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Purpose: Determination and development of an effective set of models
leveraging Artificial Intelligence techniques to generate a system able to
support clinical practitioners working with COVID-19 patients. It involves a
pipeline including classification, lung and lesion segmentation, as well as
lesion quantification of axial lung CT studies.
Approach: A deep neural network architecture based on DenseNet is introduced
for the classification of weakly-labeled, variable-sized (and possibly sparse) axial
lung CT scans. The models are trained and tested on aggregated, publicly
available data sets with over 10 categories. To further assess the models, a data
set was collected from multiple medical institutions in Colombia, which
includes healthy, COVID-19 and patients with other diseases. It is composed of
1,322 CT studies from a diverse set of CT machines and institutions that make
over 550,000 slices. Each CT study was labeled based on a clinical test, and no
per-slice annotation took place. This enabled a classification into Normal vs.
Abnormal patients, and for those that were considered abnormal, an extra
classification step into Abnormal (other diseases) vs. COVID-19. Additionally,
the pipeline features a methodology to segment and quantify lesions of
COVID-19 patients on the complete CT study, enabling easier localization and
progress tracking. Moreover, multiple ablation studies were performed to
appropriately assess the elements composing the classification pipeline.
Results: The best performing lung CT study classification models achieved 0.83
accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the
Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model
obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88
precision. The ablation studies showed that using the complete CT study in the
pipeline resulted in greater classification performance, restating that relevant
COVID-19 patterns cannot be ignored towards the top and bottom of the
lung volume.
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1A CT study is a set of ordered slice

accurate 3D reconstruction of the orga
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Discussion: The lung CT classification architecture introduced has shown that it can
handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing
the need for expert annotations at a per-slice level.
Conclusions: This work presents a working methodology that can guide the development
of decision support systems for clinical reasoning in future interventionist or prospective
studies.

KEYWORDS

computational tomography, weak-labels, volume classification, lesion segmentation &

quantification, machine learning
1. Introduction

Artificial Intelligence (AI) models can be implemented to

process and extract knowledge from medical data. As stated in

Quintero (1), “There is no ambiguity that a machine will never

replace an MD expert, but machine intelligence will benefit and

its aimed for human decision making.” Following such line,

this work introduces a medical decision support system

deployed to help doctors treating COVID-19 patients in

underdeveloped countries.

COVID-19 is a disease caused by the SARS-CoV-2 virus (2).

Different authors have evaluated chest Computed Tomography

(CT) studies1 to identify changes in the lung suggestive of

COVID-19. The main radiological patterns identified and

associated to COVID-19 pneumonia are peripheral ground

glass or nodular-type opacities, which have been seen in both

symptomatic and asymptomatic patients (4); although other

findings that may resemble other infectious or non-infectious

processes have also been described (5). Nonetheless, the

current gold-standard diagnostic test for this disease is the

Polymerase Chain Reaction (PCR) (6). Therefore, from a

clinical point of view, it is important to develop a clinical

decision support system that allows health personnel to take

early measures regarding the treatment of patients suspected

of having COVID-19 infection, given that the result of the

PCR test might take several days, the test’s false negative rate

is reported to range from 2% up to 29% (7) and the

healthcare systems collapse during peak infection rates.

Our approach to the problem is holistic. Developing

solutions is not just training a preconceived convolutional/

deep network, neither machine learning is just a matter of a

toolbox (1). It requires interdisciplinary work and

mathematical background to imagine and formalize a proper

feature extractor closest to the human perception of the

world. Consequently, the first step is to develop a feasibility
s (CT scans) that generates an

ns (3).

02
study testing several learning machines for CT while acquiring

images under a standardized protocol for image acquisition.

Secondly, a retrospective study of the performance of the

learning machines and finally, the prospective study validated

on line by medical experts.

Concretely, the contributions of this paper are:

1. Introduction of an architecture to classify weakly-labeled,

variable-sized (and possibly sparse) lung CT volumes. This

ensures that the complete volume is taken into account

before returning a diagnosis. It is based on DenseNet and

has been chosen given that it outperforms other

methodologies to classify weakly-labeled lung CT scans.

2. Description of a deployed implementation for a medical

diagnosis pipeline (decision support system) involving

classification, segmentation and lesion quantification tasks

using axial lung CT scans.

The remaining of this article is organized as follows.

Section 2 gives an overview of the related work. Section 3

covers a detailed description of the pipeline and its

components, as well as a description of the data sets

employed. Section 4 presents the main findings. Section 5

discusses the results. Finally, Section 6 goes over the

conclusions of this work.
2. Related work

One of the challenges faced by a system handling CT scans

from multiple sources with a diverse set of patients (age, gender,

comorbidities, etc.) is that all the registrations will vary in

resolution, depth and position. Image registration involves a

set of techniques to minimize these challenges. In (8) it is

defined as the process of transforming different image data

sets into one coordinate system with matched imaging

content, and in the same document they provide an overview

of recently proposed solutions, among which they exhibit the

case of CT scan, of different body parts, including chest and

lungs. Some of them involve supervised, unsupervised and

weakly supervised methodologies, with a CNN as the

common factor among all.
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Once images can be considered homogenized, the

classification phase can start. Most works involve a granular

process. For example, Kavitha et al. (9) propose a ML pipeline

to determine lung cancer stage. The authors propose a region

based Fuzzy C-Means Clustering technique for segmenting

the lung cancer region and a Support Vector Machine based

classifier to diagnose the cancer stage from the segmented

regions. They also argue that CT scans are a good source of

information since they poses higher image sensitivity and

resolution with good isotopic acquisition. This pipeline

achieves a classification accuracy of 93% for 70 training

samples. Another work by Huang et al. (10) focused on lung

nodule diagnosis on CT images. They wanted to determine if

a nodule was benign or malignant. For that, they exploit a

pretrained CNN on the ImageNet data set, to extract high

level features. After that, an Extreme Learning Machine is

used to classify the features returned by the CNN. The

authors also recount what has traditionally been done in this

field to tackle similar problems. According to them it

involves: (1) feature extraction using hand crafted

segmentation algorithms, (2) feature recognition using one of

the traditional ML algorithms, and (3) producing a diagnosis

taking into account the whole CT images according to their

previous characterization. Such approach does not take

advantage of the volumetric information present in a CT. Xie

et al. (11) gives another example, where a semi-supervised

adversarial classification model is trained using both labeled

and unlabeled data for benign-malignant lung nodule

classification.

