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RESEARCH NOTE

Timing rather than user traits mediates 
mood sampling on smartphones
Beryl Noë1* , Liam D. Turner1, David E. J. Linden2,3, Stuart M. Allen1, Gregory R. Maio4 and Roger M. Whitaker1

Abstract 

Objective: Recent years have seen an increasing number of studies using smartphones to sample participants’ mood 
states. Moods are usually collected by asking participants for their current mood or for a recollection of their mood 
states over a specific period of time. The current study investigates the reasons to favour collecting mood through 
current or daily mood surveys and outlines design recommendations for mood sampling using smartphones based 
on these findings. These recommendations are also relevant to more general smartphone sampling procedures.

Results:  N=64 participants completed a series of surveys at the beginning and end of the study providing informa-
tion such as gender, personality, or smartphone addiction score. Through a smartphone application, they reported 
their current mood 3 times and daily mood once per day for 8 weeks. We found that none of the examined intrinsic 
individual qualities had an effect on matches of current and daily mood reports. However timing played a significant 
role: the last followed by the first reported current mood of the day were more likely to match the daily mood. Cur-
rent mood surveys should be preferred for a higher sampling accuracy, while daily mood surveys are more suitable if 
compliance is more important.

Keywords: Mood, Mood sampling, Study design, Smartphone, Smartphone study, Experience sampling 
methodology
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Introduction
There are numerous approaches to assessing mood (e.g. 
using the PANAS [1], POMS [2], BMIS surveys [3], or 
the experience sampling method [4]), but only relatively 
recently have mood surveys migrated to the smartphone 
[5–7]. Sampling the mood of participants in this way 
requires a design choice to be made: either sampling 
current moods several times per day or collecting only 
once. This choice has different implications for the par-
ticipant, representing a trade-off between interruption 
[8] and recall [9]. A single “daily” mood report requires 
the participant to be accurate with their reflection of the 
whole day, whereas “current” mood reporting samples 
a participant’s mood at a particular time, but requires 
more frequent interruption of the user. As such, indi-
vidual differences between participants and reporting 

circumstances could influence responses. Delespaul [10] 
has already highlighted the importance of not exceeding 
six data collection points per day for experience sampling 
procedures. Given the burden the response requests 
place on the participant, especially when they are not 
interruptible, it is important to establish whether daily 
and current mood measures are interchangeable, result-
ing in recommendations for different data collection 
frequencies.

Individual differences may result in alternative 
response dispositions towards surveys [11–15]. Work 
in this area has found associations with big five person-
ality traits but also need for cognition [16]. While these 
findings were collected from online surveys, participants 
might be differently inclined to smartphone-based sur-
veys. Indeed, smartphone interruption to gain user atten-
tion and response is an emerging and already complex 
field in its own right [8].

Specifically in relation to mood surveys, individual 
differences in personality [17–19], impulsivity [20], 
and proneness to smartphone addiction [21, 22] could 
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contribute to a mismatch in the responses to current 
and daily reports. Also the intensity of current reported 
mood states and the amount of time between current and 
daily mood reports might have moderating effects, which 
can be predicted based on memory biases such as the 
recency effect [23], the primacy effect [23], and the peak-
end rule [24].

Main text
Methods
Participants
Seventy-six participants were recruited through posters 
and online advertisement at Cardiff University UK, aged 
between 19 and 46 (M = 24.94, SD = 5.69). Thirty-nine 
participants were male, 36 female and 1 participant chose 
not to disclose their gender. Participants were selected on 
two aspects: they needed to have a smartphone running 
Android 4.4 or higher, and they had to have no history of 
mental illness.

The Android platform was both chosen for conveni-
ence (similar data collection on iOS is impeded by the 
operating system) and to reach a larger number of partic-
ipants (at the start of the study, in May 2016, 46% of the 
British population uses Android and 43.39% iOS ) [25, 
26]. Participants were also selected on absence of men-
tal illnesses. This was done so mental illnesses, especially 
those have affective symptoms would not become a con-
founding factor to this study.

Study design
All participants attended a briefing session where they 
downloaded our custom made application “Tymer”, were 
given instructions on how to use the app and the distinc-
tions between the different reporting options, and were 
asked to complete five surveys: SAS [27], PANAS [1], BFI 
[28], MCQ [29], and a demographics and smartphone use 
questionnaire. After 8 weeks of using Tymer, participants 
returned for a debriefing session where they retook the 
surveys and received monetary compensation.

