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Abstract: Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disease that involves
complex multifactorial hemodynamic, thrombotic, inflammatory, and aortic wall remodeling pro-
cesses. However, its mechanisms are incompletely understood. It has become increasingly clear that
platelets are involved in pathological processes of vascular diseases beyond their role in hemostasis
and thrombosis. Platelet activation with membrane receptors and secreted mediators promotes
thrombus formation and the accumulation of inflammatory cells, which may play an important role
in the development of AAA by destroying the structural integrity and stability of the vessel wall.
Turbulent blood flow in aortic aneurysms promotes platelet activation and aggregation. Platelet
count and heterogeneity are important predictive, diagnostic, and prognostic indicators of AAA. We
summarize the relationship between platelet activation and AAA development and propose future
research directions and possible clinical applications.

Keywords: abdominal aortic aneurysm; platelets; receptors; mediators; intra-luminal thrombus;
inflammation; disturbed flow

1. Introduction

Abdominal aortic aneurysm (AAA) is defined as permanent dilatation of the abdomi-
nal aorta, which most commonly occurs in the infrarenal region in humans. Although it can
have an asymptomatic occurrence, progressive dilation is associated with aortic dissection
and rupture [1]. A population ultrasound screening study reported that the prevalence of
AAA is 4–8% in males and 0.5–1.5% in females over the age of 65 [2]. The current clinical
management of AAA focuses on identifying aneurysms while they are asymptomatic and
treating them by endovascular aortic aneurysm repair (EVAR) or open surgery. There are
no proven pharmaceutical treatments to prevent progressive growth or rupture. Despite
improvements in screening and surgical management, the mortality rates of AAA remain
high [3]. A better understanding of AAA development and the emergence of complications
is necessary to discover new therapeutic targets.

Abdominal aortic aneurysm is characterized by excessive smooth muscle cell loss,
extracellular matrix degradation, and inflammation [4]. Neutrophils, macrophages, and
lymphocytes are the main inflammatory cells in AAA, which secrete collagenase, elastase,
and cytokines to promote extracellular matrix degradation and smooth muscle cell apopto-
sis. The increase in proteolytic activity leads to irreversible remodeling of the aortic wall,
resulting in aortic expansion and rupture [1,5]. AAA represents a form of atherothrombotic
disease, characterized by the formation of a nonocclusive intra-luminal thrombus (ILT) that
does not resolve once it occurs. The thromboinflammatory status of ILT contributes to the
outward remodeling and eventual disruption of aortic wall integrity [6,7].

The major function of platelets is to contribute to hemostasis and thrombosis [8]. In
recent years, many studies have shown that platelets play an important role in the develop-
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ment of AAA [9]. Low platelet count in patients with AAA suggested an increase in platelet
consumption, and ILT formation in aortic aneurysm indicated platelet activation [10,11].
Platelet activation participates in AAA pathogenesis via membrane receptors and secreted
mediators [12]. Thrombus formation and the accumulation of inflammatory cells and
cytokines in ILT may destroy the structural integrity and stability of the vessel wall, thereby
increasing the risk for dissection and rupture [6]. Disturbances in flow within the aneurysm
sac also further promotes platelet activation and aggregation [13].

In the present review, we focus on basic research and clinical trials that are relevant
to the role of platelet activation and its receptors and mediators in the formation and
development of AAA, the effects of AAA on platelet activation, and clinical applications
that are related to platelets in AAA. Understanding the role of platelets has enabled the
continual development of diagnostic biomarkers and possible treatments to optimize
clinical outcomes in patients with AAA.

2. Methods

We used the PubMed and Science Direct databases to search for scientific information.
The terms “platelet”, “platelets”, and “PLT” were combined with the term “abdominal
aortic aneurysm” and “AAA” by the Boolean operator “AND”. All titles and abstracts were
first screened by the authors to identify potentially relevant studies. We then evaluated the
full texts in detail, all original articles, systematic reviews, and meta-analyses identifying
relevant abdominal aortic aneurysm in platelet activation were accepted. The references
of relevant articles were manually screened to identify additional studies. Studies were
excluded if they were not in English, if they were editorials or commentaries, and if they
focused on coagulation and the complement system other than platelet activation.