The surge of COVID-19 cases has prompted a handful of

investigations regarding CT scans for case diagnosis. Most of

this works use methods derived from DL, many of which

leverage supervised learning. Nonetheless, there is a drawback

with most approaches. This is due to the fact that they

require labeled slices, which is an expensive and time

consuming procedure that can only be carried out by expert
TABLE 1 Performance comparison among COVID-19 lung CT classification
classifiers were tested, the results without data augmentation are reported.

Model Accuracy (%) Sensitivity (%)

(15) 90.11 87.03

(16) 96.00 100.0

(20) 99.87 99.58

(21) 79.30 67.00

(23) 96.00 94.00

(22) 98.00 94.96

(18) 85.00 85.40

(13) 90.23 91.18

(14) 96.00 95.00

(19) 86.70 86.60

(24) 81.00 80.20
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radiologists (12–23). On the other hand, other works do not

employ the complete CT volume to return a diagnosis, which

might decrease the model’s real-world performance, where it

is possible to see regions with little or no patterns in the lung

suggesting COVID-19 (12,13,16,20,22,24). Furthermore, there

are approaches that only use a single slice, or process the

volume slice-by-slice, which means that they might lose

relevant 3D information (13–15,17,18,21–24). Table 1 shows a

comparison of the classification performance of this methods.

The following is a quick description of some of the most

successful DL approaches referenced above. Zhang et al. (12)

developed a two-stage segmentation framework for accurately

segmenting lung lesions and background on raw CT slices.

Then, they stacked the slices to form a volume that was

preprocessed and then fed to a 3D classification network. Bai

et al. (14) train a classification model to distinguish between

slices with and without pneumonia-like findings. The model

is based on the EfficientNet architecture and is reported to

have better results than radiologists. In Jin et al. (15) a

COVID-19 diagnosis system is developed. It achieves a

remarkable performance when tested on over 3000 CT

volumes, but they used manually labeled slices. Finally, Hu

et al. (24) use weakly supervised DL for infection detection.

Basically they use a segmentation network based on U-Net

which returns a structure which will later be used to classify,

each slice, based on the VGG architecture. This particular

model achieved 81:0% accuracy classifying CT slices.
3. Pipeline for weakly-labeled lung
CT scans

Figure 1 is a high-level overview of the components of the

developed Medical Diagnosis Pipeline. The pipeline takes an

axial CT study and preprocesses it to remove images that do

not contain portions of a lung. Then, this preprocessed
models, as reported by the authors, on their test sets. Where multiple

Specificity (%) Labeled slices Support

96.60 Yes 3,199

96.00 Yes 1,100

100.0 Yes 799

83.00 Yes 290

98.00 Yes 270

98.70 Yes 245

85.70 Yes 203

89.23 Yes 133

96.00 Yes 119

86.80 Yes 90

82.60 No 45
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FIGURE 1

High-level overview of the Decision Support System.
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volume is used to classify the patient. Finally, if the patient is

determined to belong to the COVID-19 class, the volume is

fed to a lesion segmentation network to highlight and

quantify the lesion. The following is an in-depth description

of each component.
3.1. Lung segmentation

This model is used for three sub-tasks:

1. Lung Detection. Using the segmentation map it is possible to

determine if each CT slice contains a portion of a lung. If it

does, the image is kept.
Frontiers in Medical Technology 04
2. Bounding Box Segmentation. Once all non-lung slices are

removed, the lung portion in each slice is cropped about

its model-given bounding box.

3. Lung Area Quantification. The non-zero pixels in the

segmentation map are counted to determine an

approximate lung area in each slice.

The architecture employed is U-Net (25). This

segmentation network was designed to extract context using a

contracting path, and to enable precise localization via a

symmetric expanding path. Therefore, it performed well on

sequences of images where variation was due to a changing

lesion pattern and lung shape. The model used DenseNet-121

(26), pretrained on ImageNet, as encoder. The loss function

was the MSE between the predicted and target lung bounding

box. The optimizer was Adam and it was trained for 18

epochs using batches of size 8. The model achieved a 0.98

IoU score on test data. U-Net was also used in other works

related to COVID-19 lung segmentation, such as (15,24).
3.2. Lung classification

Classification of lung CT volumes was a challenge, since the

data was weakly-labeled according to a gold standard test or a

doctor’s diagnostic, which means that none of the CT slices

were individually annotated by an expert. Furthermore, the

studies vary in size due to a number of factors (machine

capabilities, predefined settings, person’s height, etc.), and that

it was sparse. To solve this, the ChexNet3D architecture is

introduced. It is a deep learning (27) model composed of a

series of successive mathematical transformations for an input

tensor that describes the grayscale-values of each pixel of each

slice (resized to 256� 256 pixels) from the CT study, which

results in a 2� 1 vector describing the probability that the

stack of successive images reconstructing the lung belongs to

a class (the position of the value with higher weight in the

output vector is considered the class predicted for the input).

