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Background: Predicting the clinical trajectory of individual
patients hospitalized with coronavirus disease 2019 (COVID-
19) is challenging but necessary to inform clinical care. The
majority of COVID-19 prognostic tools use only data present
upon admission and do not incorporate changes occurring
after admission.

Objective: To develop the Severe COVID-19 Adaptive Risk
Predictor (SCARP) (https://rsconnect.biostat.jhsph.edu/covid
_trajectory/), a novel tool that can provide dynamic risk pre-
dictions for progression from moderate disease to severe ill-
ness or death in patients with COVID-19 at any time within
the first 14 days of their hospitalization.

Design: Retrospective observational cohort study.

Settings: Five hospitals in Maryland and Washington, D.C.

Patients: Patients who were hospitalized between 5 March
and 4 December 2020 with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) confirmed by nucleic
acid test and symptomatic disease.

Measurements: A clinical registry for patients hospitalized
with COVID-19 was the primary data source; data included de-
mographic characteristics, admission source, comorbid condi-
tions, time-varying vital signs, laboratory measurements, and
clinical severity. Random forest for survival, longitudinal, and
multivariate (RF-SLAM) data analysis was applied to predict the
1-day and 7-day risks for progression to severe disease or death
for any given day during the first 14 days of hospitalization.

Results: Among 3163 patients admitted with moderate
COVID-19, 228 (7%) became severely ill or died in the next
24 hours; an additional 355 (11%) became severely ill or
died in the next 7 days. The area under the receiver-operat-
ing characteristic curve (AUC) for 1-day risk predictions for
progression to severe disease or death was 0.89 (95% CI,
0.88 to 0.90) and 0.89 (CI, 0.87 to 0.91) during the first and
second weeks of hospitalization, respectively. The AUC for
7-day risk predictions for progression to severe disease or
death was 0.83 (CI, 0.83 to 0.84) and 0.87 (CI, 0.86 to 0.89)
during the first and second weeks of hospitalization,
respectively.

Limitation: The SCARP tool was developed by using data
from a single health system.

Conclusion: Using the predictive power of RF-SLAM and
longitudinal data from more than 3000 patients hospitalized
with COVID-19, an interactive tool was developed that rap-
idly and accurately provides the probability of an individual
patient's progression to severe illness or death on the basis
of readily available clinical information.

Primary Funding Source: Hopkins inHealth and COVID-19
Administrative Supplement for the HHS Region 3 Treatment
Center from the Office of the Assistant Secretary for Prepar-
edness and Response.
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Worldwide cases of coronavirus disease 2019 (COVID-
19) continue to increase and are now responsible

for over 100 million infections and 2 million deaths (1).
COVID-19 stresses the limits of health care systems, even
in high-income countries such as the United States,
where 2021 began with more than 125000 patients hos-
pitalized with COVID-19 (2). Clinicians and health care
systems urgently need reliable tools to determine which
patients hospitalized with COVID-19 are at highest risk
for severe disease or death, to ensure that patients are
treated in a setting with the appropriate level of care.
Such tools can also assist with communication to patients
and their families about their prognosis and inform clini-
cal decision making. Large observational cohorts of
patients with COVID-19 have reported clinical character-
istics that are associated with severe illness and death,
but these findings are difficult to translate to the quantifi-
cation of absolute risk in the context of informing care at
the level of individual patients (3–5). Although clinical risk

calculators have been created (6–9), there are currently
no patient-level prediction tools in widespread use for
COVID-19 because of the limitations of existing predic-
tion tools. These limitations include disregarding clinical
information beyond baseline data present upon hospital
admission, not accounting for censoring, requiring val-
ues for all variables in the risk calculator to be entered
to obtain a result, and using limited classification
approaches rather than more robust survival analysis
methodology.

We sought to develop a novel tool that can provide
dynamic risk predictions for progression to severe illness
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or death in patients hospitalized with COVID-19. To over-
come the shortcomings of current approaches and
respond to the clinical demand for robust and individual-
ized prediction of COVID-19 severity, we used a well-
curated registry of patients admitted with COVID-19 to a
5-hospital health care system and used a machine learn-
ing approach, called random forest for survival, longitu-
dinal, and multivariate (RF-SLAM) data analysis (10), to
develop the Severe COVID-19 Adaptive Risk Predictor
(SCARP).

