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Abstract
Performance assessments, in which human raters assess examinee performance in practical tasks, have attracted much
attention in various assessment contexts involving measurement of higher-order abilities. However, difficulty persists in that
ability measurement accuracy strongly depends on rater and task characteristics such as rater severity and task difficulty. To
resolve this problem, various item response theory (IRT) models incorporating rater and task parameters, including many-
facet Rasch models (MFRMs), have been proposed. When applying such IRT models to datasets comprising results of
multiple performance tests administered to different examinees, test linking is needed to unify the scale for model parameters
estimated from individual test results. In test linking, test administrators generally need to design multiple tests such that
raters and tasks partially overlap. The accuracy of linking under this design is highly reliant on the numbers of common
raters and tasks. However, the numbers of common raters and tasks required to ensure high accuracy in test linking remain
unclear, making it difficult to determine appropriate test designs. We therefore empirically evaluate the accuracy of IRT-
based performance-test linking under common rater and task designs. Concretely, we conduct evaluations through simulation
experiments that examine linking accuracy based on a MFRM while changing numbers of common raters and tasks with
various factors that possibly affect linking accuracy.

Keywords Performance assessment · Item response theory · Many-facet Rasch models · IRT linking · Test design · Rater
effects · Educational measurement

Introduction

With the increasing need for measuring higher-order
abilities such as logical thinking and problem-solving,
performance assessments, in which human raters assess
examinee performance on practical tasks, have attracted
attention (Rosen & Tager, 2014; Liu, Frankel, & Roohr,
2014; Bernardin, Thomason, Buckley, & Kane, 2016;
Abosalem, 2016; Schendel & Tolmie, 2017; Uto & Ueno,
2018). Performance assessment has been applied to various
formats, including essay-writing tests for college entrance
examinations, speaking tests for language exams, report
writing or programming assignments in learning situations,
and objective-structured clinical examinations.
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However, one limitation of performance assessments
is that their accuracy for ability measurement strongly
depends on rater and task characteristics such as rater
severity and task difficulty (Kassim, 2011; Myford &
Wolfe, 2003; Eckes, 2005; 2015; Bernardin et al., 2016).
To resolve this problem, various item response theory
(IRT) models incorporating parameters for rater and task
characteristics have been proposed (Myford &Wolfe, 2003;
Eckes, 2015; Uto & Ueno, 2018). The many-facet Rasch
models (MFRMs) (Linacre, 1989) are the most popular
IRT models with rater and task parameters, and various
MFRM extensions have also been recently proposed (Patz
& Junker, 1999; Patz, Junker, Johnson, & Mariano, 2002;
Uto & Ueno, 2020; Uto, 2019). By considering rater and
task characteristics, such IRT models can measure examinee
abilities with higher accuracy than is possible with simple
scoring methods based on point totals or averages (Uto &
Ueno, 2020).

Actual testing situations often call for comparing the
results of different performance tests administered to
different examinees (Engelhard, 1997; Muraki, Hombo, &
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Lee, 2000). To apply IRT models in such cases, test linking
is needed to unify the scale at which model parameters
are estimated from individual test results. Performance-
test linking generally requires some extent of overlap for
examinees, tasks, and raters between tests (Engelhard, 1997;
Linacre, 2014; Eckes, 2015; Ilhan, 2016). Specifically,
tests must be designed such that at least two of the
three facets (examinees, tasks, and raters) are partially
common (Engelhard, 1997; Linacre, 2014). Test linking
with common raters and tasks is generally preferred
in practice because test designs that assume common
examinees induce a higher response burden, potentially
influencing practices or learning effects (Engelhard, 1997;
Izumi, Yamano, Yamada, Kanamori, & Tsushima, 2012;
Linacre, 2014).

The accuracy of linking under designs with common
raters and tasks is highly reliant on the numbers of common
raters and tasks, with higher numbers generally improving
linking accuracy (Linacre, 2014). However, increasing
numbers of common raters increases their assessment
workload, while increasing numbers of common tasks might
reduce test reliability owing to the potential for exposure of
task contents (Way, 1998; van der Linden & Pashley, 2000;
van der Linden, 2005a; Ishii, Songmuang, & Ueno, 2014).
It is thus necessary to design tests such that numbers of
common raters and tasks are minimized while retaining high
test-linking accuracy.

However, the numbers of common raters and tasks
required for ensuring high accuracy of test linking remains
unclear. Linacre (2014) suggested that at least five common
raters and five common tasks are required to obtain
sufficient test linking accuracy for MFRMs, but provided
no basis for justifying this standard. Previous research
related to traditional IRT-based linking for objective tests
has reported that the required extent of commonality
depends on the distributions of examinee ability and item
characteristics, the numbers of examinees and items, and
the accuracy of model parameter estimation (Kilmen and
Demirtasli, 2012; Uysal & Ibrahim, 2016; Joo, Lee, & Stark,
2017). These findings suggest that the extent to which IRT-
based performance-test linking requires common raters and
tasks depends basically on the following factors:

1. distributions of examinee ability and characteristics of
raters and tasks,

2. numbers of examinees, raters, and tasks, and
3. rates of missing data.

We assume the rate of missing data as a factor affecting
linking accuracy because it affects parameter estimation
accuracy (Uto, Duc Thien, & Ueno, 2020). Note that
missing data occur in practice because few raters are
generally assigned to individual evaluation targets to lessen
raters’ scoring burdens.

Thus, this study empirically evaluates the effects of
the above three factors on the accuracy of IRT-based
performance-test linking under designs with common raters
and tasks. Concretely, this study conducts simulation
experiments that examine test-linking accuracy while
varying the above three factors and numbers of common
raters and tasks. Although there are various IRTmodels with
rater and task parameters, as mentioned above, this study
focuses on the most popular MFRM. From experimental
results, we discuss the numbers of common raters and tasks
required for accurate linking in various test settings.