It is inspired on the work by Rajpurkar et al. (28) with RX

images. It exploits the fact that neighboring slices contain

similar lesion patches, both in position and shape. Some

examples that have successfully used such prior on CT studies

are (19,29). Figure 2 gives an overview of the classification

pipeline.

The proposed model uses DenseNet-121 as backbone

(pretrained on ImageNet), but the first layer is replaced.

Specifically, in place of the first layer, two new convolutional

layers are added. The first one takes a stack of n grayscale

images (one-channel each), and outputs a volume with

64-channels. The second (new) layer takes the previous

64-channel volume and outputs another 64-channel volume.

The output of this second layer is then fed as input to the

second layer of the original DenseNet-121 backbone. On top
frontiersin.org
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FIGURE 2

Lung CT classification pipeline. It takes stacks of n successive slices from the CT volume, and inputs them to the proposed ChexNet3D. Before that,
the study is fed to U-Net to select the slices that contain lung portions and segment around the lung’s bounding box.
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of this network, a dense layer with softmax activation is used to

get a class for the stack that was originally fed. An architecture

based on DenseNet-121 presented multiple advantages such as

alleviation of vanishing-gradients, stronger feature

propagation, with less trainable parameters and reduced

computational requirements, as shown in Huang et al. (26).

Also, the higher connectivity allows feature reuse via identity

mappings, deep supervision and diversified depth as the

authors showed in their manuscript. Furthermore, as

mentioned before, works such as Rajpurkar et al. (28) have

already shown important results including a better F1

performance compared to expert radiologists in the task of

chest X-ray classification, which although is not directly

transferable to the axial lung CT scan domain, is a relevant

proxy for the capabilities of the model for our task.

The new convolutional layers use a 7� 7 kernel with stride

2, and were initialized by randomly sampling from a Normal

distribution with mean 0 and variance 0:1. The cost function

is the Cross Entropy Loss. Optimization took place using the

Adam optimizer with learning rate 3� 10�3. The parameters

were estimated via transfer learning. Specifically, training was

only performed on the first two (new) and the last twentyfive

layers. This allowed us to reuse the feature maps obtained by

the model pretrained on ImageNet and decrease the

computational requirements at training time, which resulted

in larger batch sizes and enabled the use of all lung slices

from the CT study for training. The batch size was of 6
Frontiers in Medical Technology 05
randomly chosen studies; but, since each study was split on

stacks of 30 successive slices, the network effectively saw more

than 6 inputs per parameter update. The stacks within each

random batch were shuffled to guarantee that successive

regions of the whole lung volume were not contiguous before

being fed to the network. Training took place until the

performance on the validation data set decreased for two

successive epochs, as a signal of overfitting to the training

data. The final model was initialized with the parameter set

from the training epoch with best performance on the

validation data.

To classify the complete CT study, the volume obtained

after removing slices that do not contain portions of the lung

(as described in Section 3.1), is splitted into successive stacks

of n grayscale-slices. When the number of slices in this

volume is not a multiple of n, the last stack uses slices from

the previous stack to complete the n-slices volume. If the

whole volume contains less than n slices, the volume is

completed with black images. Each stack is given the same

label of the CT study. Accuracy and At Least One were the

metrics used during training to assess the performance on the

validation data set. But, during inference and evaluation on

the test set, different metrics are used (accuracy-per-stack and

average of the stacks in the study). The At Least One metric,

as the name suggests, assigns the class of interest to the whole

study when at least one stack from the study is classified as

belonging to such class. Therefore, to be classified as not-in-
frontiersin.org
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the-class of interest, all the stacks need to be classified in that

other class.

For instance, if the classifier is determining if a patient’s lung

is normal/healthy or unhealthy, and the class of interest is

unhealthy, then the patient is classified as healthy only if all

stacks are determined to be “healthy.” In contrast, the patient is

classified as unhealthy if at least one of the stacks is

determined to be “unhealthy.” The idea behind the At Least

One metric is to be able to correctly classify those cases where

sparse data is present. For example, a patient’s CT study might

show COVID-19-related lesions only on a small portion of the

lung, and the remaining portions could seem “healthy.”

Therefore, this metric, when the classifier finds the ‘COVID-19’

portion, will guarantee an accurate classification. It also leads to

a high level of sensitivity when the model is learning irrelevant

patterns, so it forces the model to adequately learn all classes to

achieve a balance with the specificity.
3.3. Lesion segmentation

Lungs that are classified as belonging to the COVID-19 class

are then fed into a lesion segmentation network to obtain a

lesion map. The architecture implemented in this work is Inf-

Net (30). Particularly, the semi-supervised approach is used.

The same network and data set presented by the authors is

employed. Inf-Net features a parallel partial decoder to

aggregate high-level features and generate a global lesion map,

which is later enhanced using implicit reverse attention and

explicit edge-attention.

A drawback of this network is that supervised training took

place on a small data set that mostly contained segmented

samples around the center of the volume. This leads to

segmentation performance degradation in the slices towards

the start and the end of the volume, where the lung is smaller

and has a different shape. To solve this, the network’s output

is resized to the size of the lung segmentation mask

(Section 3.1) and the coordinates of the lung’s bounding-box

are applied to the resized lesion mask. This leads to better

performance on small and diversely-shaped lung portions.
FIGURE 3

Data distribution of the CT studies collected from Colombian
medical institutions.
3.4. Lesion quantification

This procedure is only carried out on those patients that

were previously classified as COVID-19. It involves the lung

segmentation mask obtained in Section 3.1 and the lesion

segmentation mask obtained in Section 3.3. The first mask is

used to count the number of non-zero pixels (A), and this is

taken as the lung’s area in that slice. Then, the number of

non-zero pixels (a) in the lesion mask of that slice are also

counted. Finally, the approximate quantification of the lesion’s

area for each slice is L ¼ a=A.
Frontiers in Medical Technology 06
3.5. Data sets

A data set of axial CT studies was aggregated from (31–44).

