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Abstract 
Objectives: Early discontinuation is common among breast cancer patients taking aromatase inhibitors (AIs). Although several predictors have 
been identified, it is unclear how to simultaneously consider multiple risk factors for an individual. We sought to develop a tool for prediction of 
AI discontinuation and to explore how predictive value of risk factors changes with time.
Materials and Methods: Survival machine learning was used to predict time-to-discontinuation of AIs in 181 women who enrolled in a prospective 
cohort. Models were evaluated via time-dependent area under the curve (AUC), c-index, and integrated Brier score. Feature importance was analysis 
was conducted via Shapley Additive Explanations (SHAP) and time-dependence of their predictive value was analyzed by time-dependent AUC. 
Personalized survival curves were constructed for risk communication.
Results: The best-performing model incorporated genetic risk factors and changes in patient-reported outcomes, achieving mean time- 
dependent AUC of 0.66, and AUC of 0.72 and 0.67 at 6- and 12-month cutoffs, respectively. The most significant features included variants in 
ESR1 and emergent symptoms. Predictive value of genetic risk factors was highest in the first year of treatment. Decrease in physical function 
was the strongest independent predictor at follow-up.
Discussion and Conclusion: Incorporation of genomic and 3-month follow-up data improved the ability of the models to identify the individuals 
at risk of AI discontinuation. Genetic risk factors were particularly important for predicting early discontinuers. This study provides insight into 
the complex nature of AI discontinuation and highlights the importance of incorporating genetic risk factors and emergent symptoms into 
prediction models.

Lay Summary 
Despite their effectiveness in treating early-stage breast cancer, aromatase inhibitors (AIs) often cause severe side effects that result in treat
ment discontinuation and worse outcomes. While several genetic and clinical predictors of discontinuation have been identified, it remains 
unclear how to simultaneously consider multiple risk factors for an individual. In this study, we developed a survival machine learning model to 
predict discontinuation in patients initiating AI therapy and to explore how the predictive value of risk factors changes with time. To assess the 
importance of genetic markers and emergent symptoms for prediction, we compared models that incorporated these risk factors with those 
that excluded them. Our results indicated that the incorporation of genetics improved the prediction of discontinuation within the first 6-12 
months of treatment, with genetic factors emerging as the most important predictors of discontinuation at baseline. On the contrary, genetics 
did not contribute as much to the overall model performance when incorporating toxicity that developed in the first 3 months, and emergent 
symptoms became the most important predictors of discontinuation. Together, our findings demonstrate the importance of incorporating 
genetic risk factors and emergent symptoms into AI discontinuation prediction models.
Key words: survival machine learning; patient-reported outcome measures; pharmacogenomics; aromatase inhibitors; longitudinal. 

Introduction
Adjuvant endocrine therapy for 5-10 years has been shown 
to reduce recurrence and death in individuals with early-stage 

hormone receptor positive (HRþ) breast cancer.1–6 Treat
ment with third-generation aromatase inhibitors (AIs), such 
as anastrozole, letrozole, and exemestane, has proven to be 
superior to tamoxifen for the treatment of HRþ breast cancer 
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in postmenopausal women.7 However, up to 50% of patients 
taking AIs in the adjuvant setting discontinue their treatment 
before the established minimal 5-year duration and thereby 
reducing the beneficial effects of therapy.8–11 Consequently, 
recurrence and death rates have been shown to be higher 
among those who discontinue their medication early.12–15

Side effects are often reported as a reason for AI therapy 
discontinuation, with AI-induced musculoskeletal symptoms 
(AIMSS) being the leading reason for discontinuation.16–20

Patient-reported outcomes (PROs) indicate the development 
of AIMSS and are associated with early discontinuation of 
therapy.21–25 Additional studies have reported that age, pre
vious taxane therapy, and depression were predictive of pre
mature AI therapy discontinutation.26–28 Several genetic 
factors affecting individual’s risk for AIMSS and AIMSS- 
related discontinuation have been identified through candi
date gene and genome-wide association studies.29–36

Despite the knowledge of risk factors affecting discontinu
ation of AI therapy, it is unclear how to simultaneously con
sider multiple risk factors for an individual, and prospective 
identification of patients at risk of discontinuing early 
remains an unmet medical need.21 Survival machine learning 
(ML) methods have been successful in clinical outcome pre
diction across many disciplines.37–44 Some recent efforts used 
survival ML to identify optimal treatment regimen for 
patients diagnosed with metastatic breast cancer, while maxi
mizing the overall survival and time-to-discontinuation.45

Another research group developed an ML model to predict 
AI therapy discontinuation as a binary outcome using struc
tured data from electronic medical records.46 This model did 
not incorporate genetic risk factors and PRO measures but 
was still able to achieve a fair performance (area under the 
curve [AUC] 0.65).46 The primary objective of our study was 
to build a survival ML model for prediction of time-to-AI dis
continuation. Secondary objectives included estimating the 
extent to which incorporation of genetic risk factors and data 
collected during follow-ups improved the prediction accuracy 
and evaluating the predictive value of individual risk factors 
over time.