The Tymer application prompted participants to report 
their current mood (CM) using a dartboard-shaped 
interface (as shown in Additional file 1: Figure S1 (left)), 
based on the circumplex model of affect [30], up to three 
times per day. Notifications requesting the user to com-
plete CM reports only arrived while the smartphone was 
in use to maximise the likelihood of response. Addition-
ally, participants were asked to select their daily mood 
(DM) (see Additional file 1: Figure S1 (right)), as part of 
an evening survey that was sent on the first screen unlock 
after 19:00 every day. Both type of reports could also be 
completed through the application interface. Notification 
expiration time was set to 10 min for CM prompts and at 

23:55 for the DM survey. A typical day using the Tymer 
application is depicted in Additional file 1: Figure S2.

Data cleaning
While 76 participants were recruited, smartphone data 
was only obtained from 64 participants due to hardware 
problems and withdrawals from participation. The num-
ber of completed and uncompleted reports are shown for 
both types of surveys in Table 1. In 8 weeks, participants 
should have completed 56 DM surveys and 168 CM sur-
veys. The mean participation rate considering these num-
bers was 79.8% for DM and 80.6% for CM surveys.

Pairs of CM and DM surveys undertaken on the same 
day were analysed. In case several DM surveys were 
completed for 1 day, only the first one was considered. 
This resulted in 7893 unique CM and 2667 unique DM 
surveys being analysed, resulting in 7893 pairs of cur-
rent and daily mood surveys. In total, there were 1835 
instances where a day had at least one CM-DM match, 
this represents 68.80% of the 2667 reported DM (also see 
Additional file 2). The BFI was mistakenly done twice by 
one participant at briefing; only the first submission was 
used.

Comparison of proportion of matches/non‑matches 
to random
A binomial test was used to compare the proportion 
of matches and non-matches between CM and DM 
responses against the number of such matches that 
would occur in a random sample (1/9 = 11%). The pro-
portion of matches was statistically greater than 11% 
(p < .001) with 2529 (32.04%) of the CM and DM survey 
pairs reporting the same mood.

Table 1 Frequencies of  completion and  source of  CM 
and DM surveys

CM DM

Count % Count %

All 14208 100 4416 100

Source

Notification 13399 94.31 3851 93.56

App interface 809 5.69 265 6.44

Completion

Expired 4468 31.45 154 3.74

Abandoned 64 0.45 178 4.32

Completed 8676 61.06 3266 79.35

Dismissed 1000 7.04 518 12.59

Blank 1 0.01 0 0
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Data transformation
Since participation was voluntary, each participant had 
a varying number of data points. To summarise the data 
per participant, it was modified by either adopting the 
count (number of matching or non-matching CM and 
DM survey pairs), the median (time difference between 
CM and DM surveys, intensity of the current mood 
reports) or calculating a percentage (number of matching 
CM-DM pairs per day) of all instances concerning a par-
ticipant. Spearman’s correlation, Wilcoxon-Mann-Whit-
ney test, and Wilcoxon signed ranks test can be applied 
due to these transformations.

Results
Effect of time on CM‑DM report matches
The median time between evening and current surveys 
was significantly shorter for matches than non-matches 
(Z = −3.103, p = .002). For each participant, days in 
which matches in mood response occurred were catego-
rised as follows: ALL, where all reported CM(s) of the day 
matched the reported DM, FIRST, LAST and MIDDLE 
where the reported CM(s) of the day that matched the 
reported DM were respectively the first, last, or neither 
first nor last (see Additional file  3). Since days that had 
both matches for the first and last reported CM would 
fall into both of these categories, they were split evenly 
between them (see Fig.  1). The resultant categorisation 
was therefore mutually exclusive. It should also be noted, 
that, since a day was defined as starting at 00:00 and end-
ing at 23:59, some matches could have occurred after the 
evening survey was completed.

Wilcoxon’s signed rank test was used to compare the 
count of all categories to one another. Matches in the 
LAST category were found to be significantly more fre-
quent (p < .01) than in all other categories (M = 8.24, 
SD = 5.44); followed by matches in the FIRST category 

(M = 6.57, SD = 4.49), which were statistically greater 
(p < .01) than the ALL (M = 5.31, SD = 4.40) and MID-
DLE (M = 1.89, SD = 3.12) categories. These results and 
their medium to high effect sizes are shown in Table  2 
[31].