Performance assessment data

This study assumes rating data U obtained from a
performance test result as a set of ratings xijr , assigned
by rater r ∈ R = {1, . . . , R} to the performance of
examinee j ∈ J = {1, · · · , J } on performance task i ∈
I = {1, . . . , I }, where R, J , and I indicate sets of raters,
examinees, and tasks, respectively. Concretely, the data can
be defined as

U = {xijr ∈ K ∪ {−1} | i ∈ I, j ∈ J , r ∈ R},
where K = {1, . . . , K} is the rating categories, and xijr =
−1 indicates missing data. Missing data occur in actual
performance assessments because few raters are generally
assigned to individual evaluation targets to lessen the
scoring burden (Engelhard, 1997; Eckes, 2015; Ilhan, 2016;
Uto et al., 2020). A typical rater assignment strategy is the
rater-pair design (Eckes, 2015), which assigns two raters
to each evaluation target. Table 1 shows an example rater-
pair design. In the table, checkmarks indicate an assigned
rater, and blank cells indicate that no rater was assigned. In
this Table 1, raters 1 and 2 are assigned to the performance
of examinee 1 on task 1, while raters 3 and 4 are assigned
to the performance of examinee 2. Rater-pair design greatly
reduces raters’ scoring burden relative to the case where all
raters evaluate all performances, but generally decrease the
accuracy of examinee ability measurements.

This study assumes application of IRT to these perfor-
mance assessment data.

Item response theory for performance
assessment

IRT is a testing theory based on a mathematical
model (Lord, 1980). With the spread of computer testing, it
has been widely applied in various testing situations. In IRT,
examinee responses to test items are expressed as a proba-
bilistic model defined according to examinees’ abilities and
item characteristics, such as difficulty and discrimination
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Table 1 Example of rater-pair design

Task 1 Task 2 Task 3

Rater 1 2 3 4 1 2 3 4 1 2 3 4

Examinee 1 � � � � � �
Examinee 2 � � � � � �
Examinee 3 � � � � � �
Examinee 4 � � � � � �

power. IRT can thus estimate examinee abilities while con-
sidering test item characteristics. IRT has been used as the
basis for current test theories such as automatic uniform
test assembly and adaptive testing (van der Linden, 2005b;
Songmuang & Ueno, 2011; Ishii et al., 2014).

Well-known IRT models that are applicable to ordered-
categorical data like performance assessment data include
the rating scale model (Andrich, 1978), the partial
credit model (Masters, 1982), the graded response
model (Samejima, 1969) and the generalized partial-credit
model (Muraki, 1997). Such traditional IRT models are
applicable to two-way data consisting of examinees × test
items. However, these cannot be directly applied to three-
way data comprising examinees × raters × tasks from
performance assessments 1. Many IRT models with rater
and task parameters have been proposed to address this
problem (Myford &Wolfe, 2003; Eckes, 2015; Uto &Ueno,
2018).

MFRMs (Linacre, 1989) are the most popular IRT
models with rater and task parameters, and have long been
used to analyze performance assessment data (Myford &
Wolfe, 2003; Eckes, 2005; Eckes, 2015; Chan, Bax, &Weir,
2017; Tavakol & Pinner, 2019). There are several MFRM
variants (Eckes, 2015), but the most representative modeling
defines the probability that xijr = k ∈ K as

Pijrk = exp
∑k

m=1

[
θj − βi − γr − dm

]

∑K
l=1 exp

∑l
m=1

[
θj − βi − γr − dm

] , (1)

where θj is the latent ability of examinee j , βi is the
difficulty of task i, γr is the severity of rater r , and dk is a
category parameter that denotes the difficulty of transition
between scores k−1 and k. For model identification, γ1 = 0,
d1 = 0, and

∑K
k=2 dk = 0 are assumed. See Refs. (Eckes,

2015; Uto & Ueno, 2018; 2020) for details of the rater and
task parameter interpretation.

This study focuses on this MFRM because it is the most
popular model, but note that variousMFRM extensions have

1Note that in this study, the term task represents a performance task,
while item or test item represents various test-item types, including
performance tasks and objective test questions.

been recently proposed (Patz & Junker, 1999; Patz et al.,
2002; Uto & Ueno, 2020; Uto, 2019).

IRT-based performance-test linking

MFRM and its extended models allow measuring examinee
ability while considering rater and task characteristics,
providing higher accuracy than simple scoring methods
such as total or average scores (Uto & Ueno, 2018; 2020).
Also, the model provides rater and task parameter estimates,
helping test administrators to objectively analyze rater and
task characteristics (Eckes, 2005; Myford & Wolfe, 2000;
Chan et al., 2017; Tavakol & Pinner, 2019). Therefore,
practical application of these models to actual performance
assessments is beneficial.

Actual testing scenarios often require comparison of
results from multiple performance tests applied to different
examinees (Muraki et al., 2000). Applying IRT models
to such cases generally requires test linking, in which
model parameters estimated from individual test results
use the same scale. Although linking is not required when
equal between-test distributions of examinee abilities and
characteristics of raters and tasks can be assumed (Linacre,
2014), actual testing situations will not necessarily satisfy
such assumptions, and thus require test linking.

Although various situations require linking, this study
assumes situations where the parameters for a newly
conducted performance test use already estimated parameter
scales from a previous performance test. Below, we
designate the newly conducted performance test as the new
test, and the test for determining the scales of parameters as
the base test.

One representative method of test linking is to design
tests such that some raters and tasks are shared between
tests, as described in “Introduction” (Engelhard, 1997;
Linacre, 2014; Eckes, 2015; Ilhan, 2016). Figure 1 shows
the data structure for two performance tests with common
raters and tasks. As defined in “Performance assessment
data”, performance assessment data are three-way data
consisting of examinees × raters × tasks, and so are
represented in the figure as a three-dimensional array. In
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Fig. 1 Linking design using common raters and common tasks

the figure, colored regions indicate available data, while
other regions represent missing data. As the figure shows,
data are collected such that raters and tasks are partially
shared between two tests. In this design, parameters for the
new test are expected to be on the same scale as those for
the base test by estimating them while fixing parameters
for common raters and tasks that are estimated in advance
from the base test data (Linacre, 2014; Eckes, 2015; Ilhan,
2016). This linking design is a variant of the nonequivalent
groups with anchor test design (Dorans, Pommerich, &
Holland, 2007) or the common item nonequivalent groups
design (Kolen & Brennan, 2014), typical designs used for
objective test linking. In our design, common raters and
common tasks take the role of an anchor test or common
items. Furthermore, the linking method used here is a simple
extension of the fixed common item parameters method, a
common method in IRT-based objective test linking (Arai &
Mayekawa, 2011; Jodoin, Keller, & Swaminathan, 2003; Li,
Tam, & Tompkins, 2004)because it estimates the new test
parameters while fixing parameters for common raters and
tasks.

