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ABSTRACT
Grazing as one of the most important disturbances affects the abundance, diversity and
community composition of arbuscular mycorrhizal (AM) fungi in ecosystems, but the
AM fungi in response to grazing in wetland ecosystems remain poorly documented.
Here, we examined AM fungi in roots and soil in grazing and non-grazing plots in
Zoige wetland on the Qinghai-Tibet plateau. Grazing significantly increased AM fungal
spore density and glomalin-related soil proteins, but had no significant effect on the
extra radical hyphal density of AM fungi. While AM fungal richness and community
composition differed between roots and soil, grazing was found to influence only the
community composition in soil. This study shows that moderate grazing can increase
the biomass of AM fungi and soil carbon sequestration, and maintain the AM fungal
diversity in the wetland ecosystem. This finding may enhance our understanding of the
AM fungi in response to grazing in the wetland on the Qinghai-Tibet plateau.
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INTRODUCTION
Wetlands cover about 6% of the land surface on the earth and have high species diversity,
including many endemic species (Junk et al., 2013). In China, wetlands account for 7% of
the wetland on the world (Junk et al., 2013) and have about 225 families, 815 genera and
2,276 species of higher plants (Yan & Zhang, 2005). Wetlands provide important ecological
functions in water resource conservation and quality purification, climate regulation,
substance circulation and regional ecological balance maintenance (Green et al., 2017).
Moreover, as an important carbon (C) pool, wetlands can reduce the impact of increased
greenhouse gases on global climate change (Frolking et al., 2011). However, wetland
ecosystems have suffered severe degradations in recent decades due to global warming,
intense resource exploitation, changes in hydrology and human disturbance (Xiang et al.,
2009; Junk et al., 2013). For example, over-grazing as one of the most important human
activities, has affected biodiversity, productivity, community stability and soil C cycling in
wetlands (Hoffmann et al., 2016; Zhou et al., 2017).
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Arbuscular mycorrhizal (AM) fungi, as one of the key components of soil
microorganisms, form symbiotic associations with most terrestrial plant species (Smith &
Read, 2008). In the AM associations, plants provide C source for the growth and function
of fungi, thereby affecting the community of AM fungi (Smith & Read, 2008). In return,
AM fungi can increase the nutrient and water absorption of host plants through formation
of underground fungal hyphal networks, then affecting plant community and productivity
(Van der Heijden, Bardgett & Van Straalen, 2008). Furthermore, AM fungal hyphal and
spores produce glomalin-related soil protein (GRSP) which can stably exist in soil and
play an important role in soil C pool (Godbold et al., 2006). In addition, AM fungi can
improve plants to tolerate grazing and other stresses from the environment (Bennett &
Bever, 2007). Thus, revealing the AM fungi in response to grazing is of great importance for
understanding the diversity maintenance and community stability of plants in ecosystems,
especially in wetland ecosystems.

Previous studies have demonstrated that the effect of grazing on AM fungi is depended
on grazing intensity (García & Mendoza, 2012; Kusakabe et al., 2018; Yang et al., 2019). For
instance, the light and moderate grazing intensity positively influenced AM fungal spore
density in grasslands in Jilin province, China (Ba et al., 2012) and in British Columbia,
Canada (Van der Heyde et al., 2017). In contrast, over-grazing negatively affected AM
fungal spore density in a semi-arid grassland in China (Su & Guo, 2007). Moderate grazing
intensity did not influence AM fungal extra radical hyphal density in an alpine meadow
in China (Yang et al., 2013), but high grazing pressure negatively affected the extra radical
hyphal density of AM fungi in a semi-arid grassland in China (Ren et al., 2018). Besides,
moderate grazing had a neutral effect on AM fungal richness in a meadow in China (Ba et
al., 2012). Moderate grazing significantly affected the community composition of AM fungi
in soil and roots in grassland ecosystems (Bai et al., 2013; Yang et al., 2013; Kusakabe et al.,
2018). In contrast, others found that moderate grazing did not influence the community
composition of AM fungi in roots in alpine meadow (Jiang et al., 2018) and in soil in
mountain grassland (Van der Heyde et al., 2017) ecosystems. However, previous studies
have mainly focused on semi-arid, arid, alpine and mountain grassland ecosystems. So far,
we know little about how grazing affects AM fungi in wetland ecosystems.

