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Abstract

Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV
vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if
such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of
bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by
the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively
low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against
vaginal challenge of rhesus macaques with the CCR5-using SHIVSF162P3. The results show that, at 2G12 serum neutralizing
titers of the order of 1:1 (IC90), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable
virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal
showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers
observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for
characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence
to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability
of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or
inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and
support targeting the glycan shield of the envelope.
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Introduction

There is widespread acceptance that eliciting neutralizing

antibodies is likely to be an important goal of an effective HIV

vaccine [1,2,3]. A good correlation is generally reported between

the ability of an antibody to neutralize in vitro and to protect in vivo

against HIV in animal models [4,5,6,7,8,9]. The most quantitative

studies have titrated the ability of specific antibodies to protect and

found that sterilizing immunity is achieved when the serum

concentration of antibody in the challenged animals is many

multiples of the in vitro neutralization titer [4,8,10]. For instance,

Nishimura, et al. reported that 99% of macaques were protected

against intravenous challenge with an R5 SHIVDH12 by a specific

polyclonal antibody at a 100% neutralization titer of 1:38 [10]. In

another example, we have reported sterilizing immunity against

R5 SHIVSF162P4 vaginal challenge in 4/4 macaques with a dose of

the broadly neutralizing human antibody b12 yielding a serum

neutralizing titer of about 1:400 at challenge [8]. The titer

corresponded to 90% neutralization in a PBMC assay. Nishimura

et al [10] estimated that this titer corresponded to 1:32.5 or greater

in their assay system providing good correspondence between the

two studies. At an antibody dose giving a serum neutralizing titer

of about 1:80 in the Parren, et al. study, 2/4 macaques showed

sterilizing immunity and the other 2 were infected with a delayed

and lower primary viremia as compared to controls. At an

antibody dose giving a serum neutralizing titer of about 1:16, no

animal was protected but there was a slight delay and some

lowering in the magnitude of primary viremia.

Most other studies have not titrated the ability of antibodies to

protect but high serum concentrations of antibody relative to

neutralizing titer were generally used and shown to provide

protection against virus challenge [4,5,6,9,11]. The one notable

exception is provided by studies of Mascola and colleagues [7] on

protection by the broadly neutralizing human MAb 2G12. In
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particular 2/4 macaques showed sterilizing immunity when

challenged by an 64 SHIV (SHIV89.6P) when the serum

neutralizing titer, as measured at 90% neutralization in a PBMC

assay, was less than 9. In fact, the mean concentration of 2G12 in

the sera of the animals at challenge was calculated to provide 90%

neutralization only with neat serum (i.e. 1:1 neutralizing titer). The

actual concentration of 2G12 in the protected animals at the time

of challenge was relatively high, about 200 mg/ml following an i.v.

administration of 15 mg/kg antibody, but 2G12 is relatively poor

at neutralization of SHIV89.6P (IC90,200 mg/ml) hence the low

neutralizing titer. The authors also carried out protection

experiments with mixtures of antibodies, including 2G12. These

experiments when taken together again suggested that 2G12 may

provide protection that is unusually effective relative to its

neutralizing titer.

Monoclonal human IgG1 2G12 is a very interesting and unique

antibody. It is broadly neutralizing, particularly against clade B

HIV-1 isolates [12,13,14]. It has a domain-exchanged structure

that leads to closely proximal antibody combining sites that are

well suited to the recognition of a cluster of oligomannose residues

on the glycan shield of HIV [12,15,16,17,18]. 2G12 belongs to a

small set of human MAbs that are described as broadly

neutralizing and that recognize distinct epitopes on the HIV

envelope spike. The MAb b12 recognizes an epitope overlapping

the CD4 binding site ‘‘on the side’’ of the spike and the MAbs 2F5,

4E10 and Z13e1 recognize gp41 very close to the viral membrane,

whilst 2G12 recognizes an epitope which is more on the ‘‘top’’ of

the spike [19,20,21].