It was split in three main categories: Healthy, Unhealthy and

COVID-19 cases. Figure 4C, shows the distribution of the

three. In total there are 6,439 studies, composed of over

400,000 slices. The Unhealthy class includes patients with

cancer, pneumonia, tumor, atelectasis, adhesion, effusion,

fibrosis, nodules, adenocarcinomas and ephysemas.

Also, a data collection protocol was established with the

following Colombian medical institutions: Clinica CES, IPS

Universitaria, Hospital Pablo Tobón Uribe & Hospital San

Vicente Fundación. The data was obtained, in DICOM

format, from patients from those institutions that gave

their consent and it was anonymized by a medical

professional. Then, they were distributed to the modelling

team, where it was cleaned (removing non-axial studies,

etc.) and saved as a PNG image using the lung window

(�600 up to 1,500 in Hounsfield units). In total there are

1,322 studies with over 550,000 slices. Figure 3 shows the

data distribution.

During training, the data sets were shuffled and balanced

according to the category with less samples. The data was

divided as follows: 70% training, 15% validation and 15%

testing.
4. Main findings

This section covers the experiments that were carried out

and the results from each of them. It includes the results

obtained from implementing the proposed ChexNet3D

architecture for the task of lung CT classification with weak
frontiersin.org
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labels. It will also go over the findings, and show some

examples, regarding the lesion segmentation and

quantification methodology. Finally, via a series of ablation

studies, it will be possible to see how different design

decisions affect the classification pipeline’s performance.
4.1. Lung classification

The proposed classification architecture can be employed to

tackle weakly-supervised tasks in Computer Vision. Its

performance on the test set, as shown in Table 2, is above

other weakly-supervised methodologies (last row of Table 1),

and is similar to other models where all slices are expertly-

labeled (Table 1).

Since this classification architecture splits the volume,

training and inference is significantly faster and less

computationally expensive. This aspect is also noted by Jin

et al. (15), who suggest that other 3D settings are limited by

GPU memory. The convolutional kernels employed in the

first two layers of the network are two-dimensional. A 3D
TABLE 2 Performance comparison, on test data, of weakly-labeled lung CT

Model Accuracy (%) Sensitivity (%) S

Healthy vs. unhealthya 71.00 67.00

Other diseases vs. COVID-19a 75.00 65.00

Healthy vs. unhealthyb 83.00 79.00

Other diseases vs. COVID-19b 86.00 81.00

Healthy vs. unhealthyc 84.00 92.00

Other diseases vs. COVID-19c 90.00 99.00

The Supplementary Material contains tables and figures with additional relevant perf
aResults on hospitals data set with accuracy-per-stack metric.
bResults on hospitals data set with stacks-average metric.
cResults on the model pre-trained with public data using the at-least-one metric.

FIGURE 4

Classification results on the public test set. Confusion matrices for (A) healthy
class data distribution.

Frontiers in Medical Technology 07
convolutional kernel was tried, but as shown in Section 4.3

the network’s performance diminished.

To classify the patients, a hierarchy of models is developed

to progressively reach a diagnosis. The first model (Healthy vs.

Unhealthy) determines if the patient’s lung is healthy or

unhealthy (85% precision). If it is unhealthy, the same input

is then fed to a model (Other Diseases vs. COVID-19) that

determines if the lesions on the lung suggest COVID-19 or

any other disease (88% precision). The models were trained

on the public data sets and then fine-tuned on the smaller

(Colombian institutions) data set.

The Healthy vs. Unhealthy model’s sensitivity, specificity,

accuracy and F1 score—on the test set—is 0.92, 0.74, 0.84 and

0.85, respectively. The test set included 180 healthy patients

and 184 unhealthy patients (COVID-19 & Other Diseases).

Figure 4A, shows the obtained confusion matrix on this data

set. For the hospitals test set, they are 0.67, 0.76, 0.71 and

0.71 for the accuracy-per-stack metric (Figure 5A); and 0.79,

0.87, 0.83, 0.82 for the stack-average metric (Figure 5C).

For the Other Diseases vs. COVID-19 classifier, it achieved

0.99 sensitivity, 0.81 specificity, 0.90 accuracy and 0.91 F1 score

on the test set. It contained 385 patients with COVID-19 and
classification tasks, using the proposed architecture (ChexNet3D).

pecificity (%) F1 score (%) Precision (%) Support

76.00 71.00 75.00 1,372

82.00 68.00 71.00 1,445

87.00 82.00 85.00 117

91.00 84.00 88.00 122

74.00 85.00 79.00 364

81.00 91.00 84.00 759

ormance metrics and figures.

vs. unhealthy and (B) other-diseases vs. COVID-19 classifiers. (C) Per-
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FIGURE 5

Classification results on the Colombian medical institutions test set. Confusion matrices for the (A) healthy vs. unhealthy classifier with the accuracy-
per-stack metric, (B) other diseases vs. COVID-19 classifier with the accuracy-per-stack metric, (C) healthy vs. unhealthy classifier with the stacks-
average metric, and (D) other diseases vs. COVID-19 classifier with the stacks-average metric.
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374 patients with other diseases. Figure 4B, shows the

confusion matrix built from the model’s predictions. For the

hospitals test set, this values are 0.65, 0.82, 0.75 and 0.68 for

the accuracy-per-stack metric (Figure 5B); and 0.81, 0.91,

0.86 and 0.84 for the stacks-average metric (Figure 5D). As

can be seen in Table 1, it outperforms other weakly-

supervised settings by at least 5% and is similar to approaches

that have annotated slices and/or that do not use the whole

volume to return a prediction.