In this design, linking accuracy is strongly dependent
on the numbers of shared raters and tasks (Linacre, 2014).
Although increasing these numbers generally improves test-
linking accuracy, these numbers should be kept as low as
possible while maintaining required test linking accuracy, as
described in “Introduction”. However, the required numbers
of common raters and tasks for ensuring high-accuracy test
linking remain unknown. As discussed in “Introduction”,
the extent to which common raters and tasks are required
for performance-test linking would typically depend on the
three factors, namely,

1) distributions of examinee ability and characteristics of
raters and tasks,

2) numbers of examinees, raters, and tasks, and
3) rates of missing data. Therefore, in this study we

examined the numbers of common raters and tasks

necessary for high-accuracy test linking while changing
settings for these three factors.

Ideally, evaluation experiments should be conducted
using actual data. However, designing and executing actual
tests for various settings would entail huge costs and time. In
this study, therefore, we evaluated test-linking accuracy by
simulation experiments, as in previous studies of IRT-based
objective test linking (Fujimori, 1998; Arai & Mayekawa,
2011; Kilmen & Demirtasli, 2012; Uysal & Ibrahim, 2016).

Linking accuracy criteria

This study evaluates MFRM-based performance-test linking
accuracy through the following simulation procedure, which
is based on a typical experimental method for evaluating
IRT-based objective test linking accuracy (Lee & Ban, 2009;
Arai & Mayekawa, 2011; Kilmen & Demirtasli, 2012;
Uysal & Ibrahim, 2016).

1. Assuming a base test with I tasks, J examinees, and R

raters, generate true values for MFRM parameters for
the base test with distributions

βi, γr , dk, θj ∼ N(0.0, 1.0), (2)

where N(μ, σ 2) represents the normal distribution with
mean μ and standard deviation σ . Note that dk values
must satisfy the constraints d1 = 0, and

∑K
k=2 dk = 0,

as explained in “Item response theory for performance
assessment”. In addition, the values for {dk | k ≥ 2}
are expected to be monotonically ascending in practice.
Therefore, we sorted the generated values for {dk | k ≥
2} in ascending order, then linearly transformed these
values such that their total value becomes zero. We also
set d1 = 0. In this study, we set the number of rating
categories as K = 5.

2. Similarly, assuming a new test with I , J , and R,
generate true values for MFRM parameters for the new
test from arbitrary distributions, which differ from the
above distributions.

3. Establish CR common raters and CI common tasks
between the tests. Specifically, parameter values for
CR raters and CI tasks selected from the new test are
replaced with parameter values for CR raters and CI

tasks, which are randomly selected from the base test.
From this procedure, CR raters and CI tasks from the
base test are incorporated into the new test as common
raters and tasks.

4. Sample rating data for the new test following MFRM
given the model parameters generated through the
above procedures.

5. Estimate parameters for the new test from the generated
data by fixing the parameters for common raters
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and tasks, then calculate the root mean square error
(RMSE) between the estimates and the true parameter
values. We use the expected a posteriori estimation by
Markov-chain Monte Carlo (Uto & Ueno, 2020) for the
parameter estimation, given the distributions of Eq. 2
as the prior distributions. In the parameter estimation,
the constraint γ1 = 0, which is assumed for model
identification, is omitted because fixing the parameters
for common raters and tasks can resolve the model
identification problem.

6. After repeating the above procedures 30 times, calculate
average RMSE values for each commonality number.

In this experiment, insufficient numbers for common
raters and tasks will increase parameter estimation error
for the new test because the new test’s parameters are
estimated based on the prior distributions of Eq. 2,
which differ from the distributions generating their true
parameter values. Conversely, sufficient numbers decrease
parameter estimation error because the fixed parameters for
common raters and tasks, which are generated following the
distributions of Eq. 2, serve as the basis for adjusting the
new test’s parameters to their true locations. High-accuracy
test linking is thus realized under given numbers of common
ratersCR and tasksCI if the averaged RMSE value obtained
from the above experiment is sufficiently small.

To judge from the RMSE value whether a new test
is linked with sufficient accuracy, we need to establish
a threshold RMSE value. To do so, we conducted a
similar experiment to the above, in which the parameter
distributions of Eq. 2 are used as the distributions for the
new test in experimental procedure 2. In this case, because
the parameter distributions are equal for the base test and
the new test, the new test is completely linked regardless
of the presence or absence of common raters and tasks, as
described in “IRT-based performance-test linking”. We can
thus regard the RMSE value obtained from this experiment
as a threshold value for determining whether test linking
has high accuracy. Specifically, we define the threshold
δ = μe +2σe, where μe and σe are the average and standard
deviation of RMSEs obtained from the 30 repetitions in
procedure 6. Note that we allow up to 2σe deviation from
the average value μe because the RMSE can vary for each
repetition of the experiment, depending on the generated
data or true parameters, and because 95% of such varying
RMSE values fall within that range.

This study thus assumes that high-accuracy test linking is
realized if the average RMSE value obtained under a target
setting is lower than the corresponding threshold value δ.

Note that alternative approaches for evaluating linking
accuracy, such as that in Linacre (1998), may be possible if
we use other linking methods, such as scale transformation
methods with separate calibration or concurrent calibration

methods (Kolen &Brennan, 2014; Arai &Mayekawa, 2011;
Jodoin et al., 2003; Ryan & Rockmann, 2009), instead of
the fixed rater and task parameters method.

Experiments

In this section, we present experimental results from
changing the settings for the three factors described above.
In the experiments, we mainly examine small- or mid-scale
test settings in which the maximum number of examinees
is 100 because it is difficult to examine various conditions
for large-scale settings due to the high computational
complexity of our experiment. “Large-scale examples”
shows some results for large-scale settings. Furthermore, in
“Effect of changes in characteristics of common raters and
tasks” and “Use of other error indices to calculate linking
accuracy criteria”, we discuss two issues related to our
experimental assumptions and procedures. Java programs
developed for the following experiments are published in
a GitHub repository. See Open Practices Statement for
details.

Evaluating effects of between-test distribution
differences

This subsection describes the effects on test linking
accuracy of varying distributions of examinee ability and
characteristics of raters and tasks for a new test. Specifically,
we conducted the experiment described in “Linking
accuracy criteria” while varying parameter distributions of
the new test following the four conditions in Table 2.
Here, distribution 1 represents the case in which only the
ability distribution differs from that of the base test, and
distribution 2 describes the case of reduced difference in
the ability distribution. Distribution 3 and distribution 4 are
cases in which both the examinee ability distribution and the
rater or task characteristic distribution differ.