Given the suggestion that 2G12 may have unusual prophylactic

activities and given the potential importance of this for HIV

vaccine design, we decided to carry out a macaque protection

study using a virus different from that of Mascola and colleagues

and to pursue potential properties of 2G12 that might correlate

with protection. Ideally, we would have had available a SHIV that

was relatively neutralization sensitive to 2G12 to permit study of a

maximum dynamic range of 2G12 concentrations with neutral-

izing activity. However, currently available SHIVs are relatively

resistant to 2G12 and the R5 virus SHIVSF162P3 was chosen as the

most sensitive to 2G12 neutralization. An R5 virus was thought to

be more appropriate for modeling human infection than an 64

virus. The challenge virus was used intravaginally following pre-

administration of 2G12 intravenously. The results indicate that

2G12 can provide protection against an R5 virus challenge at a

surprisingly low neutralization titer. Unusually efficient transport

to the vaginal mucosal surface does not appear to explain the

activity of 2G12. The results support targeting the glycan shield

through vaccine design.

Results

The ability of 2G12 to neutralize a panel of SHIVs in PBMC

and pseudovirus assays was first assessed. A comparison with b12

was included in the study. As shown in Table 1, 2G12 was not

particularly effective against any of the SHIVs tested. The activity

of 2G12 against the R5 SHIVSF162P3 was comparable to that

against the64 SHIV89.6P used in previous studies described above

and was chosen for macaque studies.

Figure 1 depicts the outcome of the protection study that was

carried out with five 2G12-treated animals, two antibody isotype

(anti-Dengue NS1 IgG1, DEN3) treated control animals and two

antibody-untreated control animals. The Indian rhesus macaques

were first treated with Depo-Provera to thin the vaginal epithelium

and to synchronize menstrual cycles [8,22]. One day before

vaginal challenge with 500 TCID50 (50% tissue culture infectious

doses) of SHIVSF162P3, each animal was given an intravenous dose

of 40 mg/kg of either 2G12 or the isotype control antibody. Prior

to the protection experiment, two additional control animals were

challenged with 500 TCID50 SHIVSF162P3 without administration

of antibody to verify the infectivity of the viral stock. Blood was

drawn from the animals at regular intervals following challenge to

monitor viral infection, serum levels of passively administered

antibody and serum neutralizing activity. The 4 control animals

became infected with peak viremias of approximately 107 virus

copies per ml between days 14 and 21 as is generally noted in this

system [9]. Two of the five 2G12-treated animals also became

infected. One was infected with viral kinetics closely similar to that

of the control animals. The second had a notably delayed and

lower peak viremia at day 35. Three of the five 2G12-treated

animals were protected and showed no detectable viremia at day

55. In order to determine whether breakthrough infection may be

associated with selection of antibody escape mutants, we

attempted to sequence the env gene from plasma virus of the

unprotected animals. Env from animal 95113 could not be

amplified but interestingly sequence analysis of animal 90154 env

revealed a T388A mutation disrupting the position 386 N-

glycosylation and consistent with 2G12 escape. The characteriza-

tion of a 2G12 escape mutant in one of the unprotected animals

raises the possibility that such variants already exist in the

inoculum. Alternatively, in the presence of Ab, in particular at the

suboptimal concentration achieved in the study, a certain level of

viral replication may take place following challenge, allowing in

some cases for the generation and selection of an escape mutant.

Such scenario would suggest that the mechanism of antibody

protection is not only to prevent cell infection but also to abort an

already ongoing infection, presumably though effector functions as

discussed below. These two possible scenarios for escape are

currently under investigation.

The 2G12 antibody concentrations in the sera of the macaques

at different time points were measured using three different ELISA

formats. With a few exceptions, the determined serum concentra-

tions derived from the three formats were generally in good

agreement (Table 2). The first format used was an ELISA based

on the ability of 2G12 to specifically recognize a relatively

conserved cluster of oligomannose glycans. Serum was titrated

against an immobilized synthesized oligomannose dendron

Author Summary

An effective HIV vaccine should elicit broadly neutralizing
antibodies, i.e. antibodies that neutralize a wide spectrum
of different HIVs in vitro. A number of human monoclonal
antibodies have been isolated with broad neutralization
and shown to protect macaques against vaginal HIV
challenge. Protection is generally correlated with neutral-
ization and requires relatively high antibody concentra-
tions that may be difficult to achieve by vaccination. Here,
we show that one monoclonal antibody (2G12) is
unusually potent in protection relative to its neutralizing
ability as hinted at by earlier data. Further studies
eliminate an unusual ability of 2G12 to be transported to
the vagina (site of infection) as a possible explanation for
our observations. Although the precise mechanism is
unclear, the studies have important implications for HIV
vaccine design in general by suggesting that some vaccine
targets on HIV may be better than others and, specifically,
by suggesting that the sugar coat of HIV may be a
particularly rewarding target if appropriate immunogens
can be designed.