Zoige wetland is a typical representative of the alpine wetland ecosystem on the Qinghai-
Tibet plateau inChina, and has high plant species diversity and an importantC sink function
(Guo et al., 2013). However, Zoige wetland has suffered severe ecosystem degradations
since the 1970s, due to global warming, low precipitation and human disturbance, such
as ditching for grassland enlargement, peat exploitation and over-grazing (Xiang et al.,
2009; Guo et al., 2013). Previous studies have mainly focused on plant diversity, microbial
community (archaea group), and ecosystem conservation and restoration in the Zoige
Wetland (Wang, Bao & Yan, 2002; Xiang et al., 2009). However, the grazing effect on AM
fungi has never been studied.

Overall, the effects of intense grazing on mycorrhizal symbiosis may lead to a shortage
on C from the plant to the fungi, what has been related to fungal response with a different
production of glomalin and spores and extra radical hyphae of fungal biomass (Hammer &
Rillig, 2011; Ba et al., 2012; Van der Heyde et al., 2017). Besides, grazing may cause changes
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in AM fungal richness and community composition in plant roots and surrounding soil (Bai
et al., 2013; Yang et al., 2013). However, these responses are environmentally dependent
and habitat-sensitive andmay be influenced by soil characteristics and dynamics (Ren et al.,
2018; Yang et al., 2019). This study represents the first one to analyze AM fungal responses
to grazing in wetland ecosystems.

In order to reveal the AM fungi in response to grazing in wetland ecosystem, we
established non-grazing (natural) and moderate grazing plots in Zoige wetland on the
Qinghai-Tibet plateau. AM fungal spore density, extra radical hyphal density and GRSP
content were examined in grazing and non-grazing plots. We examined the communities
of AM fungi in roots and soil by IlluminaMiSeq sequencing of 18S rDNA region.We aimed
to explore the effect of moderate grazing on AM fungal spore density, extra radical hyphal
density, GRSP content, richness and community composition in the Zoige wetland.

MATERIALS AND METHODS
Study site and sampling
The study was carried out in the centre of Zoige Swamp in the Zoige National Nature
Reserve on the Qinghai-Tibet plateau (33◦ 25′−34◦ 80′N, 102◦ 29′−102◦ 59′E, 16,671 ha,
3,365 m above sea level). The site has a plateau cold temperate humid monsoon climate,
with a mean annual temperature (MAT) of 1.1 ◦C, and a mean annual precipitation (MAP)
of 660 mm (Wang, Bao & Yan, 2002). The site begins to freeze in late September and is
completely thawed in mid-May (Wang, Bao & Yan, 2002). The abundant plant species are
Blysmus sinocompressus, Potentilla anserina, Carex enervis, Caltha scaposa, Elymus nutans
and Leontopodium wilsonii in the site (Wang, Bao & Yan, 2002).