The case of distribution 1, where the mean value of
the ability distribution between tests varies by 0.5, can be
regarded as a realistic situation in which linking is difficult.
This is because when we randomly sample N data from a
larger population following a standard normal distribution,
the standard deviation of the sampling distribution’s mean
(the standard error of the mean, SEM) is estimable as
1/

√
N . Thus, for example, when 100 examinees take a

test, the SEM can be estimated as 0.1. In this case, the
98.8% confidence interval of the mean values is about the
mean value±0.25 (corresponding to the ±2.5 SEM range),
meaning that situations where the between-test distribution
mean difference exceeds 0.5 rarely happen.

This study thus regards distribution 1 as a baseline setting
because the results from this setting are expected to provide
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Table 2 Parameter distributions for the new test

θj βi γr dk

Distribution 1 N(−0.5, 1.0) N(0.0, 1.0) N(0.0, 1.0) N(0.0, 1.0)

Distribution 2 N(−0.2, 1.0) N(0.0, 1.0) N(0.0, 1.0) N(0.0, 1.0)

Distribution 3 N(−0.5, 1.0) N(0.5, 1.0) N(0.0, 1.0) N(0.0, 1.0)

Distribution 4 N(−0.5, 1.0) N(0.0, 1.0) N(0.5, 1.0) N(0.0, 1.0)

a basis for the maximum numbers of required common
raters and tasks. Note that test linking becomes more
difficult for distributions 3 or 4 because both the examinee
ability distribution and the rater or task characteristic
distribution differ. We do not regard this as a baseline
setting, however, because in practice test administrators
manage multiple tests such that rater and task characteristics
are as similar as possible to assure fairness, making
differences in rater and task characteristic distributions
between tests relatively small.

In this experiment, we fixed factors other than the new
test distributions. Specifically, we set J = 100, I = 10,
and R = 10. This experiment was conducted assuming
no missing data, meaning all raters grade all examinees’
performance on all tasks.

Table 3 shows the results. Values in parentheses indicate
the threshold δ. Bold text indicates that the RMSE value
is lower than the corresponding threshold value δ, meaning
that high-accuracy linking is achieved. Note that in Table 3,
the threshold value δ is the same for all distributions because

Table 3 Experimental results for different parameter distributions

CR CI=1 CI=2 CI=3 CI=4 CI=5

Distribution 1

1 .1538(.1476) .1377(.1435) .1421(.1433) .1380(.1426) .1383(.1421)

2 .1483(.1423) .1273(.1340) .1275(.1399) .1327(.1427) .1261(.1356)

3 .1574(.1461) .1353(.1373) .1268(.1358) .1274(.1336) .1220(.1371)

4 .1420(.1360) .1250(.1404) .1203(.1421) .1265(.1343) .1189(.1336)

5 .1469(.1458) .1270(.1346) .1210(.1455) .1254(.1350) .1244(.1450)

Distribution 2

1 .1275(.1476) .1183(.1435) .1175(.1433) .1194(.1426) .1206(.1421)

2 .1300(.1423) .1201(.1340) .1242(.1399) .1184(.1427) .1176(.1356)

3 .1224(.1461) .1195(.1373) .1178(.1358) .1238(.1336) .1174(.1371)

4 .1195(.1360) .1224(.1404) .1160(.1421) .1181(.1343) .1168(.1336)

5 .1277(.1458) .1180(.1346) .1203(.1455) .1188(.1350) .1148(.1450)

Distribution 3

1 .1679(.1476) .1464(.1435) .1432(.1433) .1424(.1426) .1406(.1421)

2 .1596(.1423) .1406(.1340) .1346(.1399) .1279(.1427) .1327(.1356)

3 .1544(.1461) .1354(.1373) .1343(.1358) .1300(.1336) .1254(.1371)

4 .1462(.1360) .1340(.1404) .1307(.1421) .1263(.1343) .1280(.1336)

5 .1432(.1458) .1297(.1346) .1309(.1455) .1282(.1350) .1243(.1450)

Distribution 4

1 .1605(.1476) .1513(.1435) .1491(.1433) .1396(.1426) .1359(.1421)

2 .1473(.1423) .1435(.1340) .1350(.1399) .1348(.1427) .1274(.1356)

3 .1531(.1461) .1357(.1373) .1280(.1358) .1266(.1336) .1272(.1371)

4 .1470(.1360) .1287(.1404) .1304(.1421) .1267(.1343) .1242(.1336)

5 .1501(.1458) .1320(.1346) .1238(.1455) .1232(.1350) .1256(.1450)
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δ depends only on the data size, which is the same for all
distribution settings in this experiment.

The table shows that high-accuracy linking tends to be
realized when numbers of common raters or tasks increase,
as expected.

According to the results for distribution 1, high-accuracy
linking is achieved in all cases where CI ≥ 2. Further,
the results for distribution 2 show that numbers of required
common raters and tasks decrease with reduced difference
in between-test ability distributions. Specifically, in the
distribution 2 case, adequate test linking is possible with
one common rater and one common task. The results
of distributions 3 and 4 show that numbers of required
commonality increase when the distributions for rater and
task parameters differ among tests. These results suggest
that we need CI + CR = 5 or 6 for the distribution 3 and 4
cases.

As mentioned in “Introduction”, Linacre (2014) sug-
gested that at least five common raters and five common
tasks (namely, NR ≥ 5 and NI ≥ 5) are required to obtain
sufficient test linking accuracy. However, our experimental
results show that these numbers can be substantially reduced
not only for realistic cases where ability distributions differ
among tests, but also for the relatively rare cases where rater
and task characteristics distributions differ too.

Evaluating effects of numbers of examinees, tasks,
and raters

This section presents an analysis of the effects of numbers
of examinees, tasks, and raters on test linking accuracy.
Specifically, we examined the following four settings:

– J = 50, I = 5, R = 5
– J = 100, I = 5, R = 5
– J = 100, I = 10, R = 5
– J = 100, I = 5, R = 10

In this experiment, we fixed the parameter distribution for
the new test to distribution 1 in Table 2. As in the previous
experiment, this experiment assumes there are no missing
data.

Table 4 shows the results. Note that δ values in
parentheses vary for each setting, unlike those in Table 3,
because δ depends on the data size, which differs for each
setting.