SHIV Protection at Low Antibody Neutralizing Titer
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conjugated to BSA [21]. The second ELISA format was based on

a highly specific anti-idiotype-2G12 antibody (MIgG1 L13) that

does not block the binding of gp120 or inhibit the neutralizing

ability of 2G12 [23]. For comparison, a third ELISA format using

monomeric gp120 JR-FL was used to measure the transferred 2G12

contained in the macaque serum. In all formats, a dilution series of

serum was compared to a 2G12 standard curve and the

concentration determined using a non-linear regression curve fit

analysis.

The i.v. transfer of 2G12 at 40 mg/kg resulted in a high 2G12

serum concentration at the time of challenge that varied between

0.9 and 1.2 mg/ml. Table 3 summarizes the half-life of serum

2G12 that varied between 7.2 and 15.6 days in the 5 macaques.

The average half-life of all animals as measured in the three

ELISA formats is about 11 days (Table 3). The half-life of 2G12 in

rhesus macaques has previously been noted as about 13 days [5].

While for b12, 90% neutralization titers (IC90) of approximately

1:80 in a PBMC assay were associated with protection in 50% of

SHIVSF162P4 [8] and 90% of SHIVSF162P3 [9] challenged animals,

a titer of only 1:1 was sufficient to protect 60% of all animals with

2G12 in the experiment described here. It should be noted the

IC90 for 2G12 neutralization of PBMC is approximately 900 mg/

ml and the serum concentration of 2G12 at challenge was

approximately 900–1,200 mg/ml making it impractical to directly

measure neutralization in the PBMC assay. Using the generally

more sensitive pseudovirus assay, 90% neutralization was not

reached at a 1:50 serum dilution for any of the 2G12-treated

animals. Therefore, it does appear that MAb 2G12 can offer

substantial protection at relatively low serum neutralizing titers.

We next compared properties of 2G12 and b12 that might help

explain the observed differences in protective activity relative to

serum neutralization. One possibility is a gross difference in

transudation efficiency for the two MAbs. For b12, it has been

noted previously that the concentration of antibody at the vaginal

surface following passive administration is only a small fraction of

that in the serum [8]. If 2G12 was transudated to the vaginal

surface much more efficiently than b12 then it is possible that it

could achieve comparable neutralizing titers in vaginal fluids. This

might lead to improved protection although it should be noted that

no correlation between mucosal antibody levels and protection has

been established. Earlier data suggests that 2G12 is not

transudated unusually effectively although vaginal concentrations

can vary widely [7]. We carried out a direct comparison of vaginal

concentrations of b12 and 2G12 for a time period of 7 days after

i.v. administration of 5 mg/kg MAb to 3 control macaques. As

Table 1. Comparison of SHIV neutralization by b12 and 2G12 in rhesus PBMC-based and pseudovirus luciferase reporter gene
assays.

Virus MAb Rhesus PBMC-based Neutralization Assay Pseudovirus-based Neutralization Assay

(mg/ml)

IC50 IC90 IC50 IC90

SHIV 89.6P 2G12 20 .900 2.6 .50

b12 300 .900 11.5 .50

SHIV SF162P3 2G12 20 900 7.6 .50

b12 2 8 0.29 2

SHIV BaL 2G12 .300 .300 1 .50

b12 ,1.2 ,1.2 0.02 0.09

The selection of SHIVSF162P3 for the protection study was based on the results of 2G12 neutralization of rhesus PBMCs and pseudovirus assays against the panel shown.
doi:10.1371/journal.ppat.1000433.t001

Figure 1. Plasma viral loads following SHIVSF162P3 vaginal
challenge of 2G12-treated and control macaques. A total of nine
female Indian rhesus macaques were divided into treatment groups of
five animals for i.v. administration of 2G12, two animals to receive the
isotype control (Dengue anti-NS1, DEN3), and two additional controls
were challenged prior to the beginning of the protection study to
confirm viral fitness, but were not treated with antibody. In (A) two
2G12-treated (40 mg/kg) animals became infected: 90154 reached peak
viremia of 26107 on day 21 similar to controls; 95113 showed a one-
week delay of infection onset and peak viremia was lower at 56106. The
remaining three 2G12-treated animals were protected against infection
and showed no measurable viremia. In (B) all 4 control animals
experienced peak viremia between 16107 and 46107 on day 21. The
quantity of SIV viral RNA genomic copy equivalents (vRNA copy Eq/ml)
in EDTA-anticoagulated plasma was determined using quantitative RT
PCR [52]. The assay minimum detection is 150 copies of vRNA Eq/ml (2.1
log) with a 99% confidence level.
doi:10.1371/journal.ppat.1000433.g001

SHIV Protection at Low Antibody Neutralizing Titer
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Table 2. 2G12 serum antibody concentrations following passive administration.