The Sichuan Zoige Wetland National Nature Reserve Authority approved the collection
of soil and root samples in the Zoige Wetland National Nature Reserve. We established 20
plots (each 1 m ×1 m), > 20 m away from each other, in non-grazing (natural grass) and
grazing area, respectively (Fig. S1). The average species number and height of vegetation
were 7.8 ± 0.495 (mean ± SE) and ca. 31 cm in the non-grazing plots and 5.4 ± 0.255
and ca. seven cm in the grazing plots. This site was mainly grazed by yaks from June to
September, as the growing season is from May to August. The grazing intensity (ca. 1.8
yak/ha) in this study site was described as moderate, as previous study showed that there
are three different grazing intensities by yaks (light: 1.2 yaks/ha, moderate: 2.0 yaks/ha, and
heavy: 2.9 yaks/ha) in alpine meadow on the eastern Tibetan Plateau (Gao et al., 2007). In
July 2018, with the best vegetation growth stage, we randomly collected five soil cores (three
cm in diameter; 15 cm in depth; ca. 300 g) and mixed into one composite sample from
each plot. A total of 40 samples were obtained, packed in an ice box and transported to
our laboratory. Soil samples were sieved (1-mm sieve) to remove debris and roots. Subsoil
samples were kept at −80 ◦C until the extraction of fungal hyphae and DNA, and the
remaining subsoil samples were air dried and kept at 10 ◦C until the analysis of AM fungal
spore density, GRSP content and soil properties. We manually collected the mixed roots
(< two mm in diameter) from each sieved root sample, washed with sterilized deionized
water and kept at −80 ◦C until DNA extraction.
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Soil property analysis
Weweighed a certain amount of soil from each sample before and after drying for 24 h in an
oven at 105 ◦C, then calculated the percentage of soil moisture. Soil pH was measured at a
ratio of 1:2.5 (w/v, soil: water) with a glass electrode (Thermo Orion T20, Columbia, USA).
Soil total nitrogen (N) and C were determined by CHNOS Elemental Analyser (Vario EL
III Elementar Analysensysteme GmbH, Germany). Soil total phosphorus (P) was extracted
using the HClO4-H2SO4 digestion method and determined with a spectrophotometer
(UV-2550, Shimadzu, Japan).

EE-GRSP and T-GRSP
Total GRSP (T-GRSP) and easily extracted GRSP (EE-GRSP) were measured according
to the method of Janos, Garamszegi & Beltran (2008). We extracted EE-GRSP from 0.1 g
air dried soil using sodium citrate buffer (8 mL, 0.02 M, pH 7.0) at 121 ◦C for 90 min
in an autoclave (Yamato SQ810C, China). We repeatedly extracted T-GRSP from 0.1 g
air dried soil using sodium citrate buffer (8 mL, 0.05 M, pH 8.0) at 121 ◦C for 90 min
until no obvious color in the supernatant was observed. Supernatants were separated by
centrifugation at 6000 g for 15 min to remove the soil particles and saved in a plastic tube
(4 ◦C). Then 0.5 mL of supernatant of EE-GRSP and T-GRSP was stained with 5 mL of
Coomassie Brilliant Blue G-250 and was read in a micro-plate reader (Biotek Synergy H4,
Winooski, VT, USA) at 595 nm. The bovine serum albumin was used as a standard solution
with Coomassie Brilliant Blue method and a standard curve was drawn to determine the
content of EE-GRSP and T-GRSP.

AM fungal extra radical hyphal density and spore density
We extracted fungal hyphae from soil according to the membrane filter method (Rillig,
Field & Allen, 1999). In total, 4.0 g of frozen soil from each sample was mixed with 12
mL sodium hexametaphosphate (35 g L−1) and 100 mL distilled deionized water in a
flask, and then blended for 30 s, settled for 30 min and sieved (38-µm sieve). The fungal
hyphae on the sieve were washed into a flask with 200 mL distilled water, and then 2 mL
aliquot was filtered through a 25-µmMillipore filter. The fungal hyphae on the filter were
stained with 1% acid fuchsine and distinguished into AM and non-AM fungi on the basis
of morphological characteristics and staining color (Miller, Jastrow & Reinhardt, 1995).
We measured the hyphal length of AM fungi according to the grid-line intersect method
(Tennant, 1975). We extracted AM fungal spores from 20 g air dried soil from each sample
according to the wet-sieving and decanting method (Daniels & Skipper, 1982) and counted
the spore numbers under 40× magnification (Nikon 80i, Japan).