Table 4 and the results for distribution 1 in Table 3 show
that the extent of required commonality for accurate linking
increases with increased numbers of examinees, raters,
and tasks. According to these results, adequate linking is
possible with only one common rater and one common task
for small-scale settings, while about two common raters
and two common tasks are required when the numbers of
examinees, raters, and tasks increase.

Although the impact of changes in numbers of exami-
nees, raters, and tasks on linking accuracy is not so large
for these small- or mid-scale settings, these results sug-
gest that the extent of required commonality may further
increase for large-scale scenarios. We consider such cases
in “Large-scale examples”.

Evaluating effects of missing data

The above experiments assumed that all raters grade all
examinees’ performance on all tasks. In actual scenarios,
however, only a few raters are assigned for each perfor-
mance to lower the scoring burden, as described in “Per-
formance assessment data”. In such cases, large amounts of
missing data occur, generally lowering parameter estimation
accuracy. This decrease in parameter estimation accuracy is
known to lower test linking accuracy (Izumi et al., 2012).
This section, therefore, evaluates how missing data affect
test linking accuracy.

In this study, we assume that rater assignments follow
a judge-pair design, described in “Performance assessment
data” as a typical rater assignment strategy. Ilhan (2016)
proposed an algorithm for generating rater-pair designs
under conditions where test linking is possible. Specifically,
this algorithm first lists all rater pairs, then sequentially allo-
cates evaluation targets to each rater pair. We generalized
this algorithm so that three or more raters can be assigned.
Algorithm 1 shows pseudocode for the generalized algo-
rithm, with NR indicating the number of raters assigned to
each evaluation target, where R ≥ NR ≥ 2. We call this
rater assignment design rater set design.
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Table 4 Experimental results for different numbers of examinees, tasks, and raters

CR CI=1 CI=2 CI=3 CI=4 CI=5

J=50, I=5, R=5

1 .2829(.2881) .2754(.3038) .2681(.2826) .2782(.3005) .2519(.2811)

2 .2716(.3044) .2786(.2794) .2513(.2808) .2543(.2711) .2541(.2820)

3 .2739(.2822) .2399(.2920) .2263(.3002) .2484(.2782) .2371(.2798)

4 .2689(.2859) .2482(.2785) .2433(.2642) .2406(.2746) .2366(.2732)

5 .2746(.3104) .2658(.2741) .2466(.2873) .2304(.2823) .2372(.2858)

J=100, I=5, R=5

1 .3025(.2942) .2691(.2814) .2554(.2921) .2640(.2878) .2673(.2829)

2 .2693(.2685) .2584(.2671) .2479(.2764) .2544(.2623) .2501(.2720)

3 .2740(.2852) .2581(.2837) .2461(.2684) .2566(.2815) .2431(.2705)

4 .2778(.2783) .2496(.2840) .2366(.2806) .2533(.2861) .2401(.2909)

5 .2626(.2722) .2545(.2698) .2475(.2840) .2514(.2865) .2506(.2739)

J=100, I=10, R=5

1 .2187(.2066) .1995(.1966) .2039(.1908) .1995(.1911) .1985(.1938)

2 .2048(.2026) .1890(.1981) .1887(.2021) .1803(.1921) .1870(.1918)

3 .2065(.1986) .1952(.1985) .1790(.1944) .1798(.1975) .1774(.2153)

4 .1937(.2035) .1872(.2094) .1716(.1968) .1750(.1951) .1746(.1970)

5 .1934(.1984) .1803(.1956) .1742(.2101) .1740(.2023) .1746(.1910)

J=100, I=5, R=10

1 .2212(.2099) .1915(.2113) .1908(.2011) .1864(.1977) .1921(.1953)

2 .2198(.2007) .1879(.2017) .1848(.1903) .1783(.1867) .1799(.1912)

3 .2142(.2040) .1808(.2078) .1785(.1978) .1735(.1932) .1773(.1916)

4 .1955(.1945) .1786(.1946) .1787(.1978) .1743(.2018) .1684(.1927)

5 .2059(.2068) .1794(.1971) .1763(.1917) .1815(.1913) .1735(.1998)

We conducted the experiment described in “Linking
accuracy criteria” while applying the rater set design.
Concretely, after generating the rating data in experimental
procedure 4 of “Linking accuracy criteria”, we omit ratings
for each performance to which no raters are assigned in
the rater set design created by Algorithm 1. We conducted
this experiment under the following settings while fixing
J = 100 and I = 10.

– R = 5, NR = 2 (60% missing)
– R = 10, NR = 3 (70% missing)
– R = 10, NR = 2 (80% missing)

Here, the rate of missing data is calculable as
[1 − (NR/R)] × 100. In this experiment, we used
distribution 1 in Table 2 for the new test.

Table 5 shows the results, which confirm that the extent
of commonality required for accurate linking tends to
increase with higher rates of missing data. Specifically, the
results suggest that adequate test linking is impossible with
CI = 2 and/or CR = 2, unlike the case of no missing
data, and that we need about CI + CR = 6 at minimum for

situations with 80% missing data. Even so, note that these
numbers are still smaller than those suggested by Linacre
(2014).

The factor inducing decreased test-linking accuracy
would be a substantial decrease in parameter estimation
accuracy due to high rates of missing data. Indeed, our
experimental results indicate that the RMSE tends to
increase as the rate of missing data increases. For example,
Table 3 shows that the RMSE with J = 100, I = 10,
R = 10, CI = 1, and CR = 1 is 0.1543 with no missing
data, while Table 5 shows that the RMSE under the same
settings is 0.3795 with 80% missing data.

These results also suggest that the required extent of
commonality may further increase under large-scale test
settings because the rate of missing data can increase. The
increase in missing data is because the total number of
raters generally increases with the increase in examinees,
but the number of assigned raters for each evaluation target
is difficult to increase. The next subsection presents the
results for large-scale settings with a higher rate of missing
data.
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Table 5 Experimental results for different rates of missing data

CR CI=1 CI=2 CI=3 CI=4 CI=5

R=5, NR=2 (60% missing)

1 .3616(.3082) .3180(.2990) .3099(.3155) .2900(.3097) .2990(.3018)

2 .3458(.3048) .3123(.2981) .2933(.2958) .2892(.3069) .2808(.3090)

3 .3291(.3088) .3064(.2911) .2917(.2923) .2789(.3039) .2721(.3106)

4 .3317(.3109) .3032(.2856) .2856(.3064) .2715(.3063) .2680(.2875)

5 .3189(.2966) .2998(.2927) .2945(.2967) .2885(.2914) .2642(.3037)