Protected Not Protected

95066 gp120 Man 4D anti-Id 95113 gp120 Man 4D anti-Id

Day Serum Ab mg/ml Day Serum Ab mg/ml

—1 0 0 0 —1 0 0 0

0 1215 1241 911 0 822 1146 998

3 696 994 733 3 571 494 567

7 793 816 599 7 494 510 355

10 698 529 500 10 463 456 465

15 767 328 446 15 402 134 177

22 651 252 335 22 230 49 155

90140 gp120 Man 4D anti-Id 90154 gp120 Man 4D anti-Id

Day Serum Ab mg/ml Day Serum Ab mg/ml

—1 0 0 0 —1 0 0 0

0 954 901 1250 0 1252 1174 922

3 640 704 1005 3 750 575 545

7 694 545 838 7 597 371 448

10 640 398 705 10 554 221 348

15 453 452 502 15 453 174 328

22 173 394 505 22 231 101 342

1038 gp120 Man 4D anti-Id

Day Serum Ab mg/ml

21 0 0 0

0 1203 921 891

3 959 527 717

7 927 413 714

10 898 365 690

15 605 220 496

22 296 103 147

The concentrations of transferred 2G12 in the serum of all experimental animals on the day of challenge (day 0) and during the following three weeks were determined
by ELISA using three different formats. For each animal, the results from the different ELISA formats are shown in separate columns. The concentrations of 2G12 in the
macaque sera were determined from the measurement of binding to monomeric JR-FL (gp120), to an immobilized synthetic oligomannose dendron conjugated to BSA
[21] (Man4D), and to a highly specific anti-idiotype-2G12 antibody (MIgG1 L13) [23] (anti-id). In all formats, a dilution series of serum was compared to a 2G12 standard
curve and the concentration determined using a nonlinear regression curve fit analysis performed in GraphPad Prism Software for Mac, Version 5.0a.
doi:10.1371/journal.ppat.1000433.t002

Table 3. Half-life of transferred 2G12 in macaque serum.

Half-life (days) of 2G12 in macaque serum

Protected Not Protected Average (days)

Animal 95066 90140 01038 95113 90154

gp120 ELISA 12.2 9.2 7.7 9.2 9.9 9.6

Man4D ELISA 10.7 15.6 7.2 10.5 8.4 10.5

L13 anti-idiotype ELISA 12.9 13.4 9.8 10.4 15.1 12.3

The data represents the half-life (t1/2) of serum 2G12 determined from data in three different ELISA formats over a period of three weeks following i.v. transfer of 40 mg/
kg of 2G12. The half-life of transferred 2G12 ranged between 7.2 and 15.6 days in the 5 macaques with a somewhat shorter half-life observed in animal 01038. The
average half-life of all animals as measured in the three ELISA formats is about 11 days. The half-life of 2G12 in rhesus macaques has previously been noted as about 13
days [5].
doi:10.1371/journal.ppat.1000433.t003

SHIV Protection at Low Antibody Neutralizing Titer
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shown in Figure 2, the concentrations of the two MAbs

transudated to the vaginal mucosal surface are similar and thus

transudation is unlikely to contribute to protection differences

between the MAbs.

Evidence has been obtained to suggest that interaction of b12

with Fc receptors can contribute to protection against

SHIVSF162P3 challenge in macaques [9]. In particular, it was

noted that wild-type b12 mediated antibody-dependent cell-

mediated virus inhibition (ADCVI) and was effective at protection,

whereas a b12 variant lacking FcR binding did not mediate

ADCVI and was less effective than the wild-type antibody. If

2G12 were effective at ADCVI then this might contribute to

enhanced protective activity. Figure 3 suggests that 2G12 is

somewhat less effective than b12 at ADCVI on the basis of a strict

concentration comparison. The significance of this result is

discussed further below.