DNA extraction, PCR and Illumina Miseq sequencing
We extracted DNA from 0.2 g frozen roots and soil using the PowerSoil R© DNA
isolation kit (MOBIO Laboratories, Inc., Carlsbad, USA) in accordance with the
manufacturer’s instructions, and measured the DNA concentration using a NanoDrop
1000 Spectrophotometer (Thermo Scientific, Wilmington, USA). We amplified the fungal
18S rDNA region using a two-step PCR procedure. The first PCR using primers AML2
(Lee, Lee & Young, 2008) and GeoA2 (Schwarzott & Schüßler, 2001) was conducted in a
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final 25 µL reaction mixture, including ca. 10 ng of template DNA, 0.75 µM of each
primer, 250 µM of each dNTP, 0.5 U KOD-plus-Neo polymerase (Toyobo, Tokyo, Japan),
1.5 mM MgSO4, and 2.5 µL 10× buffer. The thermal cycling conditions were performed
as follows: an initial denaturation at 95 ◦C for 5 min, 30 cycles for denaturation at 94 ◦C
for 1 min, annealing at 58 ◦C for 50 s and extension at 68 ◦C for 1 min, and a final
extension at 68 ◦C for 10 min. The products of the first amplification were diluted 100
times, and 1 µL of the diluted DNA template was used for the second amplification. The
thermal cycling conditions for the second amplification were the same as first amplification,
except that the primers NS31 (Simon, Lalonde & Bruns, 1992) and AMDGR (Sato et al.,
2005) linked with 12-base barcode sequences were used. The size of amplified fragment
was about 300 base pairs (bp). We purified the PCR products using a PCR Product
Gel Purification Kit (Omega Bio-Tek, USA), and pooled the purified PCR products
with the same amount (100 ng) from each sample and adjusted the concentration to
10 ng µL−1. We constructed a sequencing library by addition of an Illumina sequencing
adaptor (5′-GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCT-
CGTATGCCGTCTTCTGCTTG-3′) to the products using the Illumina TruSeq DNA
PCR-Free LT Library Prep Kit (Illumina, CA, USA) according to the manufacturer’s
instructions. We sequenced the library by an Illumina MiSeq PE 250 platform using the
paired-end (2× 250 bp) option in the Chengdu Institute of Biology, Chinese Academy of
Sciences, China.

Bioinformatics analysis
We filtered the raw sequences using Quantitative Insights into Microbial Ecology (QIIME)
v.1.7.0 (Caporaso et al., 2010) to eliminate low-quality sequences, such as read length <

200 bp, no valid primer sequence or barcode sequence, containing ambiguous bases, or
an average quality score < 20. We checked and deleted the potential chimeras against the
MaarjAM database (Öpik et al., 2010) using the ‘chimera.uchime’ command in Mothur
version 1.31.2 (Schloss et al., 2009). High quality sequences were subjected to de-replication
and de-singleton, and then clustered into operational taxonomic units (OTUs) at a 97%
sequence similarity level using the cluster_otus command in USEARCH v8.0 (Edgar, 2013).
Using a basic local alignment search tool (BLAST) (Altschul et al., 1990), we selected the
most abundant sequence of each OTU and searched against the MaarjAM database and
National Center for Biotechnology Information (NCBI) nt database. We identified OTUs
as the AM fungi based on the closest BLAST hit annotated as ‘Glomeromycotina’ and
E values < e−50. Furthermore, we normalized the sequence number of each sample to
the smallest sample size using the ‘sub.sample’ command in Mothur. We have submitted
the representative sequence of each AM fungal OTU to the European Molecular Biology
Laboratory (EMBL) database (accession no. LR736402-LR736557). The identified AM
fungi are shown in Table S1 .

Statistical analysis
We conducted all statistical analyses in R version 3.3.2 (R Development Core Team, 2017).
Tukey’s honestly significant difference (HSD) test or Conover’s test was used to examine
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Table 1 Soil properties in grazing and non-grazing treatments in this study.

