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SUMMARY

Although numerous studies have examined the effects of climate variability on
armed conflict, the complexity of these linkages requires deeper understanding
to assess the causes and effects. Here, we assembled an extensive database of
armed conflict, climate, and non-climate data for South Asia. We used structural
equation modeling to quantify both the direct and indirect impacts of climate
variability on armed conflict. We found that precipitation impacts armed conflict
via direct and indirect effects which are contradictory in sign. Temperature af-
fects armed conflict only through a direct path, while indirect effects were insig-
nificant. Yet, an in-depth analysis of indirect effects showed that the net impact is
weak due to two strong contradictory effects offsetting each other. Our findings
illustrate the complex link between climate variability and armed conflict, high-
lighting the importance of a detailed analysis of South Asia’s underlying mecha-
nisms at the regional scale.

INTRODUCTION

Armed conflict has remained one of the greatest threats to human security (Schleussner et al., 2016). Deter-

mining the underlying processes and driving factors of armed conflict has been an active area of scientific

research, and an in-depth understanding of the drivers of armed conflict may help to prevent armed conflict

(Hsiang et al., 2013; Lim et al., 2007). There is increasing evidence that climate variability may have devas-

tating effects on human living conditions by driving risks to livelihoods and incomes, compounded by

forced displacement, food price shocks, and land-use disputes (Diffenbaugh and Burke, 2019; Lobell

et al., 2011; Stenzel et al., 2021; von Uexkull and Buhaug, 2021; Wheeler and von Braun, 2013). These find-

ings encourage the suggestion that climate variability may have impacts on armed conflict (Burke et al.,

2009; O’Loughlin et al., 2012).

During the last 10 to 15 years, researchers have conducted numerous studies to examine how climate vari-

ability, often represented by temperature and precipitation, possibly affects armed conflict (Hsiang et al.,

2013; Jun and Sethi, 2021; O’Loughlin et al., 2014; Roche et al., 2020; Salehyan and Hendrix, 2014). Previous

research proposed potential direct and indirect pathways linking climate variability with armed conflict. It

has been suggested that climate has a direct effect on armed conflict via physiological and/or psycholog-

ical factors. For example, based on laboratory research, Anderson (1989) showed that uncomfortable tem-

peratures increase negative effects that lead to personal aggression and violence.

Besides affecting armed conflict directly, some studies suggest that climate variability influences conflict

indirectly through economic linkages (Koubi et al., 2012; Roche et al., 2020; Zhang et al., 2007). The hypoth-

esis is that some conflict is led by climate-depressed economic output. For example, climate variability

could induce a drop in agricultural incomes, which would trigger the onset of conflict, especially in agricul-

tural-dependent regions. The reduced nation incomes resulting from the climate crisis would affect the

duration and intensity of the conflict (Koubi, 2019). Zhang et al. (2007) and Jun and Sethi (2021), which

used historical data to analyze the outbreak of violent conflict over several centuries, showed an increasing

risk of conflict when agricultural production and food shortages occur in agrarian societies. As de Mesquita

and Smith (2017) suggested, when the capacity of leaders in a country is curtailed by climate-driven

resource shortage, there will be opportunities for their opponents to organize political resistance to
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Figure 1. The conceptual framework for the direct (green) and indirect (purple) impacts of climate on conflict
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overthrow them from power. Schilling et al. (2020) found that the adverse effect of climate variability on

food supply had aggravated broadly based social unrest such as the well-known ‘‘Arab Spring’’. Generally,

the above studies suggest that climate variability might indirectly affect conflict through the economy.

Although empirical literature found an impact of climate variability on armed conflict and developed some

clear ideas of how climate variability might affect armed conflict (Koubi, 2019), there remains a void in the

quantification of the direct and indirect impacts of climate variability on armed conflict in certain regions. At

the same time, the impact of climate variability on armed conflict is usually studied in isolation, and little

attention is paid to the direct and indirect effects of climate variability on armed conflict in the same region