3. Results
3.1. Study Selection

The PubMed search yielded 411 studies from 1969 to 2021, and the Science Direct
search yielded 409 studies that include platelet in the titles and abstracts from 1998 to
2021. After preliminary evaluation of the titles and abstracts, 537 studies were excluded
because of the adequacy of its content with the subject matter of the study, 283 studies were
further evaluated through their full texts. Finally, we included 106 studies on platelets that
were relevant to AAA. We present current knowledge of platelet and vascular hemostasis,
the role of platelets, platelet receptors, and platelet-derived mediators in AAA, aortic
aneurysm-activated platelets, and the application of platelets in the medical management
of AAA.

3.2. Platelets and Vascular Hemostasis

Platelets are a component of blood whose function is to react to bleeding from blood
vessel injury by clumping. Platelets play an important role in the pathophysiology of
thrombosis [14]. Under physiological conditions, thrombus formation on intact endothelial
cells is prevented by nitric oxide, adenosine diphosphatase, and prostacyclin. When the
endothelial layer is disrupted, collagen and von Willebrand factor (vWF) anchor platelets
to the subendothelium. Platelet glycoprotein (GP)Ib/IX/V receptors bind vWF, and GPVI
receptors and integrin α2β1 bind collagen. Collagen-mediated GPVI signaling increases
the platelet production of thromboxane A2 (TxA2) and decreases the production of prosta-
cyclin [15]. Activated platelets secrete the contents of granules through their canalicular
systems to the exterior, including vWF, platelet factor 4 (PF4), platelet-derived growth
factor (PDGF), fibrinogen, coagulation factor V, and β-thromboglobulin from alpha gran-
ules, calcium, adenine nucleotides, serotonin, pyrophosphate, and polyphosphate from
dense granules, and proteases and glycosidases from lysosomal granules [16,17]. Adenosine
diphosphate (ADP), vWF, and TxA2 that are released from platelets further promote platelet
activation and aggregation [18]. Clot formation occurs as a result of activating GPIIb/IIIa
receptors by changing shape to bind fibrinogen. In addition to this classic mechanism,
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high-velocity blood flow can also initiate aggregation [19]. Clinically, platelet activation
can be determined by measuring plasma levels of β-thromboglobulin and PF4 [20].

3.3. Role of Platelets in AAA
3.3.1. Low Platelet Count in AAA

Aortic aneurysm is associated with consumption coagulopathy [10]. Cases of compli-
cated AAA with chronic disseminated intravascular coagulopathy have been reported [21,22].
Chronic disseminated intravascular coagulopathy was cured by surgical repair in an el-
derly patient with AAA over the next 14 days [23]. Although no significant differences
were found between acutely symptomatic non-ruptured and ruptured AAA [24], platelet
count was significantly lower in patients with AAA compared with healthy controls [25],
suggesting an increase in platelet destruction, most likely through activation within the
aneurysm sac [26,27]. Patients with AAA had higher baseline spontaneous platelet aggre-
gation compared with normal controls [28]. The relationship between platelet count and
aortic aneurysm size is controversial. A clinical study reported that platelet count decreased
as aneurysm size increased, and platelet count was lower in patients with a large AAA
(diameter > 55 mm) [29]. In contrast, no significant differences in platelet count were found
between patients with a large AAA and small AAA in another study [30]. The correlation
between platelet indices, such as platelet count, mean platelet volume, the platelet/large
cell ratio, and platelet distribution width, are important factors for understanding platelet
heterogeneity [31]. In addition to the decrease in platelet count, mean platelet volume,
the mean platelet volume-to-platelet count ratio, the mean platelet volume-to-lymphocyte
ratio, and the red cell distribution width-to-platelet count ratio were significantly higher in
patients with AAA [32].