Methods
Data source
This work used secondary data from the Johns Hopkins Breast 
Cancer Program Hormone Therapy Longitudinal Database 
study (clinical trial id NCT01937052, registered September 3, 
2013),47 a study of individuals with early-stage HRþ breast 
cancer taking AIs. The setting and recruitment eligibility criteria 
for the cohort have been described elsewhere.30,47 In short, 
women 18 years of age and older with stage 0-III HRþ breast 
cancer initiating adjuvant endocrine therapy with either selective 
estrogen receptor modulators (tamoxifen, raloxifene) or third- 
generation AIs (anastrozole, letrozole, exemestane) were eligible 
to participate in the study. Subjects that consented to participate 
could withdraw from the study at any point or become ineli
gible upon development of metastatic disease. This secondary 
data analysis was approved by the Johns Hopkins IRB (ID: 
NA_00051923).

Cohort selection
For this secondary data analysis, we selected the women who 
initiated treatment with AIs upon the enrollment in the study. 
Individuals with inconclusive date of therapy discontinuation 

were excluded from the analysis. In addition, we excluded 
subjects who started tamoxifen upon study enrollment and 
then transitioned to an AI due to our inability to determine 
their characteristics at the time of AI therapy initiation.

Outcome measure
The primary outcome of interest was AI therapy discontinua
tion due to side effects or nonadherence. Discontinuation was 
defined as therapy stop or switch prior to completion of 5 
years of therapy. The individuals who stopped AI therapy 
due to the development of metastatic disease, change in men
opause state, or planned pregnancy were censored at the time 
of therapy discontinuation. The study participants lost to 
follow-up were censored at the time of their last follow-up. 
Individuals continuing on AI therapy past 5 years were cen
sored at the 5-year endpoint. Switching from one AI to 
another one was considered equivalent to discontinuing the 
medication. The dates of AI discontinuation and reason for 
discontinuation were determined by chart review.

Independent variables
Baseline and follow-up visit patient characteristics
The dataset includes baseline demographic, clinical characteris
tics, and endocrine therapy selected by the treating physician at 
enrollment. In addition, whole blood or saliva samples were 
collected for the participants at baseline for germline DNA 
isolation. Body mass index (BMI), self-reported adherence 
behavior via the Medication Adherence Questionnaire (MAQ), 
and a set of PRO measures were collected at enrollment, and at 
3-, 6-, 12-, 24-, 36-, 48-, and 60-month follow-up visits.48,49

For the current study, we used the data collected at baseline and 
at 3-month follow-up.

Pharmacogenetics
Thirteen candidate genes previously associated with the AIMSS 
were selected by the investigators. The single-nucleotide poly
morphisms (SNPs) considered for the analysis included 
CYP19A1 rs10046 and rs7176005, VDR rs11568820, TCL1A 
rs11849538, MIR4713HG rs16964189 and rs934635, OPG 
rs2073618, CYP27B1 rs4646536, CYP17A1 rs6163, RANKL 
rs7984870, and ESR1 rs2234693, rs9322336 and rs9340799. 
Table S1 summarizes the SNPs available for the analysis and 
their respective associations with AI-induced adverse events. 
Genotyping process and quality control methods are described 
in detail in Hertz et al.30

Patient-reported outcomes
PRO measures were collected at each study visit via the 
PatientViewpoint website.50–52 The measures used in this 
study included the Patient-Reported Outcome Measurement 
Information System (PROMIS) Version 1.0 sleep disturbance, 
physical function, pain interference, endocrine symptoms, 
fatigue, depression, and anxiety short forms, and a single 
question from the Endocrine Subscale of the Functional 
Assessment of Cancer Therapy—Endocrine Symptom 
(FACT-ES) questionnaire regarding joint pain experienced by 
the patients.53–56 PROMIS measures are based on the T-score 
metric, in which 50 represents the mean score of the US pop
ulation, and higher score indicates more of the concept being 
measured (ie, a higher sleep disturbance on the T-scale repre
sents more sleep disturbance, while higher T-score for the 
physical function indicates better physical function).54 The 
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severity of the joint pain is assessed on the 5-point scale from 
0 (“not at all”) to 4 (“very much”).30

Data pre-processing
We used survival ML to predict AI therapy discontinuation. 
The demographic and clinical features used to predict the out
come included age, race, prior taxane therapy, cancer stage, 
and BMI. Menopause state and ethnicity were excluded from 
the model due to the low number of premenopausal women 
and Hispanic or Latino individuals in the cohort. Race and 
prior taxane therapy were included as binary variables, while 
age, cancer stage, and BMI were used on a continuous scale. 
Cumulative adherence score was calculated from the medica
tion adherence questionnaire (1—poor adherence, 4—good 
adherence).

To maximize the signal coming from genetic data and reduce 
the number of non-relevant SNPs, we developed an annotated 
genetic model, which included only the variants having signifi
cant associations with AI-induced side effects in Pharmacoge
nomics Knowledge Base (PharmGKB).57,58 We assumed an 
additive genetic model and encoded the number of risk alleles at 
a position, according to prior studies. The list of SNPs with 
significant associations in PharmGKB is presented in Table S1.