(Helman et al., 2020). Helman et al. (2020) have shown that multiple causal effects are in play when predict-

ing the risk of armed conflict from climate variability in Africa and theMiddle East. Using structural equation

modeling (SEM), they quantified direct and indirect effects of climate variables on conflict risk. While such

analysis was focused on Africa and the Middle East, areas in Asia that are politically fragile and constantly

suffer conflict remain largely unnoticed (Adams et al., 2018). According to the Geo-referenced Event Data-

set (GED) (version 20.1) of the Uppsala Conflict Data Program’s (UCDP) database statistics, the number of

armed conflict events in South Asia has been increasing from 1850 in 2000 to 2846 in 2015, which accounts

for 40% of the armed conflict events in Asia. Besides, South Asia is a less developed part of Asia and has a

dense population and a substantial extent of dependence on agriculture (von Uexkull et al., 2016; Wisch-

nath and Buhaug, 2014). However, the effect of climate variability on armed conflict in South Asia is rarely

investigated and not well understood.

The complicated impacts of climate on armed conflict comprise various factors. Under the conceptual

framework of the climate-conflict pathways (Figure 1) (Scheffran et al., 2012), this study seeks to uncover

the effects of climate variability on armed conflict in South Asia by simultaneously considering the direct

and indirect impacts. The fundamental idea is that climate variability’s impact on armed conflict is both

direct and indirect, depending on the changes in non-climate variables such as water security, yield, and

income. We assembled an extensive database of armed conflict events and detailed climate and non-

climate data (Table S1) covering 2000–2015. SEM is applied to capture underlying linkages of climate vari-

ability to armed conflict for its advantages in enabling the exploration of not only the direct and indirect

effects simultaneously but also the pathways through which the indirect impacts might manifest. This study

aims to develop a theory to understand the complex effects of climate variability on armed conflict in South

Asia. This includes Sri Lanka, Nepal, Bhutan, Maldives, Pakistan, Afghanistan, and India as the analyzed

countries.

RESULTS

Figure S1 depicts the spatial distribution of armed conflict events from 2000 to 2015 in South Asia. It shows

that most of the events occurred in Afghanistan, Sri Lanka, Nepal, Pakistan-Afghanistan border, and the

seven Northeastern states of India (Arunachal Pradesh, Assam, Meghalaya, Manipur, Mizoram, Nagaland,

and Tripura). The number of events decreased from 2010 to 2015 after a significant increase since the
2 iScience 25, 105258, November 18, 2022



Table 1. Direct, indirect, and total standardized effects of climate and non-climate variables on armed conflict. NS:

not significant, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

Predictor

Direct Indirect Total

Estimate

Standard

Errors Estimate

Standard

Errors Estimate

Standard

Errors

Temperature anomaly �0.068*** 0.006 NS �0.068*** 0.006

Precipitation anomaly 0.031*** 0.006 �0.001* 0.0001 0.031*** 0.006

Water resources – �0.024*** 0.006 �0.024*** 0.006

Crop yield �0.031*** 0.008 NS �0.031*** 0.008

Income NS – NS

Population density �0.016* 0.009 – �0.016* 0.009

Infant mortality rate NS – NS

Urban accessibility 0.054*** 0.006 – 0.054*** 0.006

Excluded ethnic groups 0.063*** 0.006 – 0.063*** 0.006
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beginning of the century. The annual average number of armed conflict events in this region was 2662 (Fig-

ure S2). Our statistical analysis shows that the numbers of grid-cells with a significant precipitation anomaly

were above average (Figures S3 and S4, method details). Grid-cells with a temperature anomaly had an

opposite sign to the crop yield anomaly in the same cells (Figure S5, method details). These findings indi-

cate that there may be a link between climatic, non-climatic elements, and armed conflict, while their spe-

cific quantitative relationship and causal direction need to be further explored and quantified.

With the help of SEM, multiple direct and indirect effects of climate variability on armed conflict can be

quantitatively described (Table 1 and Figure 2). Tests of the SEM model robustness are presented in

(method details, Tables S2–S4). Though both precipitation and temperature have significant direct impacts

on armed conflict (Figure 2B), precipitation has a positive (0.03) and significant (p < 0.001) effect on armed

conflict, while temperature has a negative effect (�0.07). The results also indicate that crop yield has a sig-

nificant inverse impact on armed conflict in both the present (�0.03) and the following year (�0.03). Like-

wise, income negatively affects armed conflict in the present and the next year with statistical non-signif-

icance (p > 0.05). It is worth noting that the direct effect of current armed conflict has a significant

positive impact (0.65) on armed conflict of the following year. These findings are supported by the results

from the mean statistics (Figure S3) and correlation analysis (Figure S6), which show that rises in precipita-

tion enhance the chance of armed conflict. At the same time, increases in temperature, crop yield, and in-

come reduce the risk of armed conflict.