METHODS

The data for this study were collected at the 5 hospi-
tals (Johns Hopkins Hospital and Johns Hopkins Bayview
Medical Center, Baltimore, Maryland; Howard County
General Hospital, Columbia, Maryland; Suburban Hospital,
Bethesda, Maryland; and Sibley Memorial Hospital,
Washington D.C.) that comprise Johns Hopkins Medicine,
a system licensed to operate 2513 beds and 354 intensive
care unit beds serving a population of approximately 7 mil-
lion people. The institutional review boards of the partici-
pating hospitals approved this study as minimal risk and
waived requirement for informed consent. The methods
and reporting of results adhere to TRIPOD (Transparent
Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis) guidelines (11).

Study Design, Participants, and Data Collection
Johns Hopkins created the JH-CROWN: COVID-19

Precision Medicine Analytic Platform Registry to serve as
a comprehensive projection of structured clinical data
for patients in the Johns Hopkins Medicine system who
test positive for severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). The JH-CROWN database is
constructed directly from the clinical electronic health re-
cord (as described in the Supplement, available at
Annals.org) and serves as the data source for this study
(12). Hospitalized patients diagnosed with COVID-19
who were admitted between 5 March and 4 December
2020 were considered for cohort inclusion. Diagnosis of
COVID-19 was defined as the detection of SARS-CoV-2
from any nucleic acid test of any specimen type with an
Emergency Use Authorization from the U.S. Food and
Drug Administration and an International Classification
of Diseases, 10th revision (ICD-10), code indicating the
presence of symptomatic disease (Supplement Table 1,
available at Annals.org). Given our goal of predicting
future risk for severe illness or death, patients who devel-
oped severe illness or died within the first 6 hours of hos-
pitalization were excluded. The remaining study cohort
included adult patients (aged ≥18 years) at risk for
severe disease or death after the first 6 hours of hospitali-
zation. Some of the patients in this cohort have been
included in other studies (13, 14).

Outcome and Variable Definitions
The JH-CROWN registry includes every vital sign,

supplemental oxygen recording, and laboratory mea-
surement that compose clinical flowsheets. In addition,
structured demographic information and comorbid

conditions derived from ICD-10 codes were included
(Supplement Table 2, available at Annals.org) (15).
Disease severity was defined with the World Health
Organization (WHO) COVID-19 severity scale, a 10-point
ordinal scale ranging from uninfected (0 = no viral RNA
detected) and ambulatory mild disease (1 = asymptom-
atic; 2 = symptomatic, independent; 3 = symptomatic
requiring assistance) to hospitalized with moderate dis-
ease (4 = room air, 5 = nasal cannula or facemask oxy-
gen), hospitalized with severe disease (6 = high-flow
nasal cannula or noninvasive ventilation, 7 = intubation
and mechanical ventilation [PaO2:FiO2 ratio >150 or
SpO2/FiO2 ratio >200], 8 = intubation and mechanical
ventilation [PaO2/FiO2 ratio <150 or SpO2/FiO2 ratio
<200] or vasopressor use, 9 = intubation and mechanical
ventilation [PaO2/FiO2 ratio <150] and vasopressors, di-
alysis or extracorporeal membrane oxygenation), and
10 = death. The primary outcome was progression to
severe illness or death, according to theWHOCOVID-19
score of 6 or greater, which includes patients who have
died or are hospitalized with respiratory support by non-
invasive ventilation, high-flow nasal cannula, or mechani-
cal ventilation (16). The health care workers recording
the data used as variables in this clinical registry were
blinded to subsequent patient outcomes.

We considered both fixed baseline clinical informa-
tion and time-varying covariates as potential predictors
of COVID-19 severity. Baseline clinical characteristics
included demographic characteristics, admission source
(for example, from a nursing home), behavioral risk fac-
tors (for example, tobacco use, alcohol use), comorbid
conditions, and body mass index. Do-not-resuscitate and
do-not-intubate statuses were not included as predictor
variables, given their relationship with the outcome of in-
terest in our analysis. Time-varying covariates included
vital signs, components of a complete blood count with
differential, basic metabolic panel, liver function tests,
and markers of inflammation and coagulation (ferritin,
lactate dehydrogenase, C-reactive protein, interleukin-6,
D-dimer, fibrinogen, and international normalized ratio).
All covariates and outcomes were binned into 6-hour
intervals to account for the time-varying nature of the
patient's health state (10). When a single interval con-
tained multiple observations of the same time-varying
covariate, the value that represented the most extreme
deviation from the normal range was taken to represent
the time-varying covariate for that interval. For example,
the highest temperature in a 6-hour interval was recorded,
whereas for oxygen saturation, the lowest measurement
was recorded. Extreme values corresponding to the past
24 hours were also considered for vital signs. Laboratory
measurements corresponding to the most abnormal
value in the preceding 24 hours were used for the analy-
sis, with the exception of laboratory measurements that
are not typically performed daily; for these laboratory vari-
ables, the most abnormal values recorded in the past 72
hours were used. Ratios of common laboratory values
were calculated and were considered as potential predic-
tor variables. The 72-hour trajectory of vital signs and
common laboratory values were reported as the slope cal-
culated by fitting a linear regression model to the data
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available for the preceding 72 hours. For the analysis,
missing data were handled in an adaptive manner during
the tree construction process where imputed values for
missing data are randomly drawn from the nonmissing
data as the trees are constructed in the random forest
algorithm (17). Further details regarding variable selection
and methods for addressing missing data are found in
theSupplement.