Since two MHC class I alleles (Mamu-B*08 and –B*17) have

been associated with elite control of SIV replication, we evaluated

all experimental animals by MHC genotyping (Table 4). We used

PCR-SSP to test for a panel of 9 class I alleles previously shown to

be important in SIV epitope presentation [24,25,26,27,28].

Protected animal 90140 was positive for Mamu-A*01, an allele

that appears with high frequency in many colonies and has been

associated with moderate reduction of SIVmac239 replication

[27,28,29,30]. Protected animal 95066 expresses the Mamu-B*01

allele. This allele remains on the panel based on early reports of

SIV-derived epitopes [31,32], but studies have shown that Mamu-

B*01 does not bind SIV-derived epitopes and has no effect on SIV

disease progression [26]. However, even with the presence of the

Mamu-A*01 allele (which is not associated with elite control of SIV

replication) in animal 90140, there is no apparent correlation with

the allelic profiles of the animals in this study that would account

for any unusual ability to resist infection.

Discussion

The results presented here lend strong support to the notion

that passively administered bNAb 2G12 is able to offer substantial

protection against mucosal SHIV challenge at low serum

neutralizing titers. In particular, 3 of 5 macaques showed

sterilizing immunity on vaginal challenge with a high dose of

SHIVSF162P3 when serum-neutralizing titers of 2G12 were of the

order of 1:1. This result contrasts strongly with protection

observed with bNAb b12 when sterilizing immunity for the

majority of animals is associated with neutralizing titers of very

approximately 1:100 and greater [8,9,33]. The result also contrasts

with the quantitative studies of Martin and colleagues [10], which

show sterilizing immunity against challenge with the 64

SHIVDH12 only at high specific anti-DH12 antibody neutralizing

titers. The result is however consistent with studies of Mascola and

colleagues who showed that low serum neutralizing titers of 2G12

provided sterilizing immunity for 2 of 4 macaques vaginally

challenged with the 64 virus SHIV89.6P [7].

We investigated factors that might help explain the protective

efficacy of 2G12, especially in relation to b12. This efficacy might

be explained if 2G12 was transported very effectively to the site of

infection; the results presented suggest this is not the case. We next

noted that, although the neutralizing titers of 2G12 in our

experiments are low, the actual serum concentrations of 2G12 are

high since the antibody neutralizes the challenge virus

SHIVSF162P3, and indeed other available SHIVs rather poorly.

Therefore, it is possible that the protective efficacy of 2G12 derives

from another anti-viral function of antibody that becomes

important at high antibody concentration. One such function

could be antibody-mediated host cell activity against SHIV-

infected cells, which can be measured in the ADCVI assay. The

results showed that 2G12 is somewhat less effective than b12 in the

ADCVI assay. However, at the serum concentrations achieved in

the passive transfer experiments, 2G12 should be able to promote

infected cell killing in vivo. Therefore, one possible explanation for

the differing relationship between neutralization and protection for

b12 and 2G12 against SHIVSF162P challenge is that protection is

determined not by neutralizing ability but solely by activity against

infected cells. An argument against this explanation is provided by

the observation that b12 can still provide substantial protection in

the complete absence of Fc receptor function and ADCVI [9].

Furthermore, HIVIG, which tends to mediate effective ADCVI

(GL and DNF, unpublished observations) is rather ineffective at

protection against SHIV challenge [5,7]. An explanation more

concordant with the totality of data is that both neutralizing and

extra-neutralizing activities are important for protection. Fc-

mediated extra-neutralizing activities include, not only host cell

activities against infected cells, but also those against free virions

such as phagocytosis. It may be that 2G12 is able to compensate

for its weak neutralization of SHIVSF162P3 by effective extra-

neutralizing activities such as ADCVI. Protection studies using a

SHIV that is sensitive to neutralization at low 2G12 concentra-

tions but only sensitive to extra-neutralizing activities at high

concentrations may help to better separate the contributions of

different mechanisms to protection here. Alternatively, a 2G12

mutant lacking effector activity analogous to that generated for

b12 [9] may help towards this aim.