SEM provides an explicit and detailed path toward understanding the indirect impacts of climate variability

on armed conflict (Figure 2C and Table 1). Generally, precipitation has an indirect effect in two ways: (i) (+)

precipitation/ (�) crop yield/ (+) armed conflict; (ii) (+) precipitation/ (+) water resources/ (+) crop

yield/ (�) armed conflict, where (+) indicates a positive effect and (�) represents a negative effect. The

observed indirect effects of precipitation (Figure 2C) canceled each other, resulting in a weak net impact

on armed conflict (�0.001). The indirect effect of the temperature on armed conflict was not significant

(p > 0.05). Yet, a detailed decomposition provides a complex, contrasting effect which involves a combi-

nation of paths: (+) temperature/ (+) crop yield/ (�) armed conflict; (+) temperature/ (�) water re-

sources/ (�) crop yield/ (+) armed conflict. Or, in short, on the one hand, warming causes increases

in crop yield, which reduces armed conflict, while, on the other hand, it reduces water resources, which

in turn decreases food production that increases armed conflict. Despite their strong effects, these two

pathways cancel each other, resulting in the negligible indirect net influence of temperature on armed con-

flict in South Asia.

DISCUSSION

Using a large database of armed conflict, and detailed climate and non-climate data, with the SEM, we

explore the effects of climate variability on armed conflict in South Asia. Following successful tests of collin-

earity (Table S5) and reliability (Table S6), we examine the possible direct and indirect effects of climate

variability on armed conflict (Figure 2 and Table 1). Our results find that precipitation is associated with
iScience 25, 105258, November 18, 2022 3



Figure 2. Structural Equation Model showing standardized coefficients of each factor effect on armed conflict

(A) The conceptual model.

(B) The direct impact of climate variability on armed conflict.

(C) The indirect impact of climate variability on armed conflict.

(D) The combined impact (direct and indirect) of climate variability on armed conflict. The number next to the arrows indicates the direct effect of

standardization, the red arrows indicate a negative effect, the black arrows indicate a positive effect, and the gray arrows are not statistically significant

(p > 0.05), while width indicates its importance in the model.
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increases in armed conflict, which is consistent with some empirical literature that suggested links between

plentiful precipitation and armed conflict (Hsiang et al., 2013; Roche et al., 2020; Salehyan and Hendrix,

2014). For instance, it has been reported that Hindu Muslim riots in India are more likely to occur under

extreme precipitation conditions (Bohlken and Sergenti, 2010). However, our result indicates that heat

may suppress armed conflict, suggesting that the negative affect escape (NAE) might be the primary mech-

anism in South Asia. According to the NAE model, when rising temperature causes discomfort, people are

more interested in finding an escape from the heat than provoking conflict (Bell and Baron, 1976). This

finding is similar to previous work on Asia that described a negative effect of temperature on civil war

(Wischnath and Buhaug, 2014), contrary to some studies that reported a positive effect of temperature

on armed conflict in Africa and across the globe (Carleton and Hsiang, 2016; Helman et al., 2020). We

may attribute this discrepancy to the difference in regional climate and geographical environment that

shapes social vulnerability, leading to the inconsistent responses of armed conflict to climate variability

in South Asia and other regions (Buhaug and von Uexkull, 2021; Guedes et al., 2016).
4 iScience 25, 105258, November 18, 2022
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Previous literature illustrated that under unfavorable weather conditions substantially reducing crop

yields and causing huge economic losses, violence might become an alternative source of income for

those who can no longer make their living relying on rain-fed agriculture, food supply, or livelihood se-

curity (Roche et al., 2020; von Uexkull et al., 2016). Our results indicate that climate variability indirectly

affects armed conflict by affecting water and yield, partly supporting the previous research (Koubi, 2019;

Theisen et al., 2013). However, unlike previous studies of the link between climate variability and armed

conflict, our study particularly paid attention to exploring the indirect effects of climate variability on

armed conflict. It is found that the indirect impact of climate variability on armed conflict is complex

for multiple causal effects.