Soil variable Grazing Non-grazing

pH 7.719± 0.215 b 7.838± 0.067 a
Moisture (%) 35.09± 6.307 a 29.24± 4.766 b
N (g kg−1) 14.92± 5.588 a 8.629± 3.360 b
C (g kg−1) 202.5± 76.46 a 111.9± 36.70 b
P (g kg−1) 1.232± 0.242 a 1.036± 0.084 b

Notes.
Data (means± SD) with different letters in the same row are significantly different at P < 0.05, as indicated by Tukey’s HSD
test or Conover’s test.
N, soil total nitrogen; C, soil total carbon; P, soil total phosphorus.

the significant difference of soil moisture, pH, total N, total C and total P in the grazing
and non-grazing plots at P < 0.05. Generalized linear model (GLM) with Poisson error
structure and log link function was conducted to evaluate the effect of grazing on AM
fungal spore density, extra radical hyphal density and T-GRSP, as these data did not meet
normal distribution, while GLM with Gaussian error structure and identity link function
was conducted to evaluate the effect of grazing on EE-GRSP, and then Conover’s test was
used to examine the significant difference between grazing and non-grazing treatments at
P < 0.05 using the post-hoc.kruskal.conover.test function in the PMCMR package (Pohlert,
2014). Meanwhile, GLM with Gaussian error structure and identity link function was used
to evaluate the effect of grazing and sample type nested in grazing on the AM fungal OTU
richness, and GLM with Gamma error structure and inverse link function was used to
evaluate the effect of grazing and sample type nested in grazing on the relative abundance
of abundant OTUs (relative abundance > 1%) and orders of AM fungi, as these data did
not meet normal distribution, and then Conover’s test was conducted for comparisons
between grazing and non-grazing treatments in soil and roots at P < 0.05.

The distance matrices of AM fungal community composition (Hellinger-transformed
OTU read data) in roots and soil were established by the Bray–Curtis method (Clarke,
Somerfield & Chapman, 2006). Nested permutational multivariate analysis of variance
(PerMANOVA) was conducted to examine the effect of grazing and sample type nested
within grazing on AM fungal community composition, using the ‘adonis’ function in the
vegan with 999 permutations (Oksanen et al., 2013). Besides, PerMANOVA was conducted
to examine the effect of grazing on AM fungal community composition in soil and
roots, respectively. Redundancy analysis (RDA) was conducted to reveal the significant
correlation of AM fungal community composition and soil variables using theMonte Carlo
permutation test with 999 permutations.

RESULTS
Soil properties
Soil pH was significantly lower in grazing treatment than in non-grazing treatment
(Table 1). Soil moisture, total N, total C and total P were significantly higher in grazing
treatment than in non-grazing treatment (Table 1).
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Table 2 General linear model (GLM) showing the effect of grazing on easily extracted glomalin-related
soil protein (EE-GRSP), total extracted GRSP (T-GRSP), spore density and extra radical hyphal (ERH)
density of arbuscular mycorrhizal fungi.

Variable Estimate SE t/z-value P-value

EE-GRSP −3.2506 0.975 −3.334 0.002
T-GRSP −0.29705 0.03482 −8.531 <0.001
Spore density −0.54395 0.07252 −7.501 <0.001
ERH density −0.2562 0.1693 −1.514 0.13

EE-GRSP and T-GRSP contents
The EE-GRSP content was 28.96 ± 3.73 µg g−1 (mean ± SE) and 25.71 ± 2.26 µg g−1 in
grazing and non-grazing treatments, respectively. The T-GRSP content was 96.7 ± 18.82
µg g−1 and 71.87 ± 12.87µg g−1 in grazing and non-grazing treatments, respectively. GLM
showed that grazing significantly influenced EE-GRSP (P = 0.002; Table 2) and T-GRSP
(P < 0.001; Table 2). For example, EE-GRSP and T-GRSP contents were significantly lower
in non-grazing than in grazing treatments (Figs. 1A and 1B).