The Supplementary Materials contain data and figures

further describing the model performance with other clinically

relevant metrics on multiple data sets.
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4.2. Lesion segmentation & quantification

For the lesion segmentation network, (30) report 0.73, 0.72,

0.96 for the dice, sensitivity and specificity scores, in the case of

the semi-supervised network, which is the one being used here.

During testing, the model has returned reliable results. Figure 6

shows on columns B, D, F & H, that the model appropriately

finds the regions with lesions, even when there are significant

changes in the size and shape of the lung. To achieve such

performance on the diverse set of shapes and sizes, the lesion-

localization-refinement setting introduced in Section 3.3 was

critical. It is important to note in the patient on column C,
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FIGURE 6

Axial CT study of four randomly sampled patients with COVID-19. Columns (A), (C), (E)& (G) show the original images (columns C, E, & G segmented).
Columns (B), (D), (F) & (H) show the bounding-box and lesion segmentation of the image at its left. Rows (1), (2) & (3) are different slices of the same
patient at the start, middle and end of the study, respectively. The lesion quantification model determines the approximate lesion proportion, from
top to bottom, as 59.11%, 56.49% & 11.30% for the figures on column (B); as 7.36%, 13.29% & 7.55% for those on column (D); as 15.61%, 40.72% &
38.11% for those on column (F); and as 11.73%, 27.91% & 79.97% for the slices on column (H). Note the patient on column (C), where the top and
bottom slices show very little or no sign of lesions. That is the reason why it is necessary to process the complete CT volume. The
Supplementary Material contains the fully processed studies for the four patients presented above.
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how the top and bottom slices show very little or no sign of

lesions due to COVID-19. This is possible among patients

and is the reason why it is necessary to process the complete

CT volume, to minimize the risk of only reviewing a portion

that might led to a wrong classification. Also, Figure 6 shows

multiple patients once the lung was cropped to its bounding-

box and the lesions were segmented and quantified.
4.3. Ablation studies

This subsection covers multiple experiments that show how

the pipeline’s performance changes according to different

design choices. Table 3 presents the summary of the multiple

experiments that were carried out and evaluated on the

hospitals test data set. The specific experiments are listed below:

1. Segmentation. Other lung segmentation models are tried,

e.g., DeepLabv3 (45).

2. 3D Convolution. Kernels with 3-dimensions on the first

layers of the ChexNet3D architecture.

3. Reduced Volume. Effect of reducing the lung bounds on

large CT studies (�180 lung slices).

As shown in Table 3, using DeepLabv3 greatly decreases

classification performance. For instance, the model’s accuracy

is 10% (or more) below the values reported on Table 2.

Furthermore, since this model is significantly larger than

U-Net, the latter is a better option to integrate to the pipeline.
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The 3D convolutions were tried drawing inspiration from

other works where this kernels have been applied to classify

CT studies when labeled slices are available (12,19). The

implemented model featured a 7� 7� 7 kernel with stride 2

and 16 output channels on the first layer, which are then

connected to the remaining layers of ChexNet3D via a

reshape operation. Nonetheless, as Table 3 shows, the model

performs worse than in the 2D setting. Jin et al. (15) also

report performance degradation when implementing 3D

convolutions for supervised CT classification.

Next, the effect of imposing tighter bounds on the lung bottom

& top extremes was studied. As can be seen in Figure 2, before

feeding the CT volume to U-Net, there are slices that do not

contain visible portions of lung [(22) show this with greater

detail]; therefore, it is necessary to remove them. However,

defining where the cut is going to take place is not obvious, since

it is possible to argue that some slices towards the extremes are

not clear or informative enough. This is specially true when the

volume is composed of a lot of thin slices and the change among

successive slices is not significant/apparent. With this in mind,

after feeding the CT through U-Net and selecting the lung slices,

the volumes with 180 or more slices showing lung portions, were

reduced by removing the top and bottom stacks. This allowed for

higher certainty in the fact that, during inference, the models

would be seeing slices with larger lung areas.

As can be seen from Table 3, the reduced volume setting did

not move the classification results significantly, even though it

saw around 200 less stacks (�6,000 fewer slices) per model. In

fact, using the stacks-average metric, we see the exact same
frontiersin.org
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TABLE 3 Ablation studies results.

Model Ablation Accuracy (%) Sensitivity (%) Specificity (%) Support

Healthy vs. unhealthya Segmentation 71.00 74.00 68.00 872

Healthy vs. unhealthyb Segmentation 74.00 81.00 67.00 89

Other diseases vs. COVID-19a Segmentation 69.00 70.00 68.00 340

Other diseases vs. COVID-19b Segmentation 74.00 68.00 81.00 43

Healthy vs. unhealthya 3D Convolution 68.00 72.00 63.00 1,372

Healthy vs. unhealthyb 3D Convolution 78.00 81.00 75.00 117

Other diseases vs. COVID-19a 3D Convolution 68.00 66.00 68.00 1,445

Other diseases vs. COVID-19b 3D Convolution 76.00 84.00 69.00 122

Healthy vs. unhealthya Reduced Volume 72.00 66.00 79.00 1,184

Healthy vs. unhealthyb Reduced Volume 83.00 75.00 90.00 117

Other diseases vs. COVID-19a Reduced Volume 75.00 65.00 82.00 1,265

Other diseases vs. COVID-19b Reduced Volume 86.00 81.00 91.00 122

Healthy vs. unhealthya 3D Conv. + Red. Volume 69.00 68.00 70.00 1,184

Healthy vs. unhealthyb 3D Conv. + Red. Volume 75.00 77.00 73.00 117

Other diseases vs. COVID-19a 3D Conv. + Red. Volume 70.00 69.00 71.00 1,265

Other diseases vs. COVID-19b 3D Conv. + Red. Volume 77.00 86.00 69.00 122

Performance comparison of the classifier when different elements of the classification pipeline are replaced.
aResults on hospitals data set with accuracy-per-stack metric.
bResults on hospitals data set with stacks-average metric.
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performance in the Other Diseases vs. COVID-19 model, using

the same 122 CT studies retrieved from the partner institutions.