To assess the value of follow-up data for prediction, we 
conducted separate analyses with baseline data and with the 
data collected at 3-month follow-up. The BMI and PRO val
ues recorded at study enrollment were used in the baseline 
model directly. At 3-month follow-up, we calculated the 
changes in BMI and PROs from the initial visit and used the 
obtained values for model development.

Missing values for BMI, adherence, and PROs were 
imputed by regressing the feature for the individual over time 
and extrapolating to time points at which the data were miss
ing. Study sample means were imputed for a feature when the 
regression approach was unfeasible. Missing genetic data 
were imputed with expected genotypes based on global popu
lation allele frequency reported in the 1000 Genomes 
Project.59

Statistical analysis
For predictive model building, we selected 4 survival ML 
algorithms: Cox proportional hazards (CoxPH) model, Ran
dom Survival Forest (RSF), penalized CoxPH, and Gradient 
Boosted Models (GBM) with regression tree and component- 
wise least squares base learners. The dataset was randomly 
split into training and testing sets with a 70:30 ratio. Pearson 
coefficient was calculated to check the correlation between 
features. The optimal hyperparameters for each ML model 
were determined by an exhaustive grid search over the pre- 
specified parameter space with 5-fold cross-validation on the 
training set. The tuned models were then used to predict the 
outcome on the test set.

To investigate whether incorporation of genetic data 
improves model performance, we developed 3 genomic data 
integration models: (1) clinical only—the model incorporat
ing only demographic and clinical variables; (2) clinical þ
selected genetics—the model that includes SNPs with signifi
cant associations in PharmGKB in addition to demographic 
and clinical variables; and (3) clinical þ all genetics—the 
model that incorporates all available genetic, demographic, 
and clinical data.

Model evaluation
Different algorithms were compared by mean time-dependent 
cumulative/dynamic AUC using monthly intervals, Harrel’s 
concordance index (c-index), and integrated Brier score (IBS) 
achieved on the test set.60–63

The cumulative/dynamic AUC calculated at time t quanti
fies how well the model can distinguish subjects who fail by t 
(cumulative cases) from the individuals who fail after that 
time (dynamic controls).60,61 Time-dependent cumulative/ 
dynamic AUC calculates these values for a series of pre- 
specified time points. Higher values of cumulative/dynamic 
AUC at a given time indicate a better performance of the 
model at that time, and higher mean time-dependent AUC 
indicates the better-performing model over the whole study 
period. C-index is a goodness-of-fit measure which evaluates 
the predicted ranking of failure times.62 Brier score is an 
extension of mean squared error for right-censored data and 
is used to assess model’s calibration and discrimination.63

Similarly to cumulative/dynamic AUC, Brier score can be cal
culated for a series of time points and integrated over the 
entire study period to assess overall model performance. 
Lower IBS indicates a better model performance.

The best-performing algorithms were chosen for each 
genetic data integration model at both baseline and 3-month 
follow-up based on mean time-dependent AUC and IBS val
ues. Time-dependent AUC, cumulative sensitivity, dynamic 
specificity, and cumulative/dynamic positive predictive value 
(PPV) at the highest 33% of risk distribution, were assessed 
for each model at 6- and 12-month cutoffs to assess the abil
ity of the models to predict early discontinuation. Different 
genetic data integration models were compared by their mean 
time-dependent AUC value and by their performance at 6 
and 12 months. The robustness of the model was assessed 
using a bootstrapping procedure with 100 samples.

To avoid the misinterpretation of AUC values below 0.5 
when assessing predictive value of individual biomarkers, we 
used normalized time-dependent AUC for illustration purposes. 
In statistical terms, AUC is defined as the probability that a ran
domly selected case will have a higher risk score than a ran
domly selected control. Thus, AUC of 0.5 corresponds to a 
random classifier, while values above 0.5 indicate discriminative 
power of the predictor when it is positively correlated with the 
outcome. However, according to the definition of AUC, the val
ues below 0.5 indicate discrimination when the risk factor and 
the outcome are inversely related. In other words, an AUC value 
close to 0 suggests that a randomly selected case will have a 
lower risk score than a randomly selected control most of the 
time. We defined normalized time-dependent AUC as the 
improvement in discriminative ability from random class assign
ment, according to the following formula: 

AUCðtÞN ¼
AUC tð Þ � 0:5

0:5 

where AUC(t)N is normalized time-dependent AUC, AUC(t) 
is time-dependent AUC and 0.5 indicates the AUC value of a 
no-skill classifier. Normalized time-dependent AUC values 
are bound between − 1 and 1 with values below 0 suggesting 
that the risk factor and the outcome are inversely related, and 
the values above 0 suggesting a positive correlation.
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Feature importance
The most important features for the best-performing models 
at baseline and 3-month follow-up were identified with Shap
ley Additive Explanations (SHAP) algorithm.64 The top 5 
most predictive features according to SHAP were further ana
lyzed for time-dependence by developing a CoxPH model 
with only one predictor and evaluating normalized time- 
dependent AUC in monthly intervals.