3.3.2. Platelet-Aggregating Thrombus in AAA

Pathophysiological evidence from patients and animal models indicates ILT formation
in the lumen in AAA [33]. The ILT is often structured in three layers in AAA patients:
luminal, medial, and abluminal. The luminal ILT layer, which is in contact with blood,
is biologically active and enriched in platelets, neutrophils, and red blood cells. The ILT
rarely embolizes but does not resolve once it occurs. Eccentric distribution of the ILT was
associated with continuous AAA expansion, and a thicker ILT volume was associated with
a higher growth rate [34]. Inflammatory cells and cytokines were reported to accumulate in
the ILT and play an important role in AAA progression [35,36]. The evolution of ILT can lead
to vessel wall weakness through high concentrations of reactive oxygen species, proteases,
and cytokines. A study showed that ILT thickness correlated with matrix metalloproteinase
9 (MMP9) expression [37]. Roxana et al. reported that local C3 retention, consumption,
and proteolysis in the ILT could induce polymorphonuclear leukocyte chemotaxis and
activation, associated with a decrease in systemic complement concentration and activity
in later stages of AAA [38].

3.4. Platelet Receptors in AAA

There are abundant receptors on the surface of platelets that can bind to the extracellu-
lar matrix and adhesion proteins to cause platelet adhesion and activation [8]. The platelet
membrane has several types of receptors, including integrins (αIIbβ3, α2β5, α5β1, and
α2β1), leucine-rich receptors (glycoprotein Ib/IX/V and Toll-like receptors), G-protein-
coupled receptors (PAR-1, PAR-4, P2Y12, P2Y1, and TxA2), and C-type lectin receptors
(P-selectin), among others [17,39]. Some of these receptors were reported to interact with
various extracellular matrices and cells to accelerate AAA progression (Figure 1; Table 1).
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3.4.1. Adenosine Diphosphate Receptors

Adenosine diphosphate is an important activator of platelets [40]. It exerts its activity
through three major purinergic receptors: P2Y12, P2Y1, and P2X1. They are important
for changes in platelet shape and aggregation, TxA2 generation, procoagulant activity,
adhesion to immobilized fibrinogen, and thrombus formation under shear conditions.
P2Y12 receptors are also important for the potentiation of platelet activation that is me-
diated by other physiological agonists, including collagen, vWF, and TxA2, resulting in
sustained platelet activation [39,41]. P2Y12 receptor antagonists, such as clopidogrel and
ticagrelor, inhibit platelets by selectively and irreversibly binding to P2Y12 receptors and
blocking the ADP-dependent pathway of platelet activation. In a rat model that implanted
a segment of the sodium dodecyl sulfate-decellularized guinea pig aorta, the P2Y12 recep-
tor antagonist AZD6140 inhibited platelet activation and prevented the development of
AAA by inhibiting ADP-induced platelet aggregation and limiting biological activity of
the ILT [42]. Administration of the P2Y12 inhibitor clopidogrel significantly suppressed
aortic expansion, elastic lamina degradation, inflammatory cytokine expression, and aortic
aneurysm rupture in an established animal model of AAA that was induced by Ang II
infusion in hypercholesterolemic mice [43]. Clopidogrel bisulfate reduced death among
patients with AAA [44]. However, a multicenter randomized, double-blind, controlled
trial of ticagrelor and placebo reported different results. Patients who were randomized to
ticagrelor did not exhibit a reduction in AAA growth compared with controls during the
12-month follow-up period. This was the first interventional trial on AAA growth using
AAA volume as the primary outcome measure other than rupture [45]. In response to
the limited clinical studies of the effects of ADP receptor antagonists on AAA, a Phase 2
clinical trial is currently verifying the efficacy of ticagrelor in patients with a small AAA
(ClinicalTrials identifier: NCT02070653).