Statistical Analysis
We used the machine learning approach RF-SLAM

to develop SCARP. A total of 105 variables were consid-
ered as inputs into the RF-SLAM predictive algorithm as
potential predictors. By learning from data, RF-SLAM
allows for the creation of a risk calculator to predict an
individual's risk for developing severe illness or death in
patients hospitalized with COVID-19. More specifically,
RF-SLAM is a method that builds on the concept of deci-
sion trees for risk stratification and extends the ensemble
learning methodology of random forest (a collection of
decision trees) to the analysis of right-censored survival
data with time-varying covariates (10). Risk predictions
are determined from the ensemble hazard rates from the
Bayes estimate of the event rate. The analyses were con-
ducted by using a modification of the randomForestSRC
package in the R statistical software (R Foundation) (17–
19).

Model Performance
Model performance for the predicted risk for pro-

gression to severe illness or death in the next 1 day or 7
days was assessed in 3 ways: 1) estimates of cross-
validated performance for predictions developed by
using data across all hospital sites between 5 March and
4 December 2020; 2) hospital-specific, cross-validation
of performance; and 3) prospective validation, where
data from 5 March to 4 July 2020 were used for training
and data from 5 July to 4 December 2020 were used to
evaluate performance. Model discrimination was eval-
uated with the cross-validated time-varying area under
the receiver-operating characteristic curve (AUC) (20).
Model calibration was evaluated with the decile method,
in which predicted risks are grouped into 10 deciles and
plotted along with loess-based calibration curves (21).
Additional details are found in the Supplement.

Interpretability: Variable Importance and
Summary Trees

Although random forests are notable for their im-
pressive predictive ability, they have minimal interpret-
ability. This often limits their adoption in clinical practice
because of the lack of ability to communicate how the
predictions were generated (22). To provide an inter-
pretable visual display as a summary of the RF-SLAM pre-
dictions, we created summary regression trees for the 1-
day and 7-day predictions as simplified visualizations of
the algorithm. In addition, although random forests can
handle a large number of predictor variables, inherent
variable selection is performed during the tree building
process. Each of the many trees that compose the en-
semble model (forest) uses only a small subset of

available variables. We report the importance of each
individual variable to the model by quantifying the per-
centage of trees that use the variable. To visualize the
relationship between each top predictor variable and the
predicted risk, we used a dependence plot. This is a scat-
ter plot of the predictions against the predictor variable
along with a smooth curve to show the dependence.

Predictor Variables and SCARP
The predictor variables identified in the 1-day and 7-

day summary regression trees were included as part of
the dynamic web-based risk calculator. The calculator
was designed to dynamically provide progressively accu-
rate estimates of the RF-SLAM predictions as users input
additional variables. The order of variable input was
determined by following the path an individual patient
traverses in a combined summary regression tree of 1-
day and 7-day predictions to maximize the improvement
in prediction accuracy for each variable input. A collec-
tion of regression trees was created to best summarize
the 1-day and 7-day RF-SLAM predictions for each possi-
ble sequence of variable inputs. The interactive, online
SCARP tool was developed by using the shiny, shinyjs,
and shinydashboard R packages. All analyses were con-
ducted by using the R statistical software, version 3.6.2.

Role of the Funding Source
The data utilized were part of the JH-CROWN: The

COVID PMAP Registry, which is based on the contribu-
tion of many patients and clinicians and is funded by
Hopkins inHealth, the Johns Hopkins Precision Medicine
Program. Drs. Garibaldi, Muschelli, Robinson, and Gupta
received funding from the COVID-19 Administrative
Supplement for the HHS Region 3 Treatment Center
from the Office of the Assistant Secretary for Prepar-
edness and Response. The funders had no role in the
design, analysis, or conduct of the study or in the deci-
sion to submit the manuscript for publication.