Figure 2. Comparison of b12 and 2G12 transudated to the
vagina following intravenous administration. Each antibody
treatment group consisted of three female Indian Rhesus macaques
which were i.v.-administered 5 mg/kg of either b12 or 2G12 following
Depo-provera treatment. Vaginal secretions from each animal were
absorbed to cellulose wicks. A set of 3 samples per animal was taken at
6 hours, 12 hours, 24 hours, 4 days, and 7 days post i.v. antibody
administration. The concentration of antibody in mucosal secretions
was determined by ELISA from the clarified supernatant extracted from
the wicks. Resulting data were compared to the corresponding
antibody standard curve using nonlinear regression. Arithmetic means
and standard deviations were calculated for each set of triplicate
samples per animal. Data points were calculated from all animals at
each timepoint and error bars represent the standard error of means.
The typical time for viral challenge in protection experiments is
indicated. The differences in the mean concentrations of b12 and 2G12
at each timepoint were evaluated in a student’s t test and determined
to be non-significant. Analyses performed in GraphPad Prism Software
for Mac, Version 5.0a.
doi:10.1371/journal.ppat.1000433.g002

SHIV Protection at Low Antibody Neutralizing Titer
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One intriguing difference between b12 and 2G12 that might

relate to differences in protection has been described in terms of

neutralization kinetics (PP, unpublished observations). Thus, it

appears that following antibody-virus preincubation in vitro,

neutralization by 2G12 occurs almost immediately while b12-

mediated neutralization slowly progresses with time, reaching

2G12 neutralization levels only after hours. Only at high

concentrations, corresponding to high neutralization titers, do

b12 neutralization kinetics match those of 2G12. In vivo such

kinetic differences may give 2G12 a noticeable advantage over

b12: immediate efficiency at preventing target cell infection may

be of particular importance in vivo as delay in neutralization may

lead to cell infection and viral spread spinning out of antibody

control. Further studies looking at correlations between antibody

neutralization kinetics and protection efficiency should help reveal

whether kinetics are important for protection.

A further consideration for 2G12 is that the antibody recognizes

high mannose glycans on the envelope gp120 surface. These

glycans are also recognized by a number of lectins including DC-

SIGN, which has been proposed to have a critical role in

transmission by facilitating the transport of virus by dendritic cells

to lymphoid tissues [34,35]. Indeed, it has been shown that the

addition of an N-glycan site to the V2 loop of SF162P leads to a

gain of DC-SIGN binding and that this correlates with enhanced

mucosal transmission of SHIVSF162P3 [36]. The gp120-DC-SIGN

interaction can be perturbed by 2G12 but not b12 as shown in a

number of assays including inhibition of whole virus binding to

DC-SIGN-expressing cell lines [37,38]. If the HIV-DC-SIGN

interaction is critically important for the establishment of infection,

then it is possible that 2G12 protection is mediated by inhibiting

this interaction. Intriguingly, although 2G12 requires relatively

high concentrations to neutralize SHIVSF162P3, presumably

Figure 3. Comparison of antibody-dependent cell-mediated viral inhibition (ADCVI) by 2G12 and b12. Target cells (CEM.NKR-CCR5)
were infected with SHIVSF162P3 and incubated for 48 hours, washed to remove cell-free virus and combined with Rhesus PBMC effector cells and
serially diluted antibody. Viral inhibition was measured after incubation for 7 days. 2G12 is somewhat less effective than b12 in mediating ADCVI for a
strict concentration comparison. An unpaired Two-tailed t test (P = 0.3285) of b12 and 2G12 ADCVI with an F test comparison of variance reveals no
significant difference (P = 0.4154). Analysis performed in GraphPad Prism Software for Mac, Version 5.0a.
doi:10.1371/journal.ppat.1000433.g003

Table 4. MHC genotyping of macaques against MHC Class I alleles.

Animal A01 A02 A08 A11 B01 B03 B04 B08 B17

95066P 2 2 2 2 + 2 2 2 2

90140P + 2 2 2 2 2 2 2 2

01038P 2 2 2 2 2 2 2 2 2

95113N 2 2 2 2 2 2 2 2 2

90154N 2 2 2 2 2 2 2 2 2

00071I 2 2 2 2 2 2 2 2 2

01069I 2 2 2 2 + 2 2 2 2

90126C 2 2 2 2 + 2 2 2 2

00043C + 2 2 2 2 2 2 2 2

Macaque samples were tested against a panel of nine MHC class I alleles that have previously been shown to be important in SIV epitope presentation or increased
resistance to SIV infection [24,25,26]. The alleles are: Mamu-A*01, Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-B*01, Mamu-B*03, Mamu-B*04, Mamu-B*08, and Mamu-
B*17. Animal 90140 is positive for Mamu-A*01 and animal 95066 was determined to carry the Mamu-B*01 allele. Mamu-A*01 has been associated with moderate control
of SIVmac239 replication [29,30]. Mamu-B*01 remains on the panel based on early reports of SIV-derived epitopes [31,32], but subsequent studies show that Mamu-B*01
does not bind SIV-derived epitopes and has no effect on SIV disease progression [26]. P, N, I, C denotes protected, non-protected, isotype control, and non-antibody
treated control animals, respectively.
doi:10.1371/journal.ppat.1000433.t004
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because of relatively low affinity for the envelope trimer