Finally, personalized survival curves were constructed for 3 
random individuals from the test set and the most predictive 
features locally were determined for these individuals by 
SHAP.

Statistical analysis was performed in Python 3.9.4. ML was 
performed using Scikit-learn (sklearn 1.0.2), Scikit-survival 
(sksurv 0.17.2) and shap (version 0.41.0) libraries.65,66

Results
Study population
Of 329 participants enrolled in the original study, 189 sub
jects remained eligible for the inclusion in the study at base
line (Figure 1). The majority of the participants were White 
(87%), had a stage I breast cancer (62%), were prescribed 
anastrozole (80%), were postmenopausal (98%) and had no 
prior taxane chemotherapy (75%). Most participants carried 
risk alleles in CYP19A1 rs10046 (82%), OPG rs2073618 
(79%), ESR1 rs2234693 (77%), CYP17A1 rs6163 (71%), 
RANKL rs7984870 (69%), and ESR1 rs9340799 (89%) and 
were homozygous wild-type at the other loci. On average, 
study participants were 63 years old upon study enrollment 

and had PROMIS T-scores close to 50 for all PRO measures, 
except endocrine symptoms, for which the sample average 
reached the T-score of 65. Total of 170 participants remained 
eligible at 3-month follow-up. The distribution of demo
graphic and clinical characteristics at 3-month follow-up 
remained similar to the distribution at baseline. On average, 
a larger proportion of individuals who discontinued therapy 
at any point during the study were taking anastrozole, carried 
risk allele in CYP17A1 rs6163, and did not carry risk alleles 
in TCL1A rs11849538 and ESR1 rs9322336 loci. The distri
bution of other demographic and clinical characteristics was 
similar between those who discontinued therapy due to side 
effects or non-adherence and those who were censored. 
Descriptive statistics of the analyzed cohort are presented in  
Table 1. Raw genotype counts are summarized in Table S2. 
Means and standard deviations of continuous variables are 
presented in Table 2. Median time to discontinuation was 48 
months.

Discontinuation prediction
CoxPH, RSF, GBM, and penalized CoxPH models were 
trained on the train set consisting of randomly selected 70% 
of cohort at baseline (n¼126) and at 3-month follow-up 
(n¼ 119). The optimal hyperparameter values for each model 
are presented in Table S3. The best-performing algorithms at 
baseline included RSF for the clinical only model, CoxPH for 
the PharmGKB-annotated model, and GBM for the clinical þ
all genetics model. The optimal algorithms at 3-months 
included GBM for both the clinical only and the clinical þ
selected genetics models, and RSF for the clinical þ all genet
ics model. Mean time-dependent AUC, c-index and IBS for 

Figure 1. Flow chart of cohort selection.
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the best-performing algorithms are reported in Table 3. The 
clinical þ selected genetics model developed at baseline had a 
higher mean AUC value (0.66) and a lower IBS (0.210) than 
the other 2 genetic data integration models, although the c- 
index for this model was lower. The clinical only model had 
the lowest IBS (0.204) and the highest c-index (0.63), when 
incorporating the 3-month follow-up data. The clinical þ all 
genetics model developed at the same time reached the high
est mean AUC value (0.66). Performance metrics for the 
other models are summarized in Table S4.

Time-dependent AUC curves for the best-performing models 
are presented in Figure 2. The PharmGKB-annotated model had 
the best overall performance at the baseline, reaching mean 
time-dependent AUC of 0.66 over the entire study period 
(Figure 2A). At 3-month follow-up, the clinical þ all genetics 
model displayed the highest overall performance (mean AUC 

0.65, Figure 2B). When considering the performance at 12 
months, the best discriminative ability was displayed by the clin
ical þ all genetics models at both baseline and 3-month follow- 
up. The peak AUC value in the early discontinuation period 
was achieved by the clinical þ all genetics model at 4 months 
when using the baseline data for longitudinal markers 
(AUC¼0.68), and by the clinical þ selected genetics model at 8 
months when incorporating the 3-month follow-up data 
(AUC¼0.76). The clinical þ selected genetics model developed 
at baseline retained high performance throughout the entire 
follow-up period, achieving the highest discriminative ability at 
44 months (AUC¼ 0.77). On the contrary, the best-performing 
3-month follow-up model had a decline in performance after 
the initial peak at 10 months, while the clinical only model 
improved with time, reaching the highest AUC of 0.78 at 53 
months. The discriminative ability of the models was low for 
the prediction of discontinuation between 1 and 3 years of treat
ment. The bootstrapping procedure demonstrated significant 
overlap between the models. The time-dependent AUC curves 
obtained in each bootstrapping run are presented in Figure S1.