3.4.2. P-Selectin

P-selectin (CD62P) is an adhesion receptor for neutrophils and macrophages that is
expressed on both endothelial cells and platelets [46]. In platelets, P-selectin is stored in α

granules and mobilized to the external plasma membrane within minutes after activation.
The expression of P-selectin on activated platelets is important for the recruitment of
leukocytes to thrombi and induction of fibrin production during hemostasis. Because
detection is relatively easy, soluble P-selectin was assayed as a marker of platelet activity.
Soluble P-selectin significantly increased in plasma in patients with AAA [36]. Likewise,
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P-selectin significantly increased in an animal model of AAA that was established by
xenografting a segment of the sodium dodecyl sulfate-decellularized guinea-pig aorta
(xenogenic matrix) onto the abdominal aorta in rats [36]. P-selectin deficiency attenuated
AAA formation in elastase aortic perfusion mice, with diminished aortic wall degradation
and preserved elastin and collagen [47]. P-selectin glycoprotein ligand-1 (PSGL-1) acts as a
critical regulator of inflammatory cells infiltration by mediating the adhesion of leukocytes.
PSGL-1 deficiency reduced the incidence and severity of AAA by inhibiting inflammatory
cell migration and recruitment under conditions of aortic aneurysm [48].

3.4.3. Other Receptors

Integrin αIIbβ3 is expressed at high levels in platelets and their progenitors. In resting
platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, it
switches from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding
causes integrin clustering and subsequently promotes outside-in signaling, which drives
essential platelet functions, such as spreading, aggregation, clot retraction, and thrombus
consolidation [49]. The inhibition of integrin αIIbβ3 by treatment with the Fab fragment
abciximab for 6 weeks reduced both thrombus area and aneurysmal enlargement in a rat
xenograft model of AAA compared with treatment with irrelevant immunoglobulins [36].

GPIb is a major glycoprotein on the platelet surface. Like the integrin αIIbβ3, GPIb
undergoes reversible translocation as a function of platelet activation [50]. As an extramem-
branous portion of GPIb, glycocalicin was higher in patients with AAA than in patients
who underwent carotid endarterectomy, indicating that GPIb was cleaved from the platelet
membrane after platelet activation and turnover [26].

Table 1. Characteristics of studies of platelet receptors in AAA.

Target Inhibitor Disease Model Study Type Main Findings Reference

ADP receptor
P2Y12 receptor

antagonist
AZD6140

Decellularized aortic
xenograft model of AAA

in rats
Animal study

Reduced the
spontaneous increase in

aortic diameter
[42]

ADP receptor Clopidogrel
Apolipoprotein

E-knockout mice infused
with Ang II (AAA model)

Animal study Suppressed aneurysm
formation [43]

ADP receptor Clopidogrel
bisulfate

Hypercholesterolemic
mice infused with Ang II

(AAA model)
Animal study Reduced AAA rupture [44]

ADP receptor
Clopidogrel

bisulfate, ticagrelor,
or prasugrel

Patients with AAA who
progressed to rupture

or dissection
Cohort study Reduced rupture

and dissection [44]

ADP receptor Ticagrelor
Patients with AAA and a
maximum aorta diameter

of 35–49 mm

Multicenter
randomized

controlled trial

No reduction in growth
of small AAA [45]

P-selectin — Patients with AAA
before surgery Cohort study

Soluble P-selectin
significantly increased

in plasma
[36]

P-selectin —
Decellularized aortic

xenograft model of AAA
in rats

Animal study
Soluble P-selectin

significantly increased
in rats

[36]

P-selectin Global knockout
P-selectin knockout mice
with elastase perfusion

(AAA model)
Animal study

P-selectin deficiency
attenuated aneurysm

formation
[47]
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Table 1. Cont.