RESULTS

There were 3494 adults admitted between 5 March
and 4 December 2020 who tested positive for SARS-
CoV-2 by a nucleic acid test and had an ICD-10 code in-
dicative of symptomatic disease. In the first 6 hours of
hospitalization, 331 patients developed severe COVID-
19; of these, 13 died. The median age of the cohort was
61 years (interquartile range, 46 to 74 years), and 13%
were admitted from nursing homes (Table 1). Patients
who developed severe illness in the first 6 to 24 hours
had an elevated respiratory rate, low SpO2:FiO2 ratio,
and elevated C-reactive protein level. There remained
3163 patients at risk for severe illness or death after the
first 6 hours of hospitalization (Appendix Figure 1 and
Supplement Figure 1, available at Annals.org).

Completeness of laboratory data varied among indi-
vidual laboratory tests (Table 1). Components of the com-
plete blood count and basic metabolic panel were the
most frequently reported laboratory results (Supplement
Figure 2, available at Annals.org). At least 1 measurement
of inflammatory markers in the first 7 days of hospitalization
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before onset of severe disease or death was available
for C-reactive protein in 2629 patients (83%), interleu-
kin-6 in 1237 patients (39%),D-dimer in 2678 patients
(85%), ferritin in 2492 patients (79%), and lactate dehy-
drogenase in 1996 patients (63%). Among vital signs,
data were missing for 7275 (3%) of 2 549206-hour
patient intervals. Baseline, time-varying, and derived
variables were inputs into the RF-SLAM predictive
algorithm. The variable importance, determined by
the percentage of trees using the variable, was highest
for SpO2:FiO2 ratio, respiratory rate, age, and pulse
(Figure 1). We then visualized the relationship of the
individual variables with the risk predictions (Figure 2).

Performance
We reported the AUC of the RF-SLAM predictive

algorithm separately for the first week and the second
week to communicate model performance to clinicians
and how performance varies during hospitalization
(Table 2). The AUC for 1-day predictions was 0.89 (95%
CI, 0.88 to 0.90) during the first week of hospitalization
and 0.89 (CI, 0.87 to 0.91) during the second week of
hospitalization. The AUC for 7-day predictions was 0.83
(CI, 0.83 to 0.84) during the first week of hospitalization
and 0.87 (CI, 0.86 to 0.89) during the second week of
hospitalization. Model calibration assessed by risk decile
demonstrated that the 1-day and 7-day risk predictions

Table 1. Baseline Clinical Characteristics of Patients, by Disease Trajectory*

Clinical Characteristic All Patients
(n = 3494)

Patients With
Missing Data,
n (%)

Progression to Severe Illness or Death No Progression to
Severe Illness or
Death in > 14 d
(n = 2524)

Within First 6 h
(n = 331)

Between 6 h
and 1 d (n = 228)

During Days 1
to 7 (n = 354)

Age, y 61 (46–74) 0 (0) 65 (53–75) 63 (52–73) 67 (56–81) 58 (43–72)
BMI, kg/m2 29 (24.7–34.4) 391 (11) 29.6 (25.1–34.9) 28.6 (25.7–34.5) 29.8 (25.5–35.8) 28.9 (24.6–34.3)
Male, n (%) 1778 (51) 0 (0) 200/1778 128/1778 195/1778 1223/1778
Admission from skilled nursing facility† 450 (13) 5 (0) 72/450 23/450 62/450 260/450
Former smoker† 724 (21) 24 (1) 76/724 56/724 97/724 478/724
Current smoker† 360 (10) 24 (1) 33/360 15/360 30/360 278/360
Race/ethnicity†
Non-Hispanic White 1082 (31) 0 (0) 96/1082 65/1082 125/1082 764/1082
Black 1250 (36) 0 (0) 112/1250 75/1250 127/1082 917/1082
Hispanic 809 (23) 0 (0) 84/809 59/809 62/809 600/809
Asian 181 (5) 0 (0) 23/181 14/181 18/181 125 (5)
Other/unknown 172 (5) 0 (0) 16/172 15/172 22/172 118/172