On one hand, precipitation, together with temperature, decreases the chance of armed conflict by influencing

changes in water resources and crop yield ((+) precipitation/ (+) water resources/ (+) crop yield/ (�)

armed conflict; (+) temperature/ (+) crop yield/ (�) armed conflict). For example, a large amount of pre-

cipitation may enrich water resources, while the rising temperature warms up the environment thus resisting

temperature limitations in both late winter and early spring. The combined effect of these two linkages meets

the requirement for water and temperature necessary for increasing crop yield, thereby avoiding food crises

and reducing the possibility of conflict (D’Odorico et al., 2020; Meza and Silva, 2009).

On the other hand, temperature and precipitation may also indirectly increase the likelihood of armed con-

flict ((+) precipitation/ (�) crop yield/ (+) armed conflict; (+) temperature/ (�) water resources/ (�)

crop yield/ (+) armed conflict). During the critical period of crop growth, we found that both the

increasing frequency of precipitation and temperature events may negatively affect crop yield. The rising

temperature would deprive crops of the necessary water for growth by causing a shortage of river runoff

and surface water, while the excessive precipitation might destroy the growth of crops by inducing flood

and soil erosion (Chaturvedi et al., 2012; Eastin, 2018; Goswami et al., 2006). All of these will wreak havoc

on crop growth, resulting in a sharp drop in crop yields and increasing the likelihood of armed conflict. The

Naxalite movement in India and the Maoist insurgency in Nepal are two examples where such a dynamic

played out (Christian, 2011).

In this study, we find that although the total indirect effects of temperature on armed conflict were not

significant, partitioning these net effects into detailed paths revealed its complexity. The result was a

weak net effect of temperature, which comprises two strong indirect effects that cancel each other.

This means that only investigating net responses may lead to erroneous conclusions. Our quantitative

findings can help reconcile the contradictory results of previous studies on temperature and conflict (Bu-

haug, 2010; Burke et al., 2009). Many studies in this field establish net impacts of climate variability on

armed conflict, disregarding the delineation of the impact channels, which may contain offsetting effects

from multiple channels leading to a net-zero effect of the studied factor. We may overlook important in-

formation about how climate variability impacts armed conflict if we only analyze net effects, limiting our

understanding of results and misleading our interpretations of the combined effects of climate variability

on armed conflict. The complex contradictory interactions found in this study may also occur at the coun-

try level. For example, in the year 2010, Pakistan was greatly hit by a flood caused by large amounts of

precipitation (Figure S5). The flood inundated more than 20% of the country and severely affected 29

districts, leading to a series of problems (Abid et al., 2015; Asgary et al., 2012; Busby et al., 2018). Pre-

cipitation severely brought down the yield of major crops such as rice and wheat, thus increasing the

chance of armed conflict (Figure S7).

In this study, we used the positive and negative anomalies in a single SEM model to explore its direct and

indirect effect mechanisms on armed conflict. To account for potential contradictory paths that might

cancel each other, we further constructed four new SEM models, separating our datasets to positive and

negative anomalies. Our results using a single SEMmodel and separate SEMmodels for positive and nega-

tive anomalies are generally consistent (Figure S8), implying that both negative and positive precipitation

and temperature anomalies have complex effects on armed conflict.
Limitations of the study

This research systematically reveals the complex linkages of climate variability effects on armed conflict in

South Asia. Future research can be carried out on the following aspects to comprehensively explore this

complex impact of climate variability on armed conflict globally. First, although we have sorted out the
iScience 25, 105258, November 18, 2022 5
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possible paths to decipher the impacts of climate variability on armed conflict based on previous studies.

More complicated paths may exist between them, which can be explored in the future with a study design

that can try and incorporate them simultaneously. Second, we are aware that in the nonlinear case the

direct and indirect effects of climate variability on armed conflict are more complex than in a simple linear

form. Such complex nonlinear effects are difficult to capture when taking multiple variables and pathways

into account. We see the challenges of simultaneously considering the nonlinear and indirect effects of

climate variability on armed conflict. In future work, we may attempt to provide a comprehensive view of

climate variability to nonlinearly describe its direct and indirect impacts on armed conflict. Lastly, our

research focuses on South Asia for its distinctive characteristics, including dense population, underdevel-

oped economy, and a substantial extent of dependence on agriculture as well as frequent armed conflict.