Target Inhibitor Disease Model Study Type Main Findings Reference

P-selectin Global PSGL-1
knockout

Aortic aneurysm model
induced by

deoxycorticosterone
acetate plus high salt

Animal study
Reduced the incidence

and severity of
aortic aneurysm

[48]

αIIbβ3 αIIbβ3 inhibitor
abciximab

Decellularized aortic
xenograft model of AAA

in rats
Animal study

Reduced thrombus area
and aneurysmal

enlargement
[36]

GPIb — Patients with
asymptomatic AAA Case-control study

Higher glycocalicin
produced by cleaved

GPIb than
normal population

[26]

3.5. Platelet-Derived Mediators in AAA

Extensive research has revealed several mediators that are released from activated
platelets. Activated platelets release prothrombotic mediators from dense granules and
alpha granules, including vWF and ADP, and newly synthesized TxA2 [18]. Microparticles
that derived from platelets significantly increased in AAA eluates in rats and plasma
in patients [36]. These mediators orchestrate the development and progression of AAA
(Figure 1) by enhancing the interaction between platelets and extracellular matrix and other
cells (Table 2).

3.5.1. TxA2

TxA2 is produced from arachidonate through the aspirin-sensitive cyclooxygenase
1 (COX-1) pathway in activated platelets and involved in multiple biological processes
via its cell-surface thromboxane prostanoid (TP) receptor. TxA2 binds to TP, leading to
changes in platelet shape, phospholipase A2 activation, the platelet degranulation of dense
granules and alpha granules, and platelet aggregation [51]. The release of TxA2 amplifies
the initial stimulus for platelet activation and helps recruit additional platelets. TxB2 (the
hydrolysis product of TxA2) was the main prostanoid that was produced by tissue from
AAA in humans [52]. Preliminary promising results indicated that the TxA2 inhibitor
BM-573 suppressed aneurysmal growth in rats [53].

Aspirin (acetylsalicylic acid) irreversibly inhibits platelet COX-1, blocking TxA2 pro-
duction in platelets and decreasing platelet aggregation. The administration of aspirin
dramatically reduced the rupture of AAA that was induced by a high-fat diet and Ang
II infusion in Ldlr−/− mice. Aspirin also reduced platelet and macrophage recruitment,
resulting in a decrease in MMP activity, and reduced plasma concentrations of PF4, cy-
tokines, and components of the plasminogen activation system in abdominal aortas in
mice [44]. Patients with AAA are recommended to receive low-dose aspirin or a P2Y12
receptor antagonist for the secondary prevention of AAA progression or rupture [54,55].

3.5.2. PDGF

PDGF is a potent mitogen for cells that is partially synthesized and stored in alpha
granules of platelets and released upon platelet activation. There are five different isoforms
of PDGF that activate cellular responses through two different receptors (PDGFRα and
PDGFRβ), known as PDGF-AA (PDGFA), PDGF-BB (PDGFB), PDGF-CC (PDGFC), PDGF-
DD (PDGFD), and PDGF-AB [56]. PDGFA was reported to increase in human AAA tissue in
a membrane-based complementary DNA expression array [57]. PDGF A and B chains were
strongly stained on small vessels in aneurysmal walls of atherosclerotic AAA in patients,
whereas the weaker expression of PDGF A and B chains was observed in endothelial cells of
vessel walls around inflammatory cells in the aneurysmal wall of inflammatory AAA [58].
PDGFD was shown to mediate adventitial inflammation, which provided a direct link
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between perivascular adipose tissue dysfunction and AAA formation in Ang II-infused
obese mice [59].

3.5.3. CD40L-CD40

Both CD40L and CD40 exist in platelets [60]. CD40L is cryptic in unstimulated
platelets but rapidly presents to the platelet surface after platelet activation. CD40L that
is expressed on the cell surface is subsequently cleaved, generating a soluble fragment,
termed sCD40L. Studies of the cellular distribution of CD40L indicated that >95% of
circulating CD40L was produced by platelets [61,62]. The ligation of platelet CD40 with
sCD40L increased platelet P-selectin expression and granule release and enhanced platelet-
leukocyte adhesion [63]. The abundance of both CD40L and CD40 increased in media
of thrombus-free and thrombus-covered human AAA samples. The CD40L–CD40 axis
has been implicated in aneurysm formation. CD40L deficiency reduced inflammatory
chemokine/cytokine expression, MMP activity, and macrophage infiltration, lowering the
incidence of AAA and risk of rupture [64].