To evaluate the ability of our models to predict early dis
continuation, we assessed time-dependent AUC, sensitivity, 
specificity, and PPV at the highest 33% of risk distribution at 
6 and 12 months (Table 4). Among the models developed at 
baseline, the clinical þ selected genetics model displayed the 
best predictive ability at 12 months, achieving AUC of 0.64, 
sensitivity of 0.44, specificity of 0.72, and PPV of 0.39. When 
incorporating 3-month follow-up data, the clinical þ all 
genetics model outperformed the other 2 models at 12 
months, reaching AUC of 0.67, sensitivity of 0.58, specificity 
of 0.74, and PPV of 0.41. At 6 months, the 3 different genetic 
data integration models performed similarly. Overall, the 
models that incorporated 3-month follow-up data performed 
better at the 6- and 12-month cutoffs than the models devel
oped at baseline.

We then selected the clinical þ selected genetics model at 
baseline and the clinical þ all genetics model at 3-month 
follow-up for feature importance assessment. SHAP summary 
plots for the 2 models are presented in Figure 3A and C. Each 
dot along the x-axis represents an individual, and the color of 
the dot indicates the value of the feature for the given subject. 
The position of the dot along the x-axis indicates the SHAP 
value, representing the impact of the given feature on the pre
diction. Positive SHAP values suggest a higher predicted risk 
of discontinuation, while negative SHAP values suggest a 

Table 1. Descriptive statistics for categorical variables.

All  
participants,  

N (%)
Discontinued, 

N (%)
Censored, N 

(%)

Total 181 95 86
Race

White 157 (87) 83 (87) 74 (86)
Black 17 (9) 10 (11) 7 (8)
Other 7 (4) 2 (2) 5 (6)

Therapy
Anastrozole 144 (80) 82 (86) 62 (72)
Letrozole 34 (19) 12 (13) 22 (26)
Exemestane 3 (2) 1 (1) 2 (2)

Stage
0 10 (6) 8 (8) 2 (2)
I 112 (62) 56 (59) 56 (65)
II 39 (22) 22 (23) 17 (20)
III 20 (11) 9 (9) 11 (13)

Menopause state at diagnosis
Premenopausal 4 (2) 1 (1) 3 (3)
Postmenopausal 177 (98) 99 (99) 83 (97)

Prior taxane therapy
Yes 46 (25) 24 (25) 22 (26)
No 135 (75) 71 (75) 64 (74)

Self-reported adherence
Poor (0-1 MAQ scale) 6 (3) 4 (4) 2 (2)
Moderate (2-3 MAQ scale) 64 (35) 32 (34) 32 (37)
Good (4 MAQ scale) 111 (61) 59 (62) 52 (60)

Genetic variant carriers
CYP19A1 rs10046 149 (82) 78 (82) 71 (82)
VDR rs11568820 71 (39) 39 (41) 32 (37)
TCL1A rs11849538 32 (18) 13 (14) 19 (22)
MIR4713HG rs16964189 67 (37) 36 (38) 31 (36)
OPG rs2073618 143 (79) 77 (81) 66 (77)
ESR1 rs2234693 140 (77) 70 (74) 70 (81)
CYP27B1 rs4646536 83 (46) 44 (46) 39 (45)
CYP17A1 rs6163 128 (71) 73 (77) 55 (64)
CYP19A1 rs7176005 46 (25) 27 (28) 19 (22)
RANKL rs7984870 124 (69) 67 (71) 57 (66)
ESR1 rs9322336 38 (21) 15 (16) 23 (26)
ESR1 rs9340799 161 (89) 82 (86) 79 (92)
MIR4713HG rs934635 41 (23) 24 (25) 17 (20)

Censored group includes individuals who stopped aromatase inhibitor 
therapy due to reasons other than side effects or non-adherence, those who 
completed all 5 years of therapy, and those lost to follow-up.
Abbreviations: CYP17A1, cytochrome P450 family 17 subfamily A member 
1; CYP19A1, aromatase; CYP27B1, cytochrome P450 family 27 subfamily 
B member 1; ESR1, estrogen receptor 1; MAQ, medication adherence 
questionnaire; MIR4713HG, MIR4713 host gene; OPG, osteoprotegerin; 
RANKL, receptor activator of nuclear factor kappa-B ligand; TCL1A, 
T-cell leukemia/lymphoma 1A; VDR, vitamin D receptor.

Table 2. Descriptive statistics for continuous variables.

Baseline, mean (r) 3 Months, mean (r)

Age 63.45 (7.43) 63.59 (7.50)
BMI 28.56 (5.39) 28.63 (5.27)
Joint pain 1.14 (1.24) 1.51 (1.40)
Sleep disturbancea 48.99 (8.39) 50.15 (8.60)
Pain interferencea 48.59 (7.91) 48.98 (8.12)
Physical functiona 49.88 (7.71) 50.03 (8.36)
Fatiguea 48.47 (8.25) 48.39 (8.05)
Endocrine symptomsa 65.76 (9.11) 64.39 (10.26)
Depressiona 45.38 (8.02) 44.73 (8.21)
Anxietya 48.44 (9.10) 47.51 (9.33)

Means and standard deviations are presented for continuous variables. The 
values for joint pain indicate the FACT-ES survey responses (0—no pain, 
4—severe pain).

a The displayed values represent PROMIS T-scores.
Abbreviations: BMI, body mass index; r, standard deviation.
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Table 3. Summary of performance metrics for the best models.