[39,40,41], it binds with high nM affinity to monomeric gp120

from SHIVSF162P3. HIV is suggested to express both functional

and other forms of envelope including monomeric envelope

[42,43]. If DC-SIGN was exploiting nonfunctional as well as or

instead of functional envelope on virions then 2G12 might be an

efficient competitor for binding to nonfunctional envelope at the in

vivo concentrations achieved in our passive experiments. Future

studies on the potential role of inhibiting the HIV-DC-SIGN

interaction in blocking transmission could make use of anti-DC-

SIGN antibodies.

In summary, the data presented here, together with earlier data,

show conclusively that monoclonal antibody 2G12 can offer

protection against mucosal SHIV challenge at low neutralization

titers. An explanation based on unusual 2G12 transudation

properties to the mucosal surface is ruled out. Viable explanations

include: (1) rapid 2G12 neutralization kinetics, (2) a critical role for

extra-neutralizing, e.g. Fc-mediated, 2G12 activities under the

conditions of the experiment, and (3) a critical role for 2G12

inhibition of virus interaction with lectin, e.g. DC-SIGN, bearing

cells. Further in vivo protection studies will be required to

distinguish these possibilities. Nevertheless, the results are

provocative in suggesting the glycan shield as a potentially

favorable HIV vaccine target.

Materials and Methods

Macaques
All protocols for female Indian rhesus macaques were reviewed

and approved by the Institutional Animal Care and Use

Committees. The animals were housed in accordance with the

American Association for Accreditation of Laboratory Animal

Care Standards. At the start of the experiments, all animals were

experimentally naı̈ve and were negative for antibodies against

HIV-1, SIV, and type D retrovirus. Virus challenge and i.v.

antibody protocols are more fully described elsewhere [8,44].

Challenge virus
The virus used in this study was SHIVSF162P passage 3, which

has been described elsewhere [45,46,47]. SHIVSF162P3 retains the

R5 phenotype of HIV-1SF162. SHIVSF162P3, propagated in

phytohemagglutin (PHA)-activated rhesus macaque peripheral

blood mononuclear cells (PBMC), was obtained through the NIH

AIDS Research and Reference Reagent Program, Division of

AIDS, NIAID, NIH (Cat. No. 6526; Contributors: Drs. Janet

Harouse, Cecilia Cheng-Mayer, and Ranajit Pal).

Antibodies
Recombinant 2G12 was obtained from Polymun Scientific,

Vienna, Austria. The isotype control antibody DEN3, an anti-

Dengue NS1 human IgG1 antibody was expressed in Chinese

hamster ovary (CHO-K1) cells in glutamine-free custom formu-

lated Glasgow minimum essential medium (GMEM Selection

Media) (MediaTech Cellgro). For large-scale tissue culture, media

was supplemented with 3.5% Ultra Low Bovine IgG Fetal Bovine

Serum (Invitrogen) and grown in 10-layer Cellstacks and Cell

Cubes (Corning). The antibody was purified using Protein A

affinity matrix (GE Healthcare), and dialyzed against phosphate-

buffered saline (PBS). Care was taken to minimize endotoxin

contamination, which was monitored using a quantitative

chromagenic Limulus Amoebecyte Lysate assay (Lonza) per-

formed according to the manufacturer’s recommendations.

Antibody used for the passive transfer experiments contained ,1

IU of endotoxin/mg.

Plasma viral loads
The quantity of SIV viral RNA genomic copy equivalents

(vRNA copy Eq/ml) in EDTA-anticoagulated plasma was

determined using a quantitative reverse-transcription PCR

(QRT-PCR) assay. Briefly, vRNA was isolated from plasma

using a GuSCN-based procedure as previously described [48].