3.5.4. Platelet Factor 4 (PF4/CXCL4) and RANTES (CCL5)

Platelets regulate leukocyte recruitment indirectly via the release of chemokines upon
platelet activation. Platelet factor 4 (PF4/CXCL4) and RANTES (CCL5) are two main
chemokines that are located within alpha granules of platelets. CXCL4 has been shown
to form functional heterodimers with CCL5 to promote the recruitment of neutrophils,
macrophages, and T cells [65]. CXCL4 and CCL5 levels increased in plasma in AAA patients,
with high levels in luminal layers of ILTs [66]. Platelets and neutrophils co-localized in
luminal ILT layers of AAA [66], and plasma levels of CXCL4 and CCL5 were positively
associated with macrophage recruitment in murine AAA models [44]. The inhibition of
CXCL4-CCL5 heterodimers by the peptide inhibitor MKEY before or after the induction of
experimental AAA was reported to efficiently prevent the development of AAA or halt its
progression, respectively [67].

3.5.5. Other Mediators

Ficolin-3 (H-ficolin) is one of the most abundant and efficient recognition molecules in
the lectin pathway of the complement system, which was identified in platelet-derived mi-
crovesicles [68]. Ficolin-3 levels in microvesicles that were obtained from plasma-activated
platelets and AAA tissue were associated with the presence and progression of AAA
compared with healthy ones [69]. High levels of ficolin-3 in the AAA thrombus could be
involved in complement-coagulation crosstalk and the immune-inflammatory response
that is associated with AAA.

Myeloperoxidase, which is partially released by activated platelets, was localized
both on the surface of and inside platelets. Etienne et al. found that myeloperoxidase
was significantly elevated in experimental saccular aneurysms compared with fusiform
aneurysms in a decellularized xenograft model in rats [70], and it caused oxidative damage
by producing superoxide in a chronic remodel of AAA [71].

vWF is a large, multimeric glycoprotein that is found in blood plasma, platelet gran-
ules, and subendothelial connective tissue that mediates the adhesion of platelets to suben-
dothelial connective tissue [72]. A prospective study found that vWF activity in plasma
correlated with AAA thrombus size [73]. Another study found that 14-3-3ζ that was
stored in dense granules was secreted by activated platelets in the abdominal aorta in
patients with aneurysm, based on an organellar proteomics method [74]. Serum levels of
thrombospondin-1 and clusterin, which are secreted by platelets, were negatively associated
among 1003 AAA patients [75].
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Table 2. Characteristics of studies of platelet-derived mediators in AAA.

Target Inhibitor Disease Model Study Type Main Findings Reference

TxA2 TxA2 inhibitor
BM-573 AAA model in rats Animal study Suppressed

aneurysmal growth [53]

TxA2 Aspirin
Ang II infusion in

hypercholesterolemic
mice (AAA model)

Animal study Reduced rupture [44]

PDGFA — Patients with AAA Cohort study Increased in
AAA tissue [57]

PDGFA, PDGFB — Patients with AAA Cohort study
Stained on small

vessels in
aneurysmal walls

[58]

PDGFD — Ang II-infused obese
mice (AAA model) Animal study

Inhibition in PDGFD
function significantly
reduced the incidence

of AAA

[59]

CD40L CD40L global
knockout

Ang II infusion
(AAA model) Animal study Developed fewer

aneurysms [64]

PF4 and RANTES — Patients with AAA Cohort study

Involved in attracting
neutrophils to the
luminal layer of
AAA specimens

[66]

PF4 and RANTES
MKEY, peptide

inhibitor of
CXCL4-CCL5

Transient infrarenal
aortic porcine

pancreatic elastase
infusion in mice

(AAA model)

Animal study Reduced aortic
diameter enlargement [67]

Ficolin-3 — Patients with AAA Cohort study
Increased from

activated platelets and
AAA tissue

[69]

