
Review Article

Libing Guo#, Jiaxin Xu#, Yunhua Du, Weibo Wu, Wenjing Nie, Dongliang Zhang, Yuling Luo,
Huixian Lu, Ming Lei, Songhua Xiao, Jun Liu*

Effects of gut microbiota and probiotics on
Alzheimer’s disease

https://doi.org/10.1515/tnsci-2020-0203
received September 26, 2021; accepted November 23, 2021

Abstract: Alzheimer’s disease (AD) is a progressive neuro-
degenerative disease with high morbidity, disability, and
fatality rate, significantly increasing the global burden of
public health. The failure in drug discovery over the past
decades has stressed the urgency and importance of seeking
new perspectives. Recently, gut microbiome (GM), with the
ability to communicate with the brain bidirectionally
through the microbiome–gut–brain axis, has attracted
much attention in AD-related studies, owing to their
strong associations with amyloids, systematic and focal
inflammation, impairment of vascular homeostasis and
gut barrier, mitochondrial dysfunction, etc., making the
regulation of GM, specifically supplementation of pro-
biotics a promising candidate for AD treatment. This
article aims to review the leading-edge knowledge con-

cerning potential roles of GM in AD pathogenesis and of
probiotics in its treatment and prevention.
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1 Introduction

The characteristic symptom of Alzheimer’s disease (AD)
is cognitive deficiency in at least one cognitive areas,
including memory recall, learning, concentration, etc.,
often accompanied by behavioral and psychological dis-
orders [1]. It can be classified into different levels according
to the severity, ranging from mild cognitive impairment
(MCI) to dementia [2]. With high morbidity, disability, and
fatality rate, AD is now a critical health problem that signif-
icantly increases global financial burden [3]. The prevalence
of AD increases with age, reaching 23% in people over 86
years old, affecting millions of elderly people [4]. The fact
that there is still no treatment that can effectively improve
the crucial clinical outcomes of AD reveals that there is still a
considerable gap in our knowledge of its complex pathogen-
esis, making a broader perspective urgent.

Gut microbiome (GM) is composed of the totality of
microorganisms and their collective genetic materials
in the gastrointestinal tract (GIT) [5]. GM has been found
to play crucial roles in keeping homoeostasis and
modulating functions of almost all major body sys-
tems, including the central nervous system (CNS) [6].
Research into the impacts of GM on the pathogenesis
of AD has rapidly increased over the last decades. The
discovery of the microbiota–gut–brain axis, a communica-
tion pathway between GM and the brain, has enhanced
researchers’ confidence to regard the modification of GM
as a potential approach to prevent or treat AD [7]. Thus,
probiotics, live microbes which can positively alter the GM
when taken in suitable amounts [8], are now regarded as
potential candidates in the treatment of AD. In this article,
we make a summary of the present knowledge on possible
influences of gut microbiota on AD onset and progression
and possible protective roles of probiotics against AD.
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2 Gut microbiota and
microbiota–gut–brain axis

There are over 1,000 species of microorganisms, including
bacteria, archaea, yeasts, single-celled eukaryotes, hel-
minth parasites, and viruses, with millions of genes totally
in the human GIT [9]. There are various factors that can
influence the GM population, such as modes of birth, age,
diet, antibiotic exposure, and stress [10], some of which
can also influence the pathogenesis of AD. A growing body
of research has investigated the role of GM in human
growth and health maintenance. In addition to interacting
with human immune system via toll-like receptors (TLRs),
GM can also act as a biological barrier to prevent abnormal
microbiota from invading [11] and even participate in the
maturation process of our immune system [12]. GM have
been found to affect maturation and function of microglia
[13,14]. As for metabolism, GM could play different roles,
ranging from regulating the glucose and lipid homeostasis
[15] to immunomodulatory effects [16]. Notably, there are
some important metabolites produced by the microbiota,
which include neurotransmitters such as γ-aminobutyric
acid (GABA), serotonin (5-HT) and dopamine, and short-
chain fatty acids (SCFAs), which have been found to be
associated with changes of host brain functions [17,18].