AM fungal spore density and extra radical hyphal density
The spore density of AM fungi was 25.89 ± 12.17 g−1 (mean ± SE) and 15.03 ± 5.88
g−1 in grazing and non-grazing treatments, respectively. The extra radical hyphal density
of AM fungi was 4.00 ± 2.51 m g−1 and 3.10 ± 1.56 m g−1 in grazing and non-grazing
treatments, respectively. GLM revealed that grazing significantly affected AM fungal spore
density (P = 0.001; Table 2) but not extra radical hyphal density (P = 0.130; Table 2). For
example, the spore density of AM fungi was significantly lower in non-grazing than in
grazing treatments (Fig. 1C). However, AM fungal extra radical hyphal density was not
significantly different in non-grazing and grazing treatments (Fig. 1D).

Identification of AM fungi
In total, 3,205,557 high-quality sequences were filtered from 3,335,816 raw sequences
and clustered into 882 OTUs at a 97% sequence similarity level. Among 882 OTUs, 156
(2,919,706 sequences) belonged to AM fungi. As the sequence number of AM fungi varied
from 20,408 to 48,572 in the 80 samples, the number of sequence was normalized to 20,408.
The normalized dataset contained 156 AM fungal OTUs (1,632,640 sequences). Of the
156 AM fungal OTUs obtained, 154 were from soil, 152 from roots, and 150 shared both
soil and roots. Among 156 AM fungal OTUs, 153 were detected from more than three
samples (frequency ≥ 3.75%) (Fig. S2A). Furthermore, the 21 abundant AM fungal OTUs
(relative abundance > 1%) occupied 83.85% of the total sequences (Fig. S2B). Among
156 AM fungal OTUs, 109 were identified to Glomerales (79.52% of sequences), 22 to
Diversisporales (10.84%), 21 to Archaeosporales (8.75%), and 4 to Paraglomerales (0.89%).
In addition, the rarefaction curves indicated that the sample numbers were sufficient to
detect the most AM fungi in this study (Fig. S3).
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Figure 1 Easily extracted glomalin-related soil protein (EE-GRSP, A), total extracted GRSP (T-GRSP,
B), spore density (C) and extra radical hyphal (ERH) density (D) of arbuscular mycorrhizal fungi in
grazing and non-grazing treatments. Data are means± SE (n = 20). Bars with different letters denote
significant difference in grazing and non-grazing treatments according to Conover’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.9375/fig-1

AM fungal OTU richness
AM fungal OTU richness in grazing and non-grazing treatments was 123.70 ± 2.96
(mean ± SE) and 122.85 ± 3.01 in soil, and 117.55 ± 2.26 and 118.00 ± 4.38 in
roots, respectively. GLM revealed that AM fungal OTU richness was influenced by sample
type (root and soil; P < 0.001; Table S2), but not by grazing (P = 0.662; Table S2). For
example, AM fungal OTU richness was significantly lower in roots than in soil in both
grazing and non-grazing treatments (Fig. 2). However, AM fungal OTU richness was
not significantly different between grazing and non-grazing treatments in roots and soil,
respectively (Fig. 2).

AM fungal community
GLM revealed that grazing had significant effect on the relative abundance of abundant
AM fungal OTU12 and OTU25 (Glomerales), and sample type had significant effect on
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Figure 2 The operational taxonomic unit (OTU) richness of arbuscular mycorrhizal fungi in soil and
roots in grazing and non-grazing treatments.General linear model (GLM) showing the effect of grazing
and sample type (soil and root) on the OTU richness. Data are means± SE (n = 20). Bars with different
letters denote significant difference in grazing and non-grazing treatments according to Conover’s test at P
< 0.05. G, grazing; NG, non-grazing; ST, sample type.

Full-size DOI: 10.7717/peerj.9375/fig-2

the relative abundance of abundant AM fungal OTU4, OTU5, OTU7, OTU12, OTU14,
OTU18, OTU25 and OTU141 (Glomerales), OTU8 and OTU17 (Diversisporales) and
OTU23 (Archaeosporales) (Fig. 3; Tables S3 ; S4).