PF4 and
myeloperoxidase —

Decellularized aortic
xenograft model in
rats (AAA model)

Animal study

Elevated in
experimental saccular
aneurysm compared

with fusiform
aneurysm

[70,71]

vWF — Patients with AAA Cohort study

Elevated pre- and
postoperatively,

decreased
intraoperatively

[73]

14-3-3ζ — Patients with AAA Cohort study Elevated in sections of
AAA specimens [74]

Thrombospondin-1
and clusterin — Patients with AAA Cohort study

Negatively associated
with AAA patients

in serum
[75]

3.6. Platelet Activation and Hemodynamic Changes in AAA

From an engineering perspective, the generation of aortic aneurysm is a failure of
the aorta to withstand hemodynamic forces [76]. Using patient-specific geometries that
were derived from computed tomography, computational fluid dynamics has emerged as a
powerful and popular tool for studying blood flow dynamics of AAA [77,78]. By modeling
platelets as infinitesimal and finite-sized particles or even as a continuum quantity, the
biomechanical and biochemical activation potential of tracked platelets was quantified.
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Much attention has focused on studying hemodynamics in AAA. Using a numeri-
cal simulation of flow through an axisymmetric aneurysm under laminar and turbulent
steady flow conditions, the recirculation zone formed inside the aneurysm cavity creates
conditions that promote platelet deposition and thrombus formation in vitro [79]. A novel
computational particle-hemodynamics analysis of platelet residence times showed high
potential to entrap activated blood particles in a patient-specific AAA [80]. In contrast to the
normal aorta, the flow in an aneurysm was highly disturbed. Flow separation that involved
regions of high streaming velocities and high shear stress was observed where platelets
exhibited adhesion and activation [19]. Biasetti et al. reported a fluid-dynamics-motivated
mechanism of platelet activation, convection, and deposition in AAAs [81]. A reliable
three-dimensional flow visualization method indicated that a longer residence time of
recirculated blood flow in the aortic lumen that is caused by this vortex caused sufficient
shear-induced platelet activation to develop ILT and maintain uniform flow conditions [82].
Patient-specific computational fluid dynamic models were used to analyze stress-induced
platelet activation within AAA under physiological conditions [83].

3.7. Clinical Applications Related to Platelets in AAA
3.7.1. Labeled Platelets and Visualization Methods

Labeled platelets and visualization method reveal the role of the platelet activation
in aneurysm progression in another way. Accompanied by platelet activation, phos-
phatidylserine that is exposed on platelet membranes is a mediator that links platelet
vesicles to aneurysm progression. Radiolabeled 99mTc-annexin-V specifically binds phos-
phatidylserine and has been used to assess the renewal activity of ILT in an in vivo experi-
mental model of AAA and ex vivo in human ILT [84]. 99mTc-fucoidan is an imaging agent
for the in vivo detection of biological activity that is associated with P-selectin overexpres-
sion on activated platelets in humans and rats with AAA [85,86]. Biodegradable micro-
capsules that are made of polycyanoacrylate and polysaccharide that are functionalized
with fucoidan had high binding activities by targeting arterial thrombi that overexpressed
P-selectin in human activated platelets and rat AAA thrombotic wall [87].

3.7.2. Platelets and Surgical Interventions

Surgical repair, including traditional open surgical repair and EVAR, is indicated for
AAA with a diameter greater than 5.5 cm in men and 5.0 cm in women, growth of more than
0.5 cm in 6 months, or AAA-related symptoms, such as rupture, dissection, and pain [88].
Low platelet count at the time of hospital admission predicts poor outcome in patients who
undergo the emergency repair of a ruptured AAA [89,90]. Platelet count and platelet activity
significantly increased after AAA repair [25,91]. Platelet count decreased significantly
in patients who underwent EVAR during the first few days postsurgery, returning to
preoperative levels by 1-week to 1-month post-EVAR [92–94]. Vascular surgeons encounter
an endovascular-specific problem, the so-called endoleak, which reduces the curability of
EVAR. In EVAR in 249 patients, platelet count after EVAR in patients with malignant type II
endoleak was lower than in patients without malignant endoleak [95]. A lack of aneurysm
shrinkage by 7 days and 6 months after EVAR was significantly associated with ongoing
multiagent antiplatelet therapy with clopidogrel, ticlopidine, cilostazol, and aspirin [96].