Mean arterial pressure, mm Hg 76.3 (68.7–84.7) 24 (1) 66 (57.3–74.3) 69.7 (62.3–78.1) 74.7 (67.3–83) 77.7 (71–85.3)
Pulse, beats/min 96 (85–108) 23 (1) 109 (94.5–126) 106 (94–120.2) 99 (89–110) 94 (83–104)
Respiratory rate, breaths/min 22 (20–30) 32 (1) 36 (30–42) 37 (31–43.2) 26 (20–32) 20 (20–25)
Temperature, �C 37.5 (37–38.2) 46 (1) 37.7 (37.2–38.6) 37.7 (37.1–38.6) 37.9 (37.2–38.6) 37.4 (37–38.1)
SpO2:FiO2 ratio 339 (252–470) 34 (1) 100 (90–151.5) 103 (91–155) 272 (211–334.2) 422 (324–475)
Absolute lymphocyte count, � 109

cells/L
0.9 (0.6–1.4) 125 (4) 0.8 (0.5–1.1) 0.7 (0.5–1.1) 0.8 (0.5–1.1) 1 (0.7–1.4)

Hemoglobin level, g/L 123 (108–136) 35 (1) 117 (102–132) 122 (108–138) 123 (107–135) 123 (109–135)
Red cell distribution width, % 13.6 (12.9–14.9) 36 (1) 14.3 (13.2–15.7) 13.9 (13–15.5) 13.9 (13–15.2) 13.5 (12.8–14.7)
Leukocyte count, � 109 cells/L 7 (5.1–9.7) 35 (1) 10.5 (7.5–14.6) 9.1 (6.7–12.2) 6.9 (5.1–9.3) 6.6 (4.9–8.9)
BUN level
mg/dL 16 (11–27) 41 (1) 25 (15–41) 21 (14.8–35) 20 (13–34) 15 (10–24)
mmol/L 5.7 (3.9–9.6) 41 (1) 8.9 (5.4–14.6) 7.5 (5.3–12.5) 7.1 (4.6–12.1) 5.4 (3.6–8.6)

Bicarbonate level, mmol/L 25 (23–27) 41 (1) 24 (21–27) 24 (21–27) 25 (22–27) 25 (23–27)
GFR, mL/min per 1.73 m2 77 (47–99) 46 (1) 59 (32–87.8) 64 (36.8–87.2) 65 (39–91) 80 (51–102)
Albumin level, g/L 0.4 (0.3–0.4) 109 (3) 0.3 (0.3–0.3) 0.3 (0.3–0.4) 0.3 (0.3–0.4) 0.4 (0.3–0.4)
ALT level, U/L 29 (18–49) 133 (4) 39 (22.8–64) 37 (22–64) 30 (20–45) 28 (18–46)
Total bilirubin level
mg/dL 0.5 (0.3–0.7) 111 (3) 0.6 (0.4–0.9) 0.6 (0.4–0.8) 0.5 (0.4–0.7) 0.5 (0.3–0.7)
mmol/L 8.6 (5.1–12) 111 (3) 10.3 (6.8–15.4) 10.3 (6.8–13.7) 8.6 (6.8–12) 8.6 (5.1–12)

CRP level, mg/L 66 (26.1–127) 913 (26) 142.5 (87.2–223) 124.5 (74.4–215.3) 94.2 (62–154) 49 (19.1–98)
IL-6 level, pg/mL 37.6 (15.4–83.4) 2409 (69) 96.4 (44–275.8) 96.1 (44.6–189.8) 55.2 (27.3–114) 26.8 (11.7–53.5)
D-dimer level, nmol/L 5 (2.8–10.4) 853 (24) 9.4 (5.1–21.9) 6.6 (4.1–12.9) 5.3 (3.3–9.4) 4.4 (2.6–8.8)
Procalcitonin level, ng/mL 0.2 (0–0.4) 1917 (55) 0.5 (0.2–1.8) 0.3 (0.1–0.9) 0.2 (0.1–0.5) 0.1 (0–0.2)
Fibrinogen level, g/L 5 (4–6.2) 2596 (74) 6.1 (4.7–7.5) 6 (5–7) 5.5 (4.4–6.4) 4.7 (3.9–5.9)
Ferritin level, ug/L 550.5 (253–1059) 1098 (31) 882 (392–1607) 895 (553.5–1464.5) 718 (419–1337) 470 (203–885.8)
ESR, mm/h 48 (28–72.5) 2939 (84) 66 (39.5–95) 62 (44–89) 50 (40–85) 43 (25–65.5)
Lactate level, mmol/L 0.2 (0.1–0.3) 1962 (56) 0.3 (0.2–0.4) 0.2 (0.2–0.3) 0.2 (0.1–0.2) 0.2 (0.1–0.2)
Pro-BNP level, ng/L 182.5 (45.2–1033.2) 1662 (48) 601 (172–2176) 342.5 (126.5–1917.5) 251 (92.5–1576.5) 127.5 (33.2–644.2)
INR 1.1 (1–1.1) 1399 (40) 1.1 (1–1.2) 1.1 (1–1.2) 1.1 (1–1.2) 1 (1–1.1)