GLM revealed that sample type significantly influenced the relative abundance of
Glomerales, Diversisporales and Archaeosporales, and grazing significantly affected
the relative abundance of Diversisporales (Fig. 4; Table S5). The relative abundance of
Glomerales was significantly lower in soil than in roots; by contrast, the relative abundance
of Diversisporales and Archaeosporales was significantly lower in roots than in soil,
regardless of non-grazing and grazing treatments (Fig. 4; Table S5). Besides, the relative
abundance of Diversisporales was significantly lower in grazing treatment than in non-
grazing treatment (Fig. 4; Table S5).

The PerMANOVA demonstrated that the community composition of AM fungi was
significantly influenced by sample type (soil and root; F = 7.2836, R2

= 0.157, P = 0.001;
Table S6) and grazing (F = 2.339, R2

= 0.025, P = 0.012; Table S6). Furthermore, the
community composition of AM fungi was significantly influenced by grazing in soil
(F = 2.639, R2

= 0.055, P = 0.001; Table S7), but not in roots (F = 0.998, R2
= 0.025,

P = 0.419; Table S8). Furthermore, RDA showed that the community composition of AM
fungi in soil and roots was significantly correlated with soil pH, moisture, total C, total N
and total P (Fig. 5).

DISCUSSION
We found that grazing had positive effect on AM fungal spore density, EE-GRSP and
T-GRSP, in consistent with some previous studies (Hammer & Rillig, 2011; Yang et al.,
2013; Van der Heyde et al., 2017). Previous findings suggest that moderate removal of
aboveground biomass may increase the allocation of C to the roots and exudation
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Figure 3 Relative abundance of arbuscular mycorrhizal (AM) fungal operational taxonomic units
(OTUs) in soil and roots in grazing and non-grazing treatments.General linear model (GLM) showing
the effect of grazing and sample type (soil and root) on the relative abundance of AM fungal OTUs (ns;
P ≥ 0.05, ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001). The rare AM fungal OTUs (< 1% of total AM fungal
reads) and abundant AM fungal OTUs (> 1% of total AM fungal reads) that was not significantly affected
by grazing and sample type were all assigned to ‘‘Others’’. SN, soil non-grazing; SG, soil grazing; RN, root
non-grazing; RG, root grazing; G, grazing; NG, non-grazing; ST, sample type.

Full-size DOI: 10.7717/peerj.9375/fig-3

Figure 4 Relative abundance of arbuscular mycorrhizal (AM) fungi at the order level in soil and roots
in grazing and non-grazing treatments.General linear model (GLM) showing the effect of grazing and
sample type (soil and root) on the relative abundance of AM fungal orders (ns; ** P < 0.01, *** P <

0.001). Different letters are significantly different at P < 0.05, as indicated by Conover’s test. SN, soil
non-grazing; SG, soil grazing; RN, root non-grazing; RG, root grazing; G, grazing; NG, non-grazing; ST,
sample type.

Full-size DOI: 10.7717/peerj.9375/fig-4

from roots to soil (Eom, Wilson & Hartnett, 2001; Soka & Ritchie, 2018), which could
be beneficial for the sporulation of AM fungi (Ba et al., 2012; Van der Heyde et al., 2017).
Furthermore, since about 80% of GRSP is produced by the AM fungi, moderate grazing
increased AM fungal spore density, resulting in increasing GRSP content in soil (Driver,
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Figure 5 Redundancy analysis (RDA) biplots showing arbuscular mycorrhizal fungal community
composition in soil and roots (A), soil (B) and roots (C). Significant soil variables were presented as vec-
tors on the RDA biplot graphs using the ‘envfit’ (based on 999 permutations) at P < 0.05. SN, soil non-
grazing; SG, soil grazing; RN, root non-grazing; RG, root grazing; N, soil total nitrogen; C, soil total car-
bon; P, soil total phosphorus.

Full-size DOI: 10.7717/peerj.9375/fig-5

Holben & Rillig, 2005). This suggests that grazing plays an important role in soil C pool in
the wetland ecosystem on the Qinghai-Tibet Plateau (Gao et al., 2007). However, grazing
did not significantly influence AM fungal extra radical hyphal density, as reported in a
previous study (García & Mendoza, 2012). Although moderate grazing may increase C
allocation to the roots, this increase may be ephemeral (Van der Heyde et al., 2019) and not
be sufficient to promote the growth of AM fungal hyphae.