3.7.3. Platelet Infusion and Perioperative Period

Transfusion during open surgery is essential to increase platelet count and function in
response to massive blood loss and platelet disorders. Patients with ruptured AAA who
received proactive transfusion therapy with platelets had a higher platelet count when they
were admitted to the intensive care unit compared with the control group [97]. Patients with
ruptured AAA who received more platelets and plasma intraoperatively had lower 30-day
mortality compared with control patients [98]. Patients who were scheduled to undergo
the open repair of a ruptured AAA, however, received no significant benefit from the early
administration of platelets with regard to postoperative complications and mortality [99].



Biomolecules 2022, 12, 206 10 of 15

Platelet transfusion was an independent marker of thrombotic complications in patients
with ruptured AAA [100].

4. Concluding Remarks and Future Perspectives

Accumulating data from animal studies and clinical observations demonstrate that
platelets contribute to the formation, progression, and rupture of AAA, in addition to their
physiological functions in stopping bleeding and maintaining vascular integrity. Receptors
and mediators that are released from activated platelets mediate interactions between
platelets and the inflammatory cells/matrix. Disturbances in blood flow in aortic aneurysm
activate platelets and promote ILT formation. The inhibition of platelet activation, such as
by reducing TxA2 secretion and applying P2Y12 inhibitors, may restrain the development
of AAA. These positive preclinical findings remain to be confirmed in clinical trials.

Several challenges restrict further progress in platelet research in AAA. First, AAA is
believed to result from a combination of inherited and environmental factors that trigger
a complex thrombotic and inflammatory disorder, leading to a wide diversity of mecha-
nisms [101]. Second, the acquisition of tissue in excess of 5 cm that is grossly distorted
restricts clear descriptive pathologies in clinical practice. Animal models that mimic cellular
and biochemical characteristics of human disease progression are needed. In cases of a
lack of spontaneous ILT formation in the majority of aneurysm models [102–104], only
aortic elastase perfusion and xenograft models produce ILT that is similar to saccular
aneurysm [105]. This diversity allows one to focus only on each specific mechanism that is
involved in AAA development. Third, global knockout mouse models are used in many
experimental studies, meaning that existing data are not platelet specific. Further research
could be restricted to platelet-free plasma because platelets release many substances that re-
main in serum during coagulation [106]. Fourth, circulating chemokine levels are produced
by various cell types beyond platelets. Further attention should be given to platelet-specific
targets in experimental and clinical studies that potentially contribute to assessments of
prognosis. Further studies should also be conducted with newer classes of anti-platelet
therapies.

Current guidelines suggest that antiplatelet drugs should be prescribed in all patients
with AAA to reduce the cardiovascular risk of morbidity and mortality. Data show, however,
that antiplatelet drugs may have no effect or even increase the risk of bleeding. The evidence
still seems to be contradictory and has insufficient validity. Randomized controlled trials
with longer follow-up times should be conducted to assess the efficacy of antiplatelet
medications in reducing aneurysm progression in non-surgery intervention patients.
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Abbreviations

AAA abdominal aortic aneurysm
ADP adenosine diphosphate
Ang II angiotensin II
COX-1 cyclooxygenase 1
EVAR endovascular aortic aneurysm repair
GP glycoprotein
ILT intra-luminal thrombus
MMP matrix metalloproteinase
PDGF platelet-derived growth factor
PF4 platelet factor 4
PSGL-1 P-selectin glycoprotein ligand-1
TP thromboxane prostanoid
TxA2 thromboxane A2
vWF von Willebrand factor
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