Additional results can be found in Additional file 4.

Discussion
This study has shown that there is evidence to suggest 
that CM and DM reports are interchangeable as a meth-
odology to sample participant mood. Indeed 68.8% of 
the recorded DM matched a CM that was reported in 
the same day. None of the investigated intrinsic charac-
teristics (gender, age, personality, etc.) had an effect on 
matches of current and daily moods, suggesting that a 
specific participant sample would not justify the choice 
of one over the other reporting method.

Further results show that time intervals between CM 
and the DM survey had a significant effect on CM-DM 
matches. This could imply that daily mood does not 
reflect as much the entirety of the day as intended. As 
predicted by memory biases, the last reported CM 
reports were more likely to match the DM report due to 
them being closer in time, while the first reported CM 
report came in second in terms of similarity. These find-
ings are consistent with reports of the serial position 
effect [23], which shows a higher probability of recall for 
initial and final elements from a list, with lower prob-
ability for elements in-between, and with the final ele-
ment having the highest probability overall. This implies 
that CM reports might be more accurate to sample cur-
rent mood than DM reports are for collecting daily mood 
since memory biases come into play that slightly hin-
der the formation of an accurate daily summary. These Fig. 1 Number of reports where the CM and DM match

Table 2 Z values and effect sizes for each category pair

*** p <.001, ** p <.01, * p <.05

Z values

FIRST ALL MIDDLE LAST

FIRST – −2.664** −2.875** −2.730**

ALL – −.140 −4.103***

MIDDLE – −4.748***

LAST –

Effect sizes

FIRST ALL MIDDLE LAST

FIRST – .333 .359 .341

ALL – .513

MIDDLE – .594

LAST –
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findings were supported by medium and high effect sizes 
(r > .333), which show that the sample size was sufficient 
to find these effects.

Daily mood surveys were also at a disadvantage con-
sidering the number of dismissed notifications (12.59% 
vs 7.04% for CM surveys), while its percentage of sur-
vey completions via the app interface is similar to that of 
CM surveys (6.44 and 5.69% respectively). However, par-
ticipants might have not needed to dismiss notifications 
for CM as they expired more quickly. CM surveys were 
more invasive as participants were prompted at least 
three times per day, while DM surveys only happened 
once at set time. This is likely to have contributed to an 
overall higher completion rate for DM (79.35%) than CM 
(61.06%) reports.

Our average completion rates (about 80% for both 
types of surveys) were quite high considering the 
length of our study and are mostly higher than those 
reported in similar studies [32]. We believe the best way 
to increase compliance and accuracy of participants, 
would be to increase the incentives for good perfor-
mance through feedback (e.g. higher rewards by provid-
ing visualisation of historic personal data or gamifying 
parts of the app). While feedback has been shown to 
increase compliance [33], the increased awareness could 
however influence the participant. While Downes-
LeGuin and colleagues [34] have shown gamification 
to be ineffective to increase engagement even though it 
increased satisfaction, other studies do report height-
ened engagement [35].

Additional discussion points can be found in Addi-
tional file 5.

Conclusions
Whether current or daily mood surveys should be used 
to collect affective data on participants highly depends 
on the requirements of the study, and whether related 
in-situation context or device usage is important. One 
also needs to consider what exactly needs to collected: 
momentary mood fluctuations, or prevailing mood of the 
day. However our results indicate that both approaches 
can be used with confidence, albeit noting specific impli-
cations for each.

If participant compliance is of high importance, daily 
surveys should be favoured as participants are more 
likely to dismiss notifications if they are frequent or come 
at inopportune moments.

We note that while the investigated intrinsic character-
istics did not affect the two surveys differently, effects for 
time did come into play. Current mood surveys are more 
accurate as the participant is directly asked for the mood 
state they are in at that instant, while a daily mood sur-
vey requires the participant to provide a summary of the 

moods they have felt during the day and this cognitive 
task is vulnerable to memory biases.

Limitations
This study had a few limitations:

  • Only Android users were selected. This has conse-
quences on the generalisability of our results since 
previous literature has shown that Android and 
iPhone user groups may be quite distinct [36].

  • CM and DM were collected simultaneously and 
could have influenced each other.

  • Since the mood measures were all self-reported, 
given responses could be dishonest or not well-esti-
mated. Misclicks can also occur.

  • Smartphone data was missing from 12 participants.
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