R=10, NR=3 (70% missing)

1 .3187(.2510) .2943(.2592) .2795(.2431) .2722(.2386) .2733(.2511)

2 .2792(.2519) .2610(.2368) .2545(.2503) .2400(.2477) .2443(.2502)

3 .2777(.2584) .2434(.2319) .2347(.2478) .2330(.2589) .2365(.2464)

4 .2869(.2507) .2471(.2463) .2318(.2554) .2259(.2529) .2215(.2426)

5 .2803(.2462) .2537(.2345) .2318(.2495) .2280(.2349) .2267(.2501)

R=10, NR=2 (80% missing)

1 .3795(.3128) .3278(.2941) .3399(.2897) .3260(.2842) .3187(.2998)

2 .3459(.3084) .3127(.3036) .3081(.2863) .3004(.3010) .2915(.2950)

3 .3541(.2898) .3091(.2901) .2992(.2968) .2884(.2905) .2821(.2899)

4 .3420(.3033) .3141(.2985) .2833(.2857) .2756(.3059) .2798(.2939)

5 .3488(.3002) .3074(.2968) .2780(.2976) .2796(.2965) .2821(.3066)

Large-scale examples

The above experiments involved small- or mid-scale test
settings in which the maximum number of examinees is 100
because examining various factors in large-scale settings
incurs extremely high computational costs. However, as
mentioned in “Evaluating effects of numbers of examinees,
tasks, and raters” and “Evaluating effects of missing data”,
increased scales might affect the required numbers of
common raters and tasks. This section therefore presents
examples of test linking results for large-scale test settings
with the rater set design. Concretely, we conducted the
same experiment as above with J = 1000, I = 5, and
R = 20, applying the rater set design with NR = 2 or 4.
Note that we increased the number of raters because this
would be performed in practice to lower the scoring burden
for the increased number of examinees, as mentioned in
“Evaluating effects of missing data”. Moreover, we set I =
5 to reduce computational costs, although the number of
tasks in a test may also increase in large-scale settings.

Table 6 shows the results. Unlike in the case of the
previous experiments, these experiments were conducted
for CR ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, due to the increased
number of raters.

Comparing these results with the previous results
indicates a large increase in the required numbers of
common raters and tasks. For example, when the rate of
missing data is 80%, Table 5 shows that we need about
CI + CR = 6 at minimum for J = 100, but Table 6

shows that CI + CR = 10 are required at minimum for
the large-scale setting. This indicates that large increases of
examinees and raters strongly affect the requirements for
common raters and tasks. In addition, an increase in the
number of tasks will also induce an increase in the required
commonality, as demonstrated in “Evaluating effects of
numbers of examinees, tasks, and raters”.

Table 6 also shows that the required numbers further
increase as the rate of missing data increases, like in
the experiment in “Evaluating effects of missing data”.
Concretely, the results for a 90% rate of missing data show
that the minimum required number is CI +CR = 12, which
is larger than that suggested by Linacre (2014). In actual
large-scale tests, the rate of missing data can be further
increased with increased numbers of examinees and raters,
so far more common raters and tasks might be required.

Effect of changes in characteristics of common
raters and tasks

The above experiments assumed that characteristics of
common raters and tasks do not change across the base
test and the new test. However, rater characteristics are
known to often change across test administrations in
practice (O’Neill and Lunz, 1997; Wolfe, Moulder, &
Myford, 2001; Wesolowski, Wind, & Engelhard, 2017;
Wind & Guo, 2019; Harik et al., 2009; Park, 2011),
which is called rater drift (Harik et al., 2009; Park,
2011) or differential rater functioning over time (Wolfe
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Table 6 Experimental results for large-scale settings

CR CI=1 CI=2 CI=3 CI=4 CI=5

J=1000, I=5, R=20, NR=2 (90% missing)

1 .5310(.3841) .5220(.3920) .5263(.4061) .5242(.3872) .5177(.4076)

2 .5078(.3883) .4906(.4007) .4764(.3847) .4814(.3873) .4800(.4074)

3 .4929(.3993) .4641(.3930) .4480(.3919) .4587(.3997) .4525(.3928)

4 .4835(.4023) .4525(.3910) .4314(.3858) .4340(.3956) .4352(.4141)

5 .4751(.4070) .4335(.4020) .4432(.3905) .4168(.4065) .4201(.3980)

6 .4505(.3965) .4347(.3962) .4172(.3956) .4195(.3996) .4088(.3979)

7 .4526(.4071) .4279(.4053) .4109(.3962) .4172(.3854) .3977(.4042)

8 .4612(.3960) .4130(.3974) .4133(.3972) .4024(.3960) .3932(.4012)

9 .4599(.4153) .4274(.3996) .3966(.4020) .3931(.3974) .3935(.3975)

10 .4402(.3935) .4250(.3894) .3953(.3988) .3929(.4055) .3859(.3962)

J=1000, I=5, R=20, NR=4 (80% missing)

1 .4184(.2883) .3958(.2885) .4042(.2871) .3959(.2862) .3917(.2823)

2 .3804(.2921) .3563(.2956) .3535(.2848) .3539(.2960) .3412(.2979)

3 .3509(.2952) .3317(.3033) .3312(.2830) .3197(.2971) .3264(.2824)

4 .3457(.2922) .3159(.2889) .3118(.2983) .3029(.2881) .3030(.2929)

5 .3454(.2904) .3181(.3102) .3004(.2856) .2987(.2959) .3015(.2918)

6 .3296(.2929) .3064(.2937) .2970(.2905) .2943(.2914) .2968(.2928)

7 .3236(.2929) .2977(.2951) .2974(.2987) .2905(.2924) .2916(.3050)

8 .3224(.2930) .2966(.2928) .2856(.2963) .2882(.2971) .2827(.2905)

9 .3206(.2886) .2934(.2964) .2849(.2891) .2893(.2925) .2803(.2932)

10 .3179(.3003) .2927(.2981) .2837(.2959) .2841(.2921) .2822(.2880)

et al., 2001). Similarly, in objective testing situations, item
characteristics can also change due to educational practice
or item exposure (Harik et al., 2009; Monseur & Berezner,
2007; Ryan & Rockmann, 2009), which is referred to as
item drift or item parameter drift. This subsection therefore
examines how changes in characteristics of common raters
and tasks affect the linking accuracy.