However, other regions on this planet may contain different characteristics. It is encouraged to put efforts

into researching the effects of climate variability on armed conflict in other parts of the world.
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RESOURCE AVAILABILITY
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Further information and requests should be directed to the lead contact, Fangyu Ding (dingfy@igsnrr.ac.cn).
Materials availability
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Data and code availability

Data: All data reported in this paper will be shared by the lead contact upon request.

Code: This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not include experiments or subjects.
METHOD DETAILS

Data sources

The information of armed conflict data is acquired from the GED (version 20.1) of the UCDP comprehensive

data about organized violence (Kreutz, 2010). This dataset covers three types of conflict events (state-based

conflicts, non-state conflicts, and unilateral violence) from 1989-2020. It defined an event as an organized

actor using armed force against another organized actor or civilians, resulting in at least one direct death at

a specific location on a specific date (Kreutz, 2010). We confined our analysis to 2000–2015 since this was the

period when all datasets overlapped. We got the armed conflict events of each year through selecting the

identifier (Year) in the UCDP GED dataset, then we assigned every UCDP conflict event of each year in

South Asia to the grid with a cell size of 0.5� 3 0.5�, and the number of armed conflict events per year in

each grid is summarized. Since we focused on the impacts of climate variability on conflict, Equation 1

adopted by the previous literature was used to convert the number of events in each grid cell to binary

values of 0 and 1, where 1 indicated experienced violence during this year and 0 otherwise (Ge et al., 2022).

Conflict Riskji =

�
1 if a conflict event occurs at grid i in year j
0 if no conflict event occurs at grid i in year j

(Equation 1)

Temperature anomaly is an important indicator of climate variability as well as one factor associated with

social conflict (O’Loughlin et al., 2014). We extract the dataset of monthly maximum temperatures from the

Climate Hazards Center Infrared Temperature with Stations (CHIRTS) dataset to measure temperature

anomalies. CHIRTS can help identify, quantify, and explore changes in extreme temperatures while

providing valuable resources for analyzing extremes of climate (Helman et al., 2020). To generate annual

temperature anomaly data from 2000 to 2015 with a spatial resolution of 0.5�, we first calculate the annual

level of maximum temperature for each cell. After that, we convert the yearly temperature anomaly data

covering the period from 2000 to 2015 by z-score processing (deviations from the annual averagemaximum

temperature 1983-1999, (Equation 2)). Finally, we re-sample annual temperature anomaly data to a spatial

resolution of 0.5.
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Tij� =
Tij � mTi

dTi
(Equation 2)

Where Tij� is temperature anomaly of grid i in year j, Tij is the annual maximum temperature of grid i in year j,

mTi is the annual averagemaximum temperature of grid i covering the period 1983–1999, and dTi is the stan-

dard deviation of the annual maximum temperature of grid i covering the period 1983–1999.

Precipitation anomaly is one of the reliable indicators of climate variability. It was also found related to the

conflict in previous studies (Hsiang et al., 2013). We derive amonthly precipitation dataset from the Climate

Hazards Group Infrared Precipitation with Stations (CHIRPS) to measure precipitation anomalies (Mack

et al., 2021). CHIRPS provides instant and reliable precipitation information on a global scale, which helps

monitor agricultural drought and environmental changes (Shen et al., 2020). To generate annual precipita-

tion anomaly data from 2000 to 2015 with a spatial resolution of 0.5�, we convert the monthly precipitation

dataset into yearly precipitation anomaly data covering the period from 2000 to 2015 by z-score processing

(deviations from the annual average precipitation 1983–1999, Eqution 3). We then aggregate the original

resolution into a spatial resolution of 0.5�.

Pij� =
Pij � mPi

dPi
(Equation 3)

Where Pij� is precipitation anomaly of grid i in year j, Pij is the annual precipitation of grid i in year j, mPi is the

annual average precipitation of grid i covering the period 1981–1999 and dPi is the standard deviation of

annual precipitation of grid i coving the period 1981–1999.

