand how standing and walking persons react to the lateral motion of the surface
where the persons are standing or walking. We propose the following experiments, admitting
that due to our lack of experience with experiments, we can not asses how feasible or difficult
these experiments are to carry out.

Experiment 1: Simply have a person standing on a platform that is moving laterally sinusoi-
dally. Instruct the person to stand still, not bend its knees, ankles or any of its joints or arms.
Measure the force exerted by each leg on the platform as a function of time, and compare those
measurements with the predictions of our theory, namely, Eqs (6) and (7). This experiment
would test how adequate in this context is to use a mass attached to two mass-less legs as a
model of a person.

Experiment 2: Use a platform that can move laterally nearly following Hooke’s law, i.e. with
very small dumping. Have a person standing on that platform. The mass of the platform should
be considerably larger than the mass of the person if possible. Instruct the person to keep its feet
in place, but otherwise he is allow to move to keep its balance. Give an initial displacement from
equilibrium to the platform and study the evolution of the system. Keep track of the position, as a
function of time, of both the platform and the center of mass of the individual. Obtaining the
position as a function of time of the center of mass of the person may have to be done indirectly
by first measuring the forces the feet exert on the platform as a function of time and then using
Newton’s law. Observe if the amplitude of oscillation of the platform increases with time. Having
the trajectory of the platform and the center of mass means having x(t) and z(t). Our general the-
ory can then be tested, namely Eqs (14) to (17). It would also be interested to measure howmuch
the height of the center of mass of the person changes with time, as we have neglected this change.
The particular reaction rule used in this article could also be tested with the measurements of this
experiment. One could try to come up with better reactions rule given the experimental measure-
ments. Finally, repeat the experiment with different individuals to understand if there are general
strategies used by all individuals, or if the reaction rules vary a lot from person to person.

Appendix

Appendix A
We will solve Eq (12) asymptotically, in the regime of Eq (11), with the use standard two-time
scales techniques. We refer the reader to the book [60] for details, but briefly, without describ-
ing all the details and motivations, the steps to follow are:
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Introduce a second independent variable τ. Regard t and τ as independent from each other.
Assume x and z are functions of both t and τ. Replace time derivatives in Eq (12) as follows:

d
dt

¼ @

@t
þ ε

@

@t
; ð29Þ

where @
@t
and @

@t denote the partial derivatives with respect to t and τ respectively. Eq (12)

becomes

@2x
@t2

þ 2ε
@2x
@t@t

þ ε2
@2x
@t2

¼ �x

�ε
@2z
@t2

þ 2ε
@2z
@t@t

þ ε2
@2z
@t2

� �
:

ð30Þ

After neglecting everything of order ε2 in the last equation, and moving −x to the left hand
side, we get

@2x
@t2

þ 2ε
@2x
@t@t

þ x ¼ �ε
@2z
@t2

þ Oðε2Þ: ð31Þ

Set the anzats x = x0 + εx1 + O(ε2) and z = z0 + εz1 + O(ε2), where x0, x1, z0 and z1 are also
functions of t and τ. Plug these anzats into Eq (31), and again neglect anything of order ε2, to
get

@2x0
@t2

þ ε
@2x1
@t2

þ 2ε
@2x0
@t@t

þ x0 þ εx1 ¼ �ε
@2z0
@t2

þ Oðε2Þ:

Collect powers of ε in the above equation to get the following two equations. At O(1)

@2x0
@t2

þ x0 ¼ 0 ð32Þ

and at O(ε)

@2x1
@t2

þ 2
@2x0
@t@t

þ x1 ¼ � @2z0
@t2

: ð33Þ

The general solution of Eq (32) is

x0ðt; tÞ ¼ AðtÞ sin ðt � �ðtÞÞ; ð34Þ

where A = A(τ) and ϕ = ϕ(τ), i.e. A and ϕ are independent of t but they depend on τ.
Now plug the above expression for x0 into Eq (33) to get, after a small rearrangement of the

terms

@2x1
@t2

þ x1 ¼ �2
@A
@t

cos ðt � �Þ � 2A
@�

@t
sin ðt � �Þ � @2z0

@t2
:

Next, we require x1 to be a periodic function of t. Thus, we need the integral over the interval
0< t< 2π of the right hand side times cos(t − ϕ) to be zero. We also need the integral over the
interval 0< t< 2π of the right hand side times sin(t − ϕ) to be zero. This leads to

dA
dt

ðtÞ ¼ � 1

2p

Z 2p

0

@2z0
@t2

ðt; tÞ cos ðt � �ðtÞÞdt
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and

d�
dt

ðtÞ ¼ � 1

2pAðtÞ
Z 2p

0

@2z0
@t2

ðt; tÞ sin ðt � �ðtÞÞdt:

Once the solution is found, we set τ = εt. Note that this justifies the initial change prescribed
by Eq (29) regarding the derivatives. Note also that, since x1 is periodic in t, x1(t, εt) may only
grow slowly, i.e. may only become large for t� 1. This justifies the x� x0(t, εt) for large values
of t. Thus, the validity of Eqs (13) to (17).

Appendix B
We introduce the dimensionless force magnitudes Gℓ and Gr and the parameter β defined by
the following equations

F‘ ¼ mgG‘; Fr ¼ mgG‘; and b ¼ ðM þmÞg
ak

: ð35Þ

Using Eq (10), the dimensionless version of Eqs (3) and (4) are

€x þ €z ¼ bðG‘cosy‘ � GrcosyrÞ ð36Þ

0 ¼ G‘siny‘ þ Grsinyr � 1: ð37Þ

Since Gℓ and Gr are non-negative, from Eq (37) we get

Gr ¼
1� G‘siny‘

sinyr
� 1

sinyr

ð38Þ

G‘ ¼
1� Grsinyr

siny‘
� 1

siny‘

: ð39Þ

Thus, Eqs (36) and (37), and simple arguments lead to

�b cot yr � €x � €z � b cot y‘ � €x: ð40Þ

Given Eqs (1) and (10) we have that

cot yr ¼
a
h
ð1� zÞ: ð41Þ

Thus, using Eq (41), the left inequality in Eq (40) becomes

�b
a
h
ð1� zÞ � €x � €z : ð42Þ

Using the definition of β (Eq (35)), the fact that €x � �A sin ðt � �Þ, and using Eqs (19) and
(20), and evaluating the above inequality at t = ϕ+ (i.e taking the limit at t! ϕ but t> ϕ), we
get

�ðM þmÞg
hk

ð1� lÞ � �a; ð43Þ

which is equivalent to Eq (22) because 2λ = αT2.
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