To evaluate this, we calculated the linking accuracy while
incorporating a deliberate fluctuation into the parameters
of common raters and tasks before sampling rating data
for the new test. Concretely, when we sample rating
data for the new test in the procedure 4 described in
“Linking accuracy criteria”, random values were added
to the parameters of some common raters and tasks as
fluctuations. Here, the numbers of common tasks and
raters with the fluctuations were set to �CI/2� + CI%2
and �(CR − 1)/2� + (CR − 1)%2, respectively, where
� � denotes floor function and % indicates the modulo
operation. This means that we simulated situations where
characteristics of about half of the common raters and tasks
changed. The random fluctuation values were generated
from a normal distribution with zero mean. The standard
deviation for the fluctuation distributions was 0.05 for the
common tasks and 0.10 for the common raters. These
standard deviations were selected based on findings of

empirical studies that examined item drifts (Monseur &
Berezner, 2007) and rater drifts (O’Neill & Lunz, 1997;
Wesolowski et al., 2017). Note that the parameters with such
fluctuations were used only for sampling rating data. The
original values of common raters and tasks were used as the
fixed parameters for estimating the new test’s parameters.
Also, the calculation procedures of the threshold values δ

were completely the same as those described in “Linking
accuracy criteria”.

Using this linking accuracy calculation method, we
conducted the same experiment as that in “Evaluating
effects of between-test distribution differences”. Table 7
shows the results. Comparing the results with Table 3, we
can see that the required numbers of common raters and
tasks tend to increase when the characteristics of common
raters and tasks changed, although the increases are not
dramatic. Concretely, according to the results, we need
about one or two additional common raters and tasks to
achieve accurate linking.

These results suggest that in practice we may need to
prepare slightly more common raters and tasks than as
suggested in the earlier experiments as a safety margin
to account for cases where rater and task characteristics
change. Furthermore, the required numbers of common
raters and tasks will likely further increase if changes in
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Table 7 Experimental results for different parameter distributions when characteristics of some common raters and tasks are changed

CR CI=1 CI=2 CI=3 CI=4 CI=5

Distribution 1

1 .1629(.1476) .1511(.1435) .1460(.1433) .1357(.1426) .1363(.1421)

2 .1543(.1423) .1491(.1340) .1523(.1399) .1287(.1427) .1284(.1356)

3 .1468(.1461) .1349(.1373) .1290(.1358) .1296(.1336) .1283(.1371)

4 .1495(.1360) .1354(.1404) .1238(.1421) .1258(.1343) .1266(.1336)

5 .1508(.1458) .1317(.1346) .1293(.1455) .1284(.1350) .1262(.1450)

Distribution 2

1 .1299(.1476) .1269(.1435) .1228(.1433) .1241(.1426) .1234(.1421)

2 .1349(.1423) .1231(.1340) .1286(.1399) .1281(.1427) .1254(.1356)

3 .1347(.1461) .1181(.1373) .1210(.1358) .1252(.1336) .1247(.1371)

4 .1310(.1360) .1285(.1404) .1248(.1421) .1229(.1343) .1222(.1336)

5 .1240(.1458) .1266(.1346) .1214(.1455) .1249(.1350) .1195(.1450)

Distribution 3

1 .1620(.1476) .1510(.1435) .1464(.1433) .1438(.1426) .1445(.1421)

2 .1593(.1423) .1434(.1340) .1457(.1399) .1314(.1427) .1306(.1356)

3 .1489(.1461) .1338(.1373) .1286(.1358) .1320(.1336) .1291(.1371)

4 .1590(.1360) .1374(.1404) .1292(.1421) .1264(.1343) .1325(.1336)

5 .1449(.1458) .1334(.1346) .1283(.1455) .1324(.1350) .1283(.1450)

Distribution 4

1 .1759(.1476) .1519(.1435) .1446(.1433) .1507(.1426) .1374(.1421)

2 .1521(.1423) .1483(.1340) .1459(.1399) .1354(.1427) .1304(.1356)

3 .1660(.1461) .1436(.1373) .1393(.1358) .1335(.1336) .1321(.1371)

4 .1597(.1360) .1423(.1404) .1293(.1421) .1271(.1343) .1288(.1336)

5 .1464(.1458) .1337(.1346) .1348(.1455) .1261(.1350) .1287(.1450)

the characteristics of common raters and tasks are large,
or if the numbers of raters and tasks whose characteristics
changed increase. Conversely, these results mean that if we
can carefully manage tests such that changes in rater and
task characteristics become as small as possible, accurate
linking can be realized with a smaller number of common
raters and tasks.

Use of other error indices to calculate linking
accuracy criteria

As described in “Linking accuracy criteria”, this study
defined linking accuracy criteria based on the RMSE
between the parameter estimates and their true values.
However, we may use alternative error indices, such as
the average bias and the mean absolute error (MAE).
Moreover, although this study calculated RMSE values
over all parameters, these errors are calculable for only
examinee ability estimates or rater/task parameter estimates.
To examine how the error indices affect the results, we
conducted the same experiment as that in “Evaluating

effects of between-test distribution differences” using the
absolute value of the average bias for examinee ability
estimates.

Table 8 shows the results. Comparing the results with
Table 3, the required numbers of common raters and tasks
are almost the same. We also confirmed that several other
indices, namely RMSE for examinee ability estimates,
absolute average bias for all parameters, MAE for all
parameters, and MAE for examinee ability estimates,
suggest almost the same required numbers. Thus, we
conclude that selection of error indices would not strongly
affect the results.

Conclusions

To examine one basis for the numbers of common raters
and tasks required for high-accuracy test linking, we
analyzed factors affecting test-linking accuracy for IRT-
based performance tests using common raters and tasks.
Specifically, we assumed that test-linking accuracy depends
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Table 8 Experimental results for different parameter distributions when the absolute value of the average bias is used to calculate linking accuracy
criteria instead of the RMSE

CR CI=1 CI=2 CI=3 CI=4 CI=5

Distribution 1

1 .1023(.0999) .0774(.0815) .0825(.0829) .0722(.0803) .0700(.0745)

2 .0945(.0693) .0536(.0685) .0522(.0582) .0512(.0615) .0440(.0479)

3 .1044(.0879) .0628(.0682) .0423(.0545) .0430(.0563) .0392(.0517)

4 .0817(.0676) .0437(.0560) .0359(.0582) .0332(.0375) .0282(.0448)

5 .0831(.0888) .0392(.0579) .0330(.0477) .0380(.0462) .0295(.0486)