QRT-PCR was performed using the SuperScript III Platinum

One-Step Quantitative RT-PR System (Invitrogen, Carlsbad,

CA). Reaction mixes did not contain bovine serum albumin

(BSA). Reactions were run on a Roche Lightcycler 2.0

instrument and software. vRNA copy number was determined

using LightCycler 4.0 software (Roche Molecular Diagnostics,

Indianapolis, IN) to interpolate sample crossing points onto an

internal standard curve prepared from 10-fold serial dilutions of

a synthetic RNA transcript representing a conserved region of

SIV gag.

Serum antibody ELISAs
2G12 antibody concentrations in macaque sera were deter-

mined in ELISA by three different methods: (1) by binding to an

immobilized synthetic oligomannose dendron [21] conjugated to

BSA; (2) by binding to the anti-Idiotype 2G12 mouse IgG1 L13

kindly provided by Polymun Scientific, Vienna, Austria [49]; and

(3) by binding to monomeric gp120 JR-FL kindly provided by

Progenics [8].

Antibody concentrations in vaginal secretions
The determination of antibody concentration in mucosal

secretions was performed as described by Kozlowski, et al.

[8,50]. Briefly, vaginal secretions from each animal were absorbed

to cellulose wicks (Solan Weck-Cel surgical spears; Xomed

Surgical Products, Jacksonville, FL). A set of 3 samples per animal

was taken at 6 hours, 12 hours, 24 hours, 4 days, and 7 days post

i.v. antibody administration. Wicks were weighed before and after

secretion absorption. Clarified supernatants extracted from the

wicks were used to determine the concentration of antibody in

mucosal secretions by ELISA. Resulting data was compared to the

corresponding antibody standard curve using nonlinear regression.

Arithmetic means and standard deviations were calculated for

each set of triplicate samples per animal. The differences in the

mean concentrations of b12 and 2G12 at each timepoint were

evaluated in a student’s t test. Analyses performed in GraphPad

Prism Software for Mac, Version 5.0a.

Neutralization assays
Neutralization of antibodies and sera was assessed by 2 different

methods. Neutralization of the primary isolate SHIVSF162P3, was

performed using phytohemagglutinin (PHA)-activated peripheral

blood mononuclear cells (PBMC) from a single rhesus macaque

(no. 355) as target cells. Cells from this animal replicate

SHIVSF162P efficiently. Neutralization assessment was carried out

as described previously [8]. Neutralization titers of animal sera

were reported by Monogram Biosciences, South San Francisco,

CA after preparation of an HIV-1 envelope pseudotyped luciferase

SHIVSF162P3 capable of single-round replication. The pseudo-

virus-based neutralization assay was performed as previously

described [51].

MHC genotyping
MHC genotyping by sequence-specific PCR was performed by

the University of Wisconsin Genotyping Core with support of NIH

grant 5R24RR16038-6 awarded to David I. Watkins and

previously described [25].
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Viral sequence amplification
Viral RNA was extracted from 140 ml of monkey serum using

the QIAamp Viral RNA Mini Kit (Qiagen) according to the

manufacturer’s instructions. 8 ml of this viral RNA was then used

for cDNA synthesis using Superscript III (Invitrogen) primed by

primer sf162rtn (59-TTATAGCAAAATCCTTTCC-39). 3 ul of

the cDNA reaction was then used to amplify the gp160 open

reading frame using primers sf162mf (59–CACCATGAGAGT-

GAAGGGGATCAGGAAG-39) and sf162rn (59-TTATAG-

CAAAATCCTTTCCAAGCCCTGTC-39) in combination with

PfuUltra Hotstart DNA Polymerase from Stratagene. After an

initial denaturation step at 95uC for 4 minutes, 35 cycles were

performed with 95uC for 30 seconds, 52uC for 30 seconds and

72uC for 3 minutes, before a final elongation at 72uC for

10 minutes concluded the amplification. Sequences were deter-

mined after subcloning the PCR products into TOPO vectors.

Statistics
The experiment consisted of a total of 9 animals (n = 9) divided

into treatment groups as follows: 2 animals (n = 2) in the isotope

control group, 2 animals (n = 2) in the non-antibody-treated

controls, and 5 animals (n = 5) in the 2G12-treated group.

Statistical analyses were performed using Graph Pad Prism for

Windows, version 5 (Graph Pad Software Inc., San Diego, CA,

2005).

Protein Sequences
GenBank accession locus for 2G12 is 10M3_H (heavy chain,

Fab 2G12 unliganded) and 10M3_L (light chain, Fab 2G12

unliganded). GenBank accession locus for IgG1 b12 is AAB26306.
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