AM fungal richness was significantly lower in roots than in soil, as previous studies
reported in alpine and meadow ecosystems (Hempel, Renker & Buscot, 2007; Liu et al.,
2012; Yang et al., 2013). This may be that the currently and formerly active propagules of
AM fungi could remain in soil; by contrast, only currently active AM fungi could occur in
the roots (Liu et al., 2009; Martínez-García et al., 2011). However, we found that grazing
did not significantly influence AM fungal richness in roots and soil. Similarly, a previous
study showed that moderate grazing could maintain the AM fungal diversity (Dudinszky et
al., 2019). In general, AM fungi have low specificity (Smith & Read, 2008), thus AM fungal
richness may not be influenced by the low plant species diversity caused by moderate
grazing, as some studies found that AM fungal richness was not related to plant species
diversity (Wolf et al., 2003).

The community composition of AM fungi significantly differed between roots and soil
in this study, as previous studies reported in grassland (Yang et al., 2013), farmland (Liu
et al., 2016) and temperate (Saks et al., 2014) and subtropical forest (Maitra et al., 2019)
ecosystems. This may be explained by the difference in AM fungal abundance in roots
and soil (Hempel, Renker & Buscot, 2007;Maitra et al., 2019). Indeed, our result found that
some AM fungi were abundant in roots and soil, respectively. In addition, AM fungal
phenology may produce different communities in soil and roots (Liu et al., 2012).

Grazing significantly affected the AM fungal community composition in soil, in
consistent with some previous studies reported in desert steppe and grassland ecosystems
(Murray, Frank & Gehring, 2010; Bai et al., 2013). Grazing may influence the AM fungal
community composition by changing soil properties through animal trampling and fecal
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deposition (McNaughton, Banyikwa & McNaughton, 1997; Yang et al., 2019). For example,
animal trampling may make the soil tight and alter soil bulk density (Kauffman, Thorpe &
Brookshire, 2004; Byrnes et al., 2018), thereby influencing AM fungal community (Yang et
al., 2018).Moreover, dung and urine produced by animals, as soil fertilization,may decrease
soil pH and increase soil nutrients as shown in this and previous studies (McNaughton,
Banyikwa & McNaughton, 1997; Kohler et al., 2005), thus altering AM fungal community
composition. Indeed, our result showed that the community composition of AM fungi was
significantly related to soil pH, moisture, total C, total N and total P, as previous studies
reported in semi-arid, alpine and temperate grassland and subtropical forest ecosystems
(Zheng et al., 2014; Gao et al., 2016; Zhang et al., 2016; Goldmann et al., 2019; Maitra et al.,
2019). However, the AM fungal community composition in roots was not significantly
influenced by grazing, as previous studies reported in semi-arid and alpine grassland
ecosystems (González et al., 2018; Jiang et al., 2018). It is possible that moderate grazing
does not much change the allocation of carbohydrates to roots, thereby without altering
AM fungal community. Furthermore, although grazing may alter the AM fungal function,
it does not necessarily alter the community in roots (González et al., 2018).

CONCLUSIONS
In conclusion, we examined the AM fungi in response to grazing in the Zoige wetland on
the Qinghai-Tibet plateau for the first time. AM fungal spore density and GRSP content
positively responded to grazing. The extra radical hyphal density and OTU richness of
AM fungi had neutral response to grazing. The community composition of AM fungi
was significantly influenced by grazing in soil but not in roots. These findings suggest
that moderate grazing can increase the biomass of AM fungi and soil C sequestration,
and maintain the AM fungal diversity in the wetland ecosystem on the Qinghai-Tibet
Plateau. Future studies can focus on measuring C flux between AM fungi and host to fully
understand the role of grazing on AM fungal function in wetland ecosystems.
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