Distribution 2

1 .0603(.0999) .0368(.0815) .0343(.0829) .0410(.0803) .0387(.0745)

2 .0530(.0693) .0357(.0685) .0361(.0582) .0269(.0615) .0267(.0479)

3 .0421(.0879) .0367(.0682) .0256(.0545) .0286(.0563) .0265(.0517)

4 .0435(.0676) .0315(.0560) .0226(.0582) .0206(.0375) .0183(.0448)

5 .0528(.0888) .0247(.0579) .0223(.0477) .0197(.0462) .0149(.0486)

Distribution 3

1 .1108(.0999) .0829(.0815) .0719(.0829) .0732(.0803) .0650(.0745)

2 .0996(.0693) .0702(.0685) .0566(.0582) .0451(.0615) .0438(.0479)

3 .0931(.0879) .0564(.0682) .0462(.0545) .0442(.0563) .0347(.0517)

4 .0791(.0676) .0474(.0560) .0469(.0582) .0294(.0375) .0335(.0448)

5 .0658(.0888) .0452(.0579) .0344(.0477) .0347(.0462) .0307(.0486)

Distribution 4

1 .1091(.0999) .0835(.0815) .0838(.0829) .0663(.0803) .0631(.0745)

2 .0879(.0693) .0725(.0685) .0543(.0582) .0470(.0615) .0433(.0479)

3 .0898(.0879) .0584(.0682) .0403(.0545) .0395(.0563) .0341(.0517)

4 .0836(.0676) .0487(.0560) .0428(.0582) .0260(.0375) .0297(.0448)

5 .0860(.0888) .0461(.0579) .0300(.0477) .0288(.0462) .0292(.0486)

on three factors: 1) distributions of examinee abilities
and characteristics of raters and tasks, 2) numbers of
examinees, raters, and tasks, and 3) rates of missing data.
We then performed simulation experiments to evaluate test-
linking accuracy while varying these factors and numbers
of common raters and tasks. From the results of these
experiments, we discussed the numbers of common raters
and tasks required for high-accuracy test linking for each
condition set of each factor.

The experimental results for small- and mid-scale tests,
in which the maximum number of examinees is 100,
revealed the following:

1. In situations with no missing data, when the between-
test ability distribution difference is relatively small,
adequate test linking is possible with only one common
rater and one common task. Even if the differences
increase, two common raters and tasks are sufficient to
ensure test-linking accuracy. We also showed that the
extent of required commonality further increases when
distributions of rater and task characteristics differ

between tests, suggesting the importance of managing
tests such that their characteristics are as equivalent as
possible.

2. Increased numbers of examinees, raters, and tasks tend
to decrease linking accuracy, but this effect is small
under the small- or mid-scale settings. We found that we
need only one common rater and one common task for
small-scale settings, and two common raters and tasks
are sufficient even for mid-scale settings.

3. As the rate of missing data increases, numbers of
common raters and tasks must be increased. We showed
that we need about CI + CR = 6 at minimum in cases
of high rates of missing data.

An interesting observation from these results is that
the required numbers of common raters and tasks are
substantially smaller than those suggested by Linacre
(2014). This is a nontrivial finding because it is practically
important to minimize the numbers of common raters
and tasks while maintaining desired test linking accuracy,
as described in “Introduction”. Note that as discussed in
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“Effect of changes in characteristics of common raters and
tasks”, in practice we may need to provide a safety margin
by preparing slightly more common raters and tasks than as
suggested above, to account for cases where rater and task
characteristics change. The analysis in “Effect of changes in
characteristics of common raters and tasks” also indicates
the importance of carefully managing tests to ensure that
changes in rater and task characteristics remain as small as
possible, thereby lowering the required numbers of common
raters and tasks.

This study further showed that under large-scale test
settings, larger numbers of common raters and tasks than
this standard by Linacre (2014) may be required, due to the
large increase in numbers of examinees and raters and the
larger rate of missing data.

The tendency for required commonality shown in this
study is similar to that in several other studies of objective
test linking (Kaskowitz & de Ayala, 2001; de Ayala, 2009;
Ryan & Rockmann, 2009; Kolen & Brennan, 2014). Those
studies suggest that the required number of common items
is about 20–50% of the total test items for small- or
mid-scale tests, and that even more are required for large-
scale tests. Moreover, it is known that very few common
items is adequate under some simulation settings (Kolen
& Brennan, 2014). Our experimental results also show a
similar tendency. Concretely, the results for the baseline
setting (distribution 1) with missing data or with changes
in characteristics of common raters and tasks, which will
likely be an approximation of actual settings, suggest that
we need about CR + CI = 5 or 6 at minimum, which
corresponds to 25–30% of the total number of raters and
tasks, R + I = 20. Also, the required commonality tends
to increase as the test scale increases. Moreover, very few
common raters and tasks (e.g., CR = 1 and CI = 1) are
suggested to be adequate under some conditions.

As discussed above, required numbers for common raters
and tasks depend strongly on settings. We therefore suggest
that when designing performance tests, test administrators
should verify linking accuracy following the experimental
procedures presented in this study. See the Open Practices
Statement regarding the programs we developed.

Note that this study does not focus on how to select
common raters and tasks, despite this issue being important
in practice. Several studies of objective test linking have
suggested that common items are expected to be a
subsample of the whole test (Kolen & Brennan, 2014;
Ryan & Rockmann, 2009; Fink, Born, Spoden, & Frey,
2018; Born, Fink, Spoden, & Frey, 2019; Kim, Choi, Lee,
& Um, 2008; Michaelides & Haertel, 2014). Specifically,
it is commonly suggested that distributions of common-
item parameters should be similar to the item parameter
distribution in the whole test. In our study, common raters
and tasks can be considered as samples from reference

populations of raters and tasks because they are randomly
drawn from a base test in which raters and tasks are sampled
from the reference populations. Parameter distributions of
common raters and tasks are thus theoretically consistent
with those of raters and tasks in the whole test. Previous
studies also showed that in practice we may require
consideration of various factors, such as balance of item
content and locations of the common items within a test.
While these points will also be important for performance
test linking, we will examine them in future works.

We will also examine other linking designs, such as those
based on common examinees and those that simultaneously
link more than two tests. Furthermore, although this
study evaluated test-linking accuracy through simulation
experiments, we hope to conduct experiments using actual
data. Further investigations of linking accuracy under
recent, more advanced MFRM extensions are also needed.
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