Mean AUC C-index Integrated Brier score

Baseline Clinical only 0.57 0.58 0.226
Clinical þ selected genetics 0.66 0.55 0.210
Clinical þ all genetics 0.61 0.59 0.225

3-month follow-up Clinical only 0.64 0.54 0.204
Clinical þ selected genetics 0.63 0.56 0.233
Clinical þ all genetics 0.65 0.56 0.228

The integrated Brier scores produced by the random prediction model were 0.256 at baseline and 0.258 at 3-month follow-up.
Abbreviations: AUC, cumulative/dynamic area under the curve; c-index, concordance index.

Figure 2. Time-dependent AUC for different genetic data integration models. Cumulative/dynamic AUC evaluated on the test set is plotted in monthly 
intervals for 5 years. All models included demographics, clinical features, and patient-reported outcomes. Labels are intended to emphasize the amount 
of genetic data included in the model. (A) The baseline values for longitudinal features were used for model development. (B) Changes in values for 
longitudinal features from baseline to 3-month follow-up were used for model development. Horizontal dashed lines represent the mean AUC values 
over the whole study period. Horizontal blue dotted line represents performance of a model making predictions based on random guess. Vertical dashed 
lines indicate the 3-, 6-, and 12-month cutoffs for prediction of early discontinuation. Abbreviation: AUC, area under the curve.
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lower predicted risk. In the example of the ESR1 rs9340799 
in Figure 3A, being homozygous for the risk allele (red dots) 
resulted in lower predicted risk of discontinuation. According 
to SHAP analysis, the 2 most predictive features in the base
line clinical þ selected genetics model were variants in 
ESR1—rs9340799 and rs2234693 (Figure 3A). Interestingly, 
carrying risk allele at these positions was considered protec
tive by the model. Higher cancer stage and baseline anxiety 
were associated with lower predicted risk of discontinuation, 
while prior taxane therapy and greater baseline sleep disturb
ance, depression, fatigue, and age at therapy initiation were 

suggestive of higher risk. Carrying both OPG rs2073618 risk 
alleles resulted in an increased predicted risk. For the model 
incorporating 3-month follow-up data, the most predictive 
feature was self-reported adherence, with higher adherence 
suggesting lower risk of discontinuation (Figure 3C). 
Changes in PROs comprised the majority of the most impor
tant features. However, the direction of effect for several 
PRO measures contradicted univariate associations, suggest
ing the complex interplay between features. Specifically, the 
lowest values for change in sleep disturbance, endocrine 
symptoms, and depression were associated with higher 

Table 4. Time-dependent performance metrics for the best models at 6 and 12 months.

6 months 12 months

AUC Sensitivity Specificity PPV AUC Sensitivity Specificity PPV

Baseline Clinical only 0.60 0.44 0.70 0.22 0.49 0.25 0.64 0.22
Clinical þ selected genetics 0.65 0.44 0.70 0.22 0.64 0.44 0.72 0.39
Clinical þ all genetics 0.64 0.44 0.70 0.22 0.56 0.31 0.67 0.28

3-Month follow-up Clinical only 0.68 0.60 0.70 0.18 0.64 0.50 0.72 0.35
Clinical þ selected genetics 0.74 0.60 0.72 0.19 0.63 0.50 0.74 0.38
Clinical þ all genetics 0.71 0.60 0.70 0.18 0.67 0.58 0.74 0.41

Abbreviations: AUC, cumulative/dynamic area under the receiver operating characteristic curve; PharmGKB, Pharmacogenomics Knowledge Base; PPV, 
positive predictive value.

Figure 3. Most important predictors of discontinuation. Top 10 most important features for prediction were determined by the SHAP algorithm for the 
baseline clinical þ selected genetics model (A), and the 3-month follow-up clinical þ all genetics model (C). Top 5 features as determined by SHAP were 
further assessed for time-dependent importance (panels B and D). Dashed lines in panels B and D represent mean AUC over the whole follow-up period. 
Abbreviations: AUC, area under the curve; ESR1, estrogen receptor 1; OPG, osteoprotegerin; PharmGKB, Pharmacogenomics Knowledge Base; RANKL, 
receptor activator of nuclear factor kappa-B ligand; SHAP, Shapley additive explanations; SNP, single-nucleotide polymorphism.
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predicted risk of discontinuation. Increases in endocrine 
symptoms, physical function, and BMI were generally associ
ated with decreased risk of discontinuation, while higher 
changes in fatigue and joint pain suggested increased risk. 
Interestingly, high changes in anxiety levels were associated 
with lower predicted risk, whereas moderate changes had an 
opposite effect on the model’s prediction. Finally, RANKL 
rs7984870 risk allele carriers were predicted to have a higher 
risk of discontinuation.