Finally, the combined effect of a reduced volume on the

same models with 3D convolutions was studied. But, as

Table 3 shows, model performance is still suboptimal when

compared with the proposed classification pipeline.

Additionally, since the 2D convolution model has 7,241,410

parameters vs. 7,554,178 parameters of the 3D convolution

model, the former is still a better option as it has better

performance with fewer parameters.
5. Discussion

Table 2 shows that among the trained models, the Healthy

vs. Unhealthy model’s performance was weaker. Mainly due to a

sensitivity of 0.79. Increasing the number of CT studies of

Healthy patients might improve this, since, as shown in

Figure 3, is the category with the least amount of available

data. On the other hand, the diversity of diseases aggregated

in the unhealthy class (which includes 10 diseases different

from COVID-19) ensures that the model can better

distinguish cases of interest (COVID-19) from those that are

not. Nonetheless, both models had better performance than

the other weakly-supervised approaches found in the literature

for this task. Both models have a remarkable precision with

85% for the Healthy vs. Unhealthy model, and 88% for the

Other Diseases vs COVID-19 model. Also, both showed

specificity levels 5%+ above the baselines.
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The lung segmentation models play a crucial role in

removing the slices that contain anatomical parts different to

the lung, and helps the classifier by cropping and centering

the lung around a bounding-box. Also, it is used during

lesion quantification. This means that having a good model is

important, since many pieces rely on it and the flow of the

pipeline needs an accurate segmentation. Other architectures,

such as DeepLabv3, although achieving 90% IoU on the test

set, showed lower overall performance. This was particularly

evidenced in patients where the lung was mostly covered by

ground-glass opacities, or when both lungs showed opacities

in the top/bottom and were clear in the bottom/top.

From the ablation studies, it is possible to confirm that the 2D

convolution approach is better. Additionally, the results when

evaluating the model with a reduced volume are good initial

empirical results, that might help medical professionals assess

the importance of the patterns towards the top and bottom of a

lung when diagnosing COVID-19 patients. This, since it was

possible to see that including them might not play a big role,

although not using them weakens the model’s performance.

The lesion segmentation network performed well in slices

around the center of the CT volume. The methodology

proposed in Section 3.3 is critical to guarantee that the model

performs well on lung slices with different shapes and sizes to

those towards the center of the patient’s study. The

quantification algorithm relies on the output of two models,

which leads to degraded performance, but overall it returned

appropriate approximations of the lesion area at each slice, as

shown in Figure 6.
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6. Conclusion

This work introduces a Medical Diagnosis Pipeline using axial

lung CT volumes, where all studies are labeled according to a gold-

standard test or a doctor’s diagnostic. It focuses on determining

whether or not a patient’s lungs show patterns that suggest

COVID-19. It involves a novel architecture that accurately classifies

the regions of a patient’s lung that contain characteristics of a

particular class. All of this is done in a weakly-supervised fashion

and taking the whole lung volume into account, even though the

number of slices might vary from one patient to the other.

Additionally, a lesion segmentation model is tested and evaluated

together with a lung segmentation network. This models enable

further refinement of the classifier’s input and make possible an

approximation of the area of the lesion in each slice.
Data availability statement

The datasets presented in this article are not readily

available due to privacy agreements with the medical

institutions that provided the data. Currently it is not possible

to make the data collected in the Colombian medical

institutions available. However, the public datasets mentioned

through the manuscript are available in the referenced

sources. Requests to access the datasets should be directed to

amurillog@eafit.edu.co.
Ethics statement

The studies involving human participants were reviewed

and approved by IPS Universitaria Ethics Committee. Written

informed consent for participation was not required for this

study in accordance with the national legislation and the

institutional requirements.
Author’s contributions

AMG carried out the research and development of the

machine learning models and the design of the pipeline for
Frontiers in Medical Technology 11
the decision support system. DG, LJ, CG, FT, MM and AH

were involved in the data collection at the colombian medical

institutions. DRR, JGP and WB advised and reviewed the

models used in the decision support systems. LAJ worked on

data preprocessing tasks. JJG and WA worked on data

anonymization and solving medical questions for the

engineering team. CADL, DLSH, MAM, SA and DMR

developed the infrastructure necessary for model deployment.

ES-M and OLQ were the principal investigators in the

medical and engineering sides, respectively. All authors

contributed to the article and approved the submitted version.
Funding

This work was financed by Colombia’s Ministry of Science

(MinCiencias) and Universidad EAFIT.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
Supplementary Material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmedt.

2022.980735/full#supplementary-material.
References
1. Quintero O. From artificial intelligence to deep learning in biomedical
applications in deep learners, deep learner descriptors for medical applications.
Cham: Springer International Publishing (2020).