GM communicates with brain bidirectionally via the
microbiome–gut–brain axis involving various routes,
including the immune system, vascular system, enteric
nervous system, and the vagus nerve [19]. The lack of
GM in germ-free (GF) mice could lead to multiple altera-
tions in the nervous system, such as altered concentration
of various neurotransmitters (5-HT, dopamine, GABA, etc.)
and modulation of synaptic plasticity and transmission,
leading to behavioral and emotional abnormalities [20].
Thus, the axis has received considerable attention in stu-
dies on neurological disorders, including AD.

3 Gut microbiota and AD

AD is a progressive neurodegenerative disorder, with
extracellular amyloid-β (Aβ) plaques and intracellular
neurofibrillary tangles (NFTs) made of hyperphosphory-
lated tau as its pathological hallmarks [21]. In addition,
chronic neuroinflammation led by excessive microglial acti-
vation, astrocyte reactivity, and increased load of proin-
flammatory cytokines and chemokines has also been found
to play a vital role in AD pathology [22–24]. Neuroinflam-
mation can not only precede Aβ and tau aggregation but
also influence Aβ production, aggregation, and clearance

[13], whereas Aβ complexes can bind to pattern recognition
receptors expressed in microglia and astrocytes and contri-
bute to neuroinflammation dysregulation and generation of
reactive oxygen species (ROS), leading to death of neurons
and glial cells [22]. Vascular risk factors such as hyperten-
sion, atherosclerosis, and diabetes can also increase the risk
of AD. Vascular lesions and dysfunction are also now
regarded as important early events in AD pathophysiology
[25,26]. The etiology and pathogenesis of AD are still not
fully understood, leading to the failure in clinical trials of
drugs targeting toward generally acknowledged molecules,
especially Aβ. AD is now regarded as a multifaceted dis-
order influenced by various risk factors such as age, cere-
brovascular risk factors, psychogenic diseases [27], and GM.

Increasing evidence indicates a strong association
between GM and AD. GM changes have been noticed in
fecal samples from patients with AD [6] and transgenic
AD mice [28,29]. Studies on the mechanisms behind this
illuminating association may provide new viewpoints on
the pathogenesis and intervention of AD.

3.1 Gut microbiota and amyloid-related
pathogenesis

Amyloids can be secreted by various members of human GM,
such as E. coli, S. typhimurium, Bacillus subtilis, Staphylococcus
aureus, Pseudomonas fluorescens, etc. [30]. GM-derived and
human amyloids are involved in complex interactions with
the immune system. Although microbial amyloids like CsgA
do not have the same amino acid sequences as human Aβ1-42,
they still contain similar pathogen-associated molecular
patterns (PAMPs) and thus could interact with the same
TLR2, inducing proinflammatory interleukin IL-17A and
potent inflammatory mediators such as IL-22, followed
by the activation of NF-κB signaling pathway and cycloox-
ygenase-2 (COX-2) [31–33]. Bacterial amyloid proteins are
also found to promote misfolding and aggregation of neu-
ronal Aβ peptides through cross-seeding [30,34,35]. Recent
evidence indicates that Aβ can also act as an antimicrobial
peptide that participates in host immune response to
microbes through fibrillation, entrapping pathogens, and
disrupting cell membranes [36].

3.2 Gut microbiota dysbiosis and
inflammation-driven pathogenesis

Increasing evidence suggests that the association between
dysregulation of GM and altered inflammatory states might
explain the influences of GM in the initiation or exacerbation
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of AD. Cattaneo et al. investigated the GM taxa changes
in patients with CI and brain amyloidosis, showing an
increased abundance of Escherichia/Shigella, a proinflam-
matory taxon and a decreased abundance of E. rectale, an
anti-inflammatory taxon, which was found associated with
changes of peripheral inflammation [37]. The GF condition
or chronic antibiotic treatment in AD mice could result
in reduced insoluble amyloid plaques and suppressed
neuroinflammation, attenuated microglia, and astrocyte
aggregation around the plaques in the hippocampus
[28,38,39].