We then analyzed the time-dependence of the most impor
tant features determined by SHAP. The variants in the ESR1 
gene were highly predictive of the outcome in the first year of 
treatment, becoming less important in the later periods 
(Figure 3B). Time-dependent analysis suggests that ESR1 
rs2234693 variant increased the risk of early discontinuation 
but had an opposite effect after 4 years of therapy. The direc
tion of effect of ESR1 rs9340799 stayed consistent over time. 
Higher baseline sleep disturbance was associated with slightly 
decreased risk of discontinuing between 3 and 12 months but 
was highly predictive of discontinuation after 3 years of ther
apy. A similar trend was observed for cancer stage. Lower 
baseline anxiety was predictive of discontinuation within the 
first 3 years, while having the opposite effect in the later peri
ods. Regarding the model incorporating the 3-month follow- 
up data, decrease in physical function was highly predictive 
of discontinuation when used as an independent predictor 
(Figure 3D). Increases in sleep disturbance and anxiety levels 
and decreases in endocrine symptoms were predictive of early 
discontinuation, while lower self-reported adherence had an 
effect past 36 months of therapy. In general, the independent 
effect of individual risk factors was the most pronounced in 
the first 6-12 months and after 36 months of treatment, 
remaining low between 1.5 and 3 years.

Finally, we used the best baseline model to construct per
sonalized survival curves for 3 randomly selected individuals 
from the test set (Figure 4). The 5 most influential features 
for these individuals are presented next to the survival curves. 
Red color of the feature value indicates increased predicted 
risk, while green color suggests otherwise.

Discussion
In this retrospective analysis of women with HRþ breast can
cer initiating AI therapy who were enrolled in a prospective 
cohort study, we utilized survival ML approaches to predict 
the time of therapy discontinuation. We demonstrated the 
time-dependence of the signal coming from the data and 
showed that incorporation of genetic risk factors improved 
the ability of the model to identify early discontinuers. In 
addition, we determined the most influential features for the 
prediction and explored their predictive value as a function 
of time. Finally, we presented an example of a personalized 
survival curve that may be constructed for an individual ini
tiating AI therapy and presented to a clinician for personal
ized risk assessment. To our knowledge, this is the first report 
of using survival ML to predict AI therapy discontinuation. 
Furthermore, there have been no prior studies demonstrating 
how the predictive value of risk factors for discontinuation 
changes with time.

For each data model, we tested several survival ML algo
rithms and focused on the mean cumulative/dynamic AUC 
and the IBS metrics for evaluation. We chose those metrics 
over c-index, since the latter only assesses the order of the 
event times, without taking into consideration how close the 
predicted time is to the true value.67 Time-dependent AUC 
and IBS avoid this problem, and as a result were deemed 
more appropriate evaluation metrics, given our goal of pre
dicting time of discontinuation. We were specifically inter
ested in evaluating the ability of our models to identify the 
individuals at risk of discontinuing early, as such patients are 
difficult to determine for a physician. Therefore, the best- 
performing models were also assessed by their time- 
dependent AUC, sensitivity, specificity, and PPV calculated at 
6 months and 12 months. None of the models were able to 
achieve a high PPV, since the fraction of study participants 
discontinuing by that time remained low (29% at 12 
months). Among the baseline models, the PharmGKB- 
annotated model showed the best performance, according to 
all evaluation metrics. Notably, the other 2 baseline models 
had a moderate discriminative power within the first year 
and after the third year of treatment, while not being able to 

Figure 4. Personalized survival curve. The PharmGKB-annotated model developed at baseline was used to predict survival curves for 3 random 
individuals from the test set. The markers along the curve indicate the actual times when the individual discontinued the medication (black dot) or was 
censored (black cross). Gray line represents the survival curve of the study sample. Vertical dashed blue line indicates the 12-month cutoff, and the 
values along the line display the probability that the individual continues the medication at 12 months. Top 5 features affecting the prediction for the 
selected individuals were determined by SHAP and are presented on a side panel. Abbreviations: ESR1, estrogen receptor 1; MIR4713HG, MIR4713 
host gene; OPG, osteoprotegerin; PharmGKB, Pharmacogenomics Knowledge Base; RANKL, receptor activator of nuclear factor kappa-B ligand; SHAP, 
Shapley additive explanations.
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distinguish the patients discontinuing between 1 and 3 years. 
A similar pattern was observed for both 3-month follow-up 
models that incorporated genetics. The clinical þ all genetics 
and the clinical only models developed at 3-month follow-up 
had equally good overall performance, with the former per
forming better within the first year of treatment. The addition 
of genetic predictors had lower contribution to the overall 
model performance at the 3-month follow-up compared to 
baseline. This may partially be explained by the fact that we 
selected the SNPs that were associated with AI-induced toxic
ity. Thus, at baseline, genetic factors predicted which patients 
would experience toxicity, while at the 3-month follow-up, 
this toxicity was accounted for by the incorporation of emer
gent symptoms, thereby reducing the contribution of genetics 
to the overall model performance. Given our focus on early 
prediction, we selected the model incorporating genetics as 
the best model developed at 3-month follow-up, which 
achieved the AUC of 0.71 at 6 months, outperforming the 
previously published model.46 In general, the observed pat
terns suggest that genetic risk factors are important determi
nants of early discontinuation and their inclusion in 
predictive models is of value for the identification of patients 
at-risk of discontinuing within the first year of treatment.