Regarding the non-climate variables, we determine crop yields, income, and water resources to be indica-

tors that influence the possibility of armed conflict in South Asia. Our choice of variables was grounded on

the fact that the heavy agricultural dependence of this region makes its agricultural and national incomes

prone to fluctuating crop yields, which itself is sensitive to climate variation and water resource distribution

(Adams et al., 2018). In addition, what usually comes after crop losses would be the government capacity

diminished by the reduced tax revenue resulting from falling incomes, which would soon be reflected in

income (Koubi, 2019). Also, one of the most significant issues in South Asia that may not be missed is water

scarcity that has aroused social grievance and exacerbated the already dire economic situation (Vinke et al.,

2017). Therefore, we chose these three variables to represent the mediators of climate variability affecting

armed conflict risk.

Climate variability exacerbates water shortages, which affect agricultural production, and in turn, increases

the risk of conflict making water resources an important mediator between climate variability and conflict

(Ikhuoso et al., 2020). We use the soil moisture data as a surrogate for water resources, which plays a critical

role in estimating soil water evaporative fluxes, drainage, and runoff, providing great potential for conti-

nental water resource assessment (Abowarda et al., 2021).

Climate variability has adverse effects on crop yields that increase the incentives for conflict (Kelley et al.,

2015). We use the normalized difference vegetation index (NDVI) in this study as a substitutive indicator for

crop yield (Zheng et al., 2019). NDVI can both estimate crop-growing conditions directly and assess the

climate variability influence on crops, which improves the crop yield prediction (Fensholt and Proud, 2012).

With the negative impact of climate variability on water resources and agriculture, the spread of poverty

may increase grievances that create conditions for conflict (von Uexkull et al., 2016). Although the income

and welfare statistics are currently unavailable, we refer to the conflict studies of von Uexkull et al. (2016)

and use the global nighttime light composite data from the Visible Infrared Imaging Radiometer Suite

(VIIRS) day-night band (DNB) carried by the Suomi National Polar orbiting Partnership (NPP) satellite to es-

timate the income states and dynamics (Levin and Zhang, 2017; Shi et al., 2014). Lights at night have been

shown to be a good proxy for income and are considered to correlate well with GDP, poverty, and other

socioeconomic welfare variables (Chen and Nordhaus, 2011; Henderson et al., 2011).

Previous research suggested that in addition to variables related to climate, the factors that represent pol-

itics, economy, and society are important to study conflict (Fearon and Laitin, 2003; O’Loughlin et al., 2012;

von Uexkull et al., 2016). We refer to previous studies while considering the availability of data, using the

following data to represent politics, economy, and society factors that affect conflict.
10 iScience 25, 105258, November 18, 2022
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Conflict is more likely to occur in areas where ethnic groups are marginalized (Cederman et al., 2010). To

estimate the political dimension of vulnerability, we include a binary exclusion variable that identifies

whether the group is excluded from executive state power according to the EPR-ETH dataset (Vogt

et al., 2015).

As closeness to large cities may increase the ease of information dissemination, these locations can be

attractive targets to the insurgents during certain conflicts (Fearon and Laitin, 2003). We use the time

required for individuals to reach their most accessible city to capture spatial variations in the ease of

disseminating a message (Weiss et al., 2018).

Given that violent conflict is a form of collective violence, the regions with high population density are usu-

ally close to major cities and rich in natural resources, rendering them high-risk targets to be attacked by

the rebels (Raleigh and Hegre, 2009). Therefore, we consider population density derived from the Gridded

Population of the World (GPW v4.10) created by the Center for International Earth Science Information

Network and Socio-Economic Data and Applications Center of Columbia University (Center for Interna-

tional Earth Science Information Network, 2011) as a driver of conflict risk.

Socioeconomic status is another important determinant of conflict risk (Collier and Hoeffler, 2004). We use

infant mortality rate from the Global Subnational Infant Mortality Rates, Version1 (GSIMR.v1) (Interagency

Group for Child Mortality Estimation, 2011) as a proxy of socioeconomic status because the infant mortality

rate can also serve as a broad measure of socioeconomic status when measures like gross domestic prod-

uct per capita are difficult to obtain on grid-scale (Interagency Group for Child Mortality Estimation, 2011;

O’Loughlin et al., 2012).