Lipopolysaccharide (LPS), which is located in the
outer membrane of Gram-negative bacteria, is considered
as an important mediator between GM dysbiosis and
AD pathology (Figure 1). It can initiate potent immune
responses by interacting with CD14 and the TLR4-MD-2
complex of immune cells. TLR4 can interact with TIRAP
and MyD88 and then induce the activation of NF-κB, a
pro-inflammatory transcription factor which is known for
triggering pathogenic pathways in AD by promoting the
secretion of proinflammatory cytokines [40–43]. Zhang
et al. reported that the level of plasma LPS was elevated
in AD patients, which was correlated positively with
the level of blood monocyte/macrophage activation [44].
LPS was also detected in the hippocampus and superior
temporal lobe neocortex in patients with AD [45]. LPS was
found to colocalize with Aβ1-40/42 in amyloid plaques and
around vessels [46]. Interestingly, Marizzoni et al. reported
that amyloid standardized uptake value ratio uptake was
positively associatedwith the levels of bloodLPS,proinflam-
matory cytokines, and endothelial dysfunction [47].

3.3 Gut microbiota dysbiosis impairs
vascular homeostasis and gut barrier

It is well established that the impairment of vascular
homeostasis plays an essential role in the development
of AD [25]. Furthermore, the invasion of GM and their
metabolites into the brain depends heavily on the perme-
ability of the blood–brain barrier (BBB) and the gut
epithelial barrier, which can also be affected by GM dysbiosis
[48]. Transplant of the fecal microbiota from pathogen-free
adult mice was found to upregulate the expression of tight
junction proteins and decrease BBB permeability in GF adult
mice [49]. Engen et al. reported a link between increased
proinflammatory GM with impaired gut barrier function
[50]. Bacterial products such as LPS and amyloids have
been found to impair BBB through triggering chronic neuro-
inflammatory responses [51]. GM dysbiosis can also affect
trimethylamine oxide levels that regulate vascular

microRNA, leading to atherosclerosis, a common risk
factor for AD [52].

3.4 Gut microbiota dysbiosis causes
mitochondrial dysfunction

Mitochondrial dysfunction, existing as an early event of
AD, can lead to decreased energy metabolism and oxida-
tive phosphorylation of key enzymes. It is also found to
contribute to neuronal apoptosis and calcium homeostasis
disorders [53]. The imbalance of mitochondrial/cellular
antioxidant system may lead to the decrease of PTEN-
induced putative kinase 1 (PINK1) expression, resulting
in reduced ATP production and abnormal brain meta-
bolism and eventually leading to cognitive dysfunction
[54,55]. Due to the symbiotic relationship between mito-
chondrial metabolic diversity and primitive aerobic and
anaerobic bacteria, it can provide energy for the host
under both aerobic and anaerobic conditions. The differ-
ences in bacterial composition and the changes of meta-
bolite production caused by GM dysbiosis may lead to
mitochondrial dysfunction, thus increasing oxidative
stress and inflammatory response of the host [56]. There-
fore, the prevention of mitochondrial dysfunction and
reduction of oxidative stress may be promising methods
for the prevention or alleviation of cognitive dysfunction.

3.5 Other pathways

Glutamate acts as a major excitatory neurotransmitter
involved in the process of memory and learning [57].
Recent studies have shown that GM including Bacter-
oides vulgatus and Campylobacter jejuni could influence
the metabolism of glutamate. Moreover, D-glutamate meta-
bolized by GM may interact with the glutamate N-methyl-
D-aspartate-receptor and influence cognitive function
in AD patients [58]. Brain-derived neurotrophic factor
(BDNF) is a major protective factor fighting neurodegen-
eration, particularly in AD [59]. It is proposed that GM are
able to affect the level of brain BDNF as decreased BDNF
level and abnormal behavior in GF mice could be normal-
ized after colonized with probiotic administration [60].
SCFAs, including acetate, butyrate, and propionate, can
act as modulators of both peripheral NS and CNS based
on their ability to cross and even influence gut barrier
and BBB. [61] SCFAs can also regulate microglia homeo-
stasis as there was a microglia defect in the mice that
lack the free fatty acid receptor 2 (FFAR2), one of the
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SCFA receptors. A similar change occurred under a GF
condition [14]. Administration of sodium butyrate at an
advanced stage of progression was reported to improve
memory in AD mice, possibly through increasing expres-
sion of learning-associated genes and restoring histone
acetylation [62]. Butyrate also acts as a major energy
source of intestinal cells and is able to make mito-
chondrial respiration rate and ATP production higher
[63,64].