It is important to note that, due to the small sample size, 
there was a large overlap between the models, and the best- 
performing models at both baseline and follow-up achieved 
higher time-dependent AUC values than an average bootstrap 
run (Figure S1B and C). This can be partially explained by 
the fact that the algorithm selection and hyperparameter tun
ing were conducted on the original sample of training data, 
which may not have been optimal for the samples used dur
ing bootstrapping. In general, the bootstrapping procedure 
demonstrates how well our model learns from new data, but 
it does not estimate the confidence in the predictions made by 
the trained model. Future validation studies on independent 
datasets are necessary to assess this aspect.

The results of our feature importance analysis provide fur
ther evidence for early impact of genetics on the outcome. 
Interestingly, the direction of effect for the 2 most important 
genetic markers at baseline, ESR1 rs9340799 and ESR1 
rs2234693, was the opposite from what has been reported in 
the previous studies, as was confirmed by univariate analysis 
via Kaplan-Meier estimator (results not shown). Possible rea
sons for such discrepancy include the different outcome defi
nition used in our study, or low sample size of our cohort 
leading to a false signal. One possible explanation for the 
negative correlation of cancer stage and baseline anxiety with 
predicted risk of discontinuation is the fact that patients with 
higher anxiety and more advanced cancer stage may be more 
concerned about their outcome, leading to higher adherence, 
despite the development of side effects. The low predictive 
value of baseline sleep disturbance in early periods followed 
by an increase after third year of treatment may indicate that 
the patients may tolerate short periods of sleep disturbance 
but cannot endure chronic deprivation of sleep. When 
3-month follow-up data were incorporated into the model, 
self-reported adherence was the most important predictor, 
followed by a set of features indicating changes in PROs and 
BMI. Given better performance of this model at 6 and 12 
months than that of the best model developed at baseline, 
this finding highlights the utility of follow-up data for 
prediction.

Although the best model developed at 3-month follow-up 
was better than the best baseline model at identifying the 
individuals at risk of discontinuing within the first 6 and 12 
months, the baseline model can make its prediction and com
municate the risk to the clinician earlier than the model devel
oped at a follow-up, allowing for early implementation of 
appropriate interventions. The individual’s risk at baseline 
may be communicated with a physician via a personalized 
survival curve similar to the one presented in Figure 4, along 
with the survival curve of general population. The individu
al’s probability of continuing the medication past a time 
point of interest or the probability of discontinuing the medi
cation by that time may be presented to a clinician, who will 
use this information to intervene, if deemed necessary. Fur
thermore, patient’s values for the most important predictors 
along with their effect on risk estimate can be displayed and 
may help choose the appropriate intervention. Some possible 
interventions may include prescribing tamoxifen instead of 
an AI, closer monitoring of the symptoms, sending regular 
reminders, physical activity, integrative medicine approaches, 
or pharmacotherapy to alleviate the symptoms. In addition, 
this information may be communicated with the patient 
when discussing potential risks and benefits of the therapy. 
Importantly, our model is not meant to be prescriptive but is 
rather intended to assist clinicians in estimating and commu
nicating overall patient’s risk given their complex multifacto
rial profile.

It is important to acknowledge some limitations of our 
study. First, the sample size was small for an ML problem, 
which may have led to overfitting of the model on the train
ing set. Future studies on broader populations are needed to 
increase the power of the ML approach. Second, the popula
tion used in this study included mostly White Non-Hispanic 
individuals and did not accurately represent general US popu
lation. Further studies should include more diverse popula
tions to assess generalizability of the model. Third, our 
assessment of genetic determinants was limited to the 13 
SNPs available for the analysis. In the future, it would be 
interesting to explore the extent of genetic contribution to the 
phenotype using genome-wide data. In addition, this was a 
retrospective study demonstrating the proof-of-concept on a 
case study involving AIs. Future prospective studies are 
needed to validate the ability of the model to predict discon
tinuation, to identify risk thresholds for guidance regarding 
potential interventions and to extrapolate to other medica
tion classes. Finally, PRO and genetic data are not commonly 
integrated within the electronic health record (EHR), making 
external validation of our model challenging. However, our 
study shows the importance of integrating such data into 
medical records. As healthcare institutions incorporate these 
measures into their EHR, it will become possible to imple
ment the model in the clinical setting.

Conclusion
In this study, we developed a survival ML model to predict 
AI discontinuation in women diagnosed with HRþ breast 
cancer. The model incorporating all genetic markers and 
follow-up data performed best, achieving mean time- 
dependent AUC of 0.65, and AUC values of 0.71 and 0.67 at 
6 and 12 months, respectively. We demonstrated that incor
poration of genomic data improves model’s performance and 
that genetic risk factors are particularly important for 
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prediction of early discontinuers. Our model suggests that 
changes in PROs are better predictors of discontinuation 
than the PROs at baseline and that there is a complex inter
play between emergent symptoms driving the prediction. 
Finally, we presented an example of a personalized survival 
that may be used to communicate the risk of discontinuation 
to a physician.
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