2. Gorbalenya AE, Baker SC, Baric RS, de Groot CD, Gulyaeva AA,
Haagmans BL, et al. Severe acute respiratory syndrome-related
coronavirus: the species, its viruses – a statement of the
coronavirus study group. [Preprint] (2020). Available at. doi: 10.1101/
2020.02.07.937862
3. Cantatore A, Müller P. Introduction to computed tomography. Kongens
Lyngby, Denmark: DTU Mechanical Engineering Copenhagen (2011).

4. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. A systematic review
of imaging findings in 919 patients. AJR Am J Roentgenol. (2020) 14:1–7. doi: 10.
2214/AJR.20.23034

5. Franquet T. Imaging of pulmonary viral pneumonia. Radiology. (2011) 260
(1):18–39. doi: 10.1148/radiol.11092149
frontiersin.org

mailto:amurillog@eafit.edu.co
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full#supplementary-material
https://doi.org/10.1101/2020.02.07.937862
https://doi.org/10.1101/2020.02.07.937862
https://doi.org/10.2214/AJR.20.23034
https://doi.org/10.2214/AJR.20.23034
https://doi.org/10.1148/radiol.11092149
https://doi.org/10.3389/fmedt.2022.980735
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


Murillo-González et al. 10.3389/fmedt.2022.980735
6. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al.
Radiological society of north America expert consensus statement on reporting
chest CT findings related to COVID-19: endorsed by the society of thoracic
radiology, the American college of radiology, RSNA. Radiology. (2020). doi: 10.
1148/ryct.2020200152

7. Watson J, Whiting PF, Brush JE. Interpreting a COVID-19 test result. BMJ.
(2020) 369. doi: 10.1136/bmj.m1808

8. Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a
survey. Mach Vis Appl. (2020) 31:8. doi: 10.1007/s00138-020-01060-x

9. Kavitha M, Shanthini J, Sabitha R. ECM-CSD: an efficient classification
model for cancer stage diagnosis in CT lung images using FCM, svm
techniques. J Med Syst. (2019) 43:73. doi: 10.1007/s10916-019-1190-z

10. Huang X, Lei Q, Xie T, Zhang Y, Hu Z, Zhou Q. Deep transfer convolutional
neural network and extreme learning machine for lung nodule diagnosis on ct
images. [Preprint] (2020). Available at arXiv:2001.01279.

11. Xie Y, Zhang J, Xia Y. Semi-supervised adversarial model for benign–
malignant lung nodule classification on chest CT. Med Image Anal. (2019)
57:237–48. doi: 10.1016/j.media.2019.07.004

12. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, et al. Clinically applicable ai
system for accurate diagnosis, quantitative measurements, and prognosis of
COVID-19 pneumonia using computed tomography. Cell. (2020) 1423–33.

13. Singh D, Kumar V, Kaur M. Classification of COVID-19 patients from chest
CT images using multi-objective differential evolution based convolutional neural
networks. Eur J Clin Microbiol Infect Dis. (2020) 39:1–11.

14. Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, et al. AI
augmentation of radiologist performance in distinguishing COVID-19 from
pneumonia of other etiology on chest CT. Radiology. (2020) 296:201491.

15. Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, et al. Development, evaluation
of an artificial intelligence system for COVID-19 diagnosis. Nat Commun. (2020)
11:1–14.

16. Serte S, Demirel H. Deep learning for diagnosis of COVID-19 using 3D CT
scans. Comput Biol Med. (2021) 132:104306. doi: 10.1016/j.compbiomed.2021.
104306

17. Gong K, Wu D, Arru CD, Homayounieh F, Neumark N, Guan J, et al. A
multi-center study of COVID-19 patient prognosis using deep learning-based
CT image analysis, electronic health records. Eur J Radiol. (2021) 139:109583.
doi: 10.1016/j.ejrad.2021.109583

18. Gifani P, Shalbaf A, Vafaeezadeh M. Automated detection of COVID-19
using ensemble of transfer learning with deep convolutional neural network
based on CT scans. Int J Comput Assist Radiol Surg. (2021) 16:115–23.

19. Xu X, Jiang X, Ma C, Du P, Li X, Lv S. A deep learning system to screen
novel coronavirus disease 2019 pneumonia. Engineering. (2020) 6:1122–9.
doi: 10.1016/j.eng.2020.04.010

20. Ko H, Chung H, Kang WS, Kim KW, Shin Y, Kang SJ, et al. COVID-19
pneumonia diagnosis using a simple 2D deep learning framework with a single
chest CT image: model development, validation. J Med Internet Res. (2020) 22:
e19569. doi: 10.2196/19569

21. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning
algorithm using CT images to screen for corona virus disease (COVID-19). Eur
Radiol. (2021) 31:1–9.

22. Rahimzadeh M, Attar A, Sakhaei SM. A fully automated deep learning-based
network for detecting COVID-19 from a new, large lung CT scan dataset. Biomed
Signal Process Control. (2021) 68:102588. doi: 10.1016/j.bspc.2021.102588

23. Gozes O, Frid-Adar M, Sagie N, Kabakovitch A, Amran D, Amer R, et al. A
weakly supervised deep learning framework for COVID-19 CT detection and
analysis. International Workshop on Thoracic Image Analysis. Cham: Springer
(2020). p. 84–93.

24. Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X, et al. Weakly supervised deep
learning for COVID-19 infection detection and classification from CT images.
IEEE Access. (2020) 8:118869–83. doi: 10.1109/ACCESS.2020.3005510

25. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for
biomedical image segmentation. International Conference on Medical Image
Frontiers in Medical Technology 12
Computing and Computer-Assisted Intervention. Cham: Springer
(2015). p. 234–41.

26. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society (2017). p. 4700–8.

27. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press
(2016). Available from http://www.deeplearningbook.org

28. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet:
Radiologist-level pneumonia detection on chest x-rays with deep learning.
[Preprint] (2017). Available at arXiv:1711.05225.

29. Yan K, Wang X, Lu L, Zhang L, Harrison AP, Bagheri M, et al. Deep lesion
graphs in the wild: relationship learning, organization of significant radiology
image findings in a diverse large-scale lesion database. Proceedings of the IEEE
Conference on Computer Vision, Pattern Recognition. Salt Lake City, United
States: IEEE (2018). p. 9261–70.

30. Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, et al. Inf-net: Automatic
COVID-19 lung infection segmentation from CT images. IEEE Trans Med
Imaging. (2020) 2626–37.

31. Ma et al J. COVID-19 CT lung and infection segmentation dataset. Zenodo
(2020).

32. Morozov SP, Andreychenko AE, Pavlov NA, Vladzymyrskyy AV, Ledikhova
NV, Gombolevskiy VA, et al. MosMedData: Chest CT scans with COVID-19
related findings. medRxiv (2020).

33. Zhang K. Clinically applicable AI systems for accurate diagnosis,
quantitative measurements and prognosis of COVID-19 pneumonia using
computed tomography. China National Center for Bioinformatics. (2020).

34. Larxel. COVID-19 CT scans: 20 CT scans and expert segmentations of
patients with COVID-19 (2020).

35. EU CC. COVID-19 public datasets (2020).

36. Berryman S. Radiology data from the clinical proteomic tumor analysis
consortium lung squamous cell carcinoma [cptac-lscc] collection [data set].
National Cancer Institute Clinical Proteomic Tumor Analysis Consortium
(CPTAC). The Cancer Imaging Archive (2018). doi: 10.7937/k9/tcia.2018.
6emub5l2

37. Desai S, Baghal A, Wongsurawat S, Al-Shukri S, Gates K, Farmer P, et al.
Data from chest imaging with clinical and genomic correlates representing a
rural COVID-19 positive population [data set]. (2020). doi: 10.7937/tcia.2020.
py71-5978

38. Armato III SG, Hadjiiski L, Tourassi GD, Drukker K, Giger ML, Li F, et al.
SPIE-AAPM-NCI lung nodule classification challenge dataset. The Cancer
Imaging Archive. (2015). doi: 10.7937/K9/TCIA.2015.UZLSU3FL

39. Grove O, Berglund A, Schabath M, Aerts H, Dekker A, Wang H, et al.
Quantitative computed tomographic descriptors associate tumor shape
complexity and intratumor heterogeneity with prognosis in lung
adenocarcinoma. The Cancer Imaging Archive. (2015). doi: 10.7937/K9/TCIA.
2015.A6V7JIWX

40. (OSIC) OSIC. Osic pulmonary fibrosis progression (2020).

41. Kiser K, Ahmed S, Stieb S, Mohamed A, Elhalawani H, Park P, et al. Data
from the thoracic volume and pleural effusion segmentations in diseased lungs for
benchmarking chest ct processing pipelines[data set]. The Cancer Imaging Archive
(2020). doi: 10.7937/tcia.2020.6c7y-gq39

42. Hugo G, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, et al. Data from 4D
lung imaging of NSCLC patients. The Cancer Imaging Archive. (2016). doi: 10.
7937/K9/TCIA.2016.ELN8YGLE

43. Sørensen L, Shaker SB, de Bruijne M. Quantitative analysis of pulmonary
emphysema using local binary patterns. IEEE Trans Med Imaging. (2010)
29:559–69.

44. [Dataset] Soares E, Angelov P. A large dataset of real patients CT scans for
COVID-19 identification (2020). doi: 10.7910/DVN/SZDUQX

45. Chen L, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution
for semantic image segmentation. CoRR. (2017). Available at abs/1706.05587.
frontiersin.org

https://doi.org/10.1148/ryct.2020200152
https://doi.org/10.1148/ryct.2020200152
https://doi.org/10.1136/bmj.m1808
https://doi.org/10.1007/s00138-020-01060-x
https://doi.org/10.1007/s10916-019-1190-z
https://doi.org/10.1016/j.media.2019.07.004
https://doi.org/10.1016/j.compbiomed.2021.104306
https://doi.org/10.1016/j.compbiomed.2021.104306
https://doi.org/10.1016/j.ejrad.2021.109583
https://doi.org/10.1016/j.eng.2020.04.010
https://doi.org/10.2196/19569
https://doi.org/10.1016/j.bspc.2021.102588
https://doi.org/10.1109/ACCESS.2020.3005510
http://www.deeplearningbook.org
https://doi.org/10.7937/k9/tcia.2018.6emub5l2
https://doi.org/10.7937/k9/tcia.2018.6emub5l2
https://doi.org/10.7937/tcia.2020.py71-5978
https://doi.org/10.7937/tcia.2020.py71-5978
https://doi.org/10.7937/K9/TCIA.2015.UZLSU3FL
https://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX
https://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX
https://doi.org/10.7937/tcia.2020.6c7y-gq39
https://doi.org/10.7937/K9/TCIA.2016.ELN8YGLE
https://doi.org/10.7937/K9/TCIA.2016.ELN8YGLE
https://doi.org/10.7910/DVN/SZDUQX
https://doi.org/10.3389/fmedt.2022.980735
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/

	Medical decision support system using weakly-labeled lung CT scans
	Introduction
	Related work
	Pipeline for weakly-labeled lung CT scans
	Lung segmentation
	Lung classification
	Lesion segmentation
	Lesion quantification
	Data sets

	Main findings
	Lung classification
	Lesion segmentation  quantification
	Ablation studies

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author’s contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary Material
	References