Structural equation modeling

We used the SEM to fit data because it enables us to both propose hypotheses about how each variable

works (correlations, direct, and indirect relationships among variables) and to test these relationships with

real data (Keller et al., 1998). Therefore, SEM is particularly suitable for confirming the direct and indirect

effects of climate and non-climate factors on armed conflict (Adedeji et al., 2016).

Previous studies showed that the risk of conflict might be greater in places where conflict already occurred

(Schutte and Weidmann, 2011), and the indirect effect (through crop yields, water resources, and income)

of climate anomaly on armed conflict may have a certain time-lag, so we included one-year time lag of con-

flict events to control these relations.

To account for the differences in the effects of politics, economy, and social factors on armed conflict while

considering the availability of data at both spatial and temporal scales, we included the following set of

control variables that have been associated with conflict in previous conflict studies research in SEM: exclu-

sion of political groups, population density, infant mortality rate and urban accessibility (Fearon and Laitin,

2003; O’Loughlin et al., 2012; von Uexkull et al., 2016).

We developed an SEM model (Figure 2A) with control variables and time-lag structure to estimate the

direct and indirect effect of climate variability on armed conflict. In this model, we hypothesized that

climate variability has not only direct effects on current armed conflict but also indirect effects on both cur-

rent and next year’s armed conflict through crop yields, water resources, and income. The SEM model was

run in IBM SPSS AMOS, and a bootstrap procedure (2000 replications) estimated the standard errors of the

coefficients for the final model at the 95% confidence interval.

Assessment of goodness fit

We defined the following indices to evaluate the goodness of fitting the SEM model (Bentler and Bonett,

1980; Pollman, 2014). The comparative fit index (CFI), which indicates the improvement proportion of a hy-

pothesized model relative to a baseline model, was set to be an acceptable fit if > 0.9. According to the

goodness-of-fit index (GFI), values close to 0.9 indicated a good fit. The adjusted goodness-of-fit index

(AGFI), which was adjusted for degrees of freedom, indicated a good fit if > 0.8. The root-mean-square er-

ror of approximation (RMSEA) assessed how far a hypothesized model is from a perfect model, where a

value of 0.1 or less was considered a mediocre fit. The standardized root means square residual (SRMR)

evaluates the overall fit of the model, with values less than 0.1 indicating an acceptable fit. The goodness
iScience 25, 105258, November 18, 2022 11
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fit statistics results suggest that all indexes performed well except for the mediocre fit of RMSEA, meaning

that the model functions well in describing the data (Table S6).
Robustness check

To check how sensitive the results of SEM modeling are to the time lag structure and control variables, we

constructed another three separate SEM models. When we drop the time lag structure, the result for the

effect of climate variability on armed conflict exhibits little change (Table S2). Similarly, we drop all control

variables to little effect (Table S3). As a matter of fact, the SEM yields largely similar results when we drop

the time lag structure and all control variables at the same time (Table S4). These results indicate that the

effects of climate variability on armed conflict are independent of control variables and time lag structure as

we have measured them.
Explanation of SEM results

In this study, we used the relative anomaly for the deviations from normal, including positive and negative

deviations with opposite numerical signs. For a positive deviation, a larger value means a larger deviation

from the multi-annual mean (zero, in our case). However, for a negative deviation, a larger value means a

smaller deviation from the multi-annual mean. Taking the effect of precipitation on water resources as an

example, we can see that for a negative precipitation anomaly (precipitation below the mean), water re-

sources decrease as the negative deviation become larger (Figure S9). In contrast, water resources increase

with the rising positive precipitation anomaly (precipitation above the mean, i.e., larger + P /larger WR

and larger –P /less WR).
QUANTIFICATION AND STATISTICAL ANALYSIS

Since the multi-collinearity of the data may affect the estimation of SEM, we use the tolerance and variance

inflation factor (VIF) in IBM SPSS to test the collinearity of the data (Bagozzi and Yi, 2012). When VIF<10 and

tolerance >0.1, it indicates that there is no collinearity (Snee, 1977). The result shows that the VIF value be-

tween the data is less than 10 and the tolerance is greater than 0.1 (Table S5), which means that the collin-

earity of the data in this study is within the acceptable range of SEM.
12 iScience 25, 105258, November 18, 2022
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