4 Probiotics as potential
therapeutics for AD

Accumulated clinical evidence has implied therapeutic

potential for probiotics in AD through various mecha-
nisms. A meta-analysis conducted in 2019 indicated that

probiotics could improve cognitive performance in MCI

and AD patients, possibly due to their anti-inflammatory

Figure 1: Proposed mechanism of LPS affecting the pathogenensis of AD. AD-related GM dysbiosis contributes to an increased level of
plasma LPS, which promotes blood monocyte/macrophage activation and the secretion of pro-inflammatory cytokines mainly through
NF-κB pathway. LPS can also cross the BBB, promote neuroinflammation and colocalize with Aβ1-40/42 in amyloid plaques and around
vessels in the brain, possibly affecting Aβ pathology and endothelial function.
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and antioxidative effects [65]. In a randomized, double-
blind and controlled trial, probiotic milk containing
Lactobacillus acidophilus, Lactobacillus casei, Bifido-
bacterium bifidum, and Lactobacillus fermentum for
12 weeks was reported to significantly improve cognitive
performance in AD patients. Further assessment showed
positive influence of probiotics on markers of insulin
resistance, plasma level of malondialdehyde, and serum
levels of high-sensitivity C-reactive protein, triglyceride,
and very low density lipoprotein, whereas it shows no
improvement in fasting plasma glucose, other lipid pro-
files, and biomarkers of inflammation and oxidative
stress [66] Large-scale, long-period, randomized con-
trolled trials are needed for more reliable evidence.

Attempts have been made to unravel the effects of
probiotics on AD pathology and pathophysiology. Previous
studies have implied significant anti-inflammatory effects
and cognitive benefits of various probiotics [67–70]. Bonfili
et al. reported that the administration of SLAB51 mixture (a
formulation including Streptococcus thermophilus, bifido-
bacteria, and lactobacilli) could positively influence levels
of plasma inflammatory cytokines, restore the impaired ubiq-
uitin proteasome system and autophagy, reduce Aβ load,
and ameliorate cortical atrophy in AD mice [69]. Previous
studies have also demonstrated respective anti-inflamma-
tory effects of Lactobacillus johnsonii and Bifidobacterium
infantis through modulating the kynurenine pathway of
tryptophan degradation [71,72]. Kobayashi et al. found
that Bifidobacterium breve A1 could restore the Aβ-induced
changes in the expression of inflammation and immune-
reactive genes in the hippocampus. They also noticed an
increase in the plasma level of acetate, which could par-
tially alleviate behavioral deficits in AD model mice [68].
Lactobacillus plantarum C29was reported to regulate micro-
glia activation, suppress NF-κB activation, and reduce Aβ
deposition in the brain of 5xFAD transgenic mice [70].

Despite current supportive evidence on therapeutic
potential of probiotics, more studies are warranted to
develop an effective and safe probiotic formulation for
AD prevention or treatment. In fact, no probiotic formu-
lation has been approved as a therapeutic modality by
major medical regulatory authorities due to the lack of
better evidence-based proof of their health-promoting
ability and adverse effects [73]. It is important to note
that probiotic intake may cause serious adverse events
such as sepsis, especially among vulnerable population
including the elderly, critically ill, and immunocompro-
mised patients [61,73]. Interestingly, several studies implied
that probiotics use after antibiotic treatment could increase

the risk of communicable diseases by inducing a persistent
long-term dysbiosis [73–77]. Another noteworthy adverse
event of probiotics is serotonin syndrome, which is often
caused by selective serotonin reuptake inhibitor (SSRI) use
in patients with depression. Tryptophan-metabolizing pro-
biotics alone can rarely trigger the syndrome while its com-
bination with potent SSRI can significantly increase the risk
[61,78]. As people with or at risk of AD are always elderly
and sometimeswith depression, probiotics should be admin-
istered much more carefully among these people.

5 Conclusion

The bottleneck in current AD therapy is the poor under-
standing of AD pathogenesis, for which the studies on the
association between GM and AD may open new horizons.
GM dysbiosis has been found correlated with various AD
biomarkers, thus correcting it through supplementation
of probiotics may be a potential method to treat AD.
Several well-designed clinical and mechanistic studies
are warranted to further elucidate the underlying mecha-
nisms and develop an effective and safe probiotic formula-
tion for AD prevention and treatment. Emerging novel
probiotic drugs are being studied and designed to reduce
related risks and enhance their therapeutic ability. While
there aremany challenges that remain, researchers around
the world should still be optimistic about this flourishing
field linking AD to gut microbiota.
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