ALT = alanine aminotransferase; BMI = body mass index; BUN = blood urea nitrogen; CRP = C-reactive protein; ESR = erythrocyte sedimentation
rate; IL-6 = interleukin-6; INR = international normalized ratio; GFR = glomerular filtration rate; pro-BNP = pro-brain natriuretic peptide.
* Unless otherwise indicated, data are presented as the median (interquartile range).
† Data are presented as the number (percentage) of patients or number/number of patients.
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Figure 1. Variable importance.

Type of variable
     Comorbid condition
     Demographic
     Laboratory
     Vital sign

Importance of Variable for 1-Day Risk Predictions
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Troponin level (72 h)

Temperature (°C) (6 h)
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Chloride level
Cardiovascular disease

Bicarbonate level:sodium level ratio
AST level:platelet count ratio

Importance of Variable for 7-Day Risk Predictions

Trees Using Variable, %
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SpO2:FiO2 ratio
SpO2:FiO2 ratio (6 h)

Respiratory rate
Change in SpO2:FiO2 ratio

Age
Respiratory rate (6 h)
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ANC:platelet count ratio
ALC:platelet count ratio

The percentage of trees incorporating each of the variables is used as a simple and interpretable measure of variable importance. The variables used
by 5% or more of the trees are shown in the plots. Laboratory and vital sign values correspond to values obtained in the past 24 hours unless otherwise
specified (for example, “6 h” indicates that the value corresponds to one obtained in the past 6 hours). ALC = absolute lymphocyte count; ANC = abso-
lute neutrophil count; AST = aspartate aminotransferase; BMI = body mass index; BUN = blood urea nitrogen; COPD = chronic obstructive pulmonary
disease; CRP = C-reactive protein; GFR: glomerular filtration rate, LDH = lactate dehydrogenase; SNF = skilled nursing facility.
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were well calibrated (Appendix Figure 2, available at
Annals.org).

Interpretability
To provide an interpretable overview to clinicians of

the logic underlying RF-SLAM predictions, summary

decision trees were created for 1-day and 7-day predic-
tions of progression to severe illness or death. The 1-day
risk prediction summary tree captured 89% of the var-
iance of the 1-day RF-SLAM risk predictions and the 7-
day risk prediction summary tree captured 90% of the
variance of the 7-day RF-SLAM risk predictions of severe

Figure 2.Dependence plots for top predictors of progression to severe illness or death.
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Individual data points versus the predicted risk are shown, and the line shows the relationship between the variable and predicted risk.
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illness or death (Appendix Figure 3, available at Annals
.org).

Dynamic Risk Score andWebApplication Risk
Predictor

For the web-based tool, summary regression trees
fitted to the RF-SLAM predictions included at least 15
variables. However, risk prediction for an individual
patient requires input of only the variables in the direct
path from the start of the summary tree to its terminal
leaf. Therefore, for any patient, only a maximum of 8 vari-
ables would be required as inputs. The web-based risk
prediction calculator SCARP (https://rsconnect.biostat
.jhsph.edu/covid_trajectory/) uses adaptive data entry,
whereby upon entry of a variable, the algorithm prompts
the user for the next variable that best increases the per-
formance of the prediction for that particular patient.
This allows users to input a limited number of variables but
still benefit from the predictive power of the random forest,
which incorporated 105 variables. Detailed instructions for
using SCARP are provided in Supplement Figure 3 to 5
(available at Annals.org).

DISCUSSION

We developed SCARP, a novel risk calculator that
provides clinically meaningful predictions of whether
patients hospitalized with COVID-19 will progress to
severe illness or death on the basis of variables that are
readily available to treating clinicians. The purpose of
this tool is to assist frontline clinicians with real-time
prognostication of an individual patient's 1-day and 7-
day risk for developing severe illness or death. This tool
can inform decisions regarding appropriate level of care
and use of scarce hospital resources and can assist clini-
cians with conversations with patients and family mem-
bers about a patient's prognosis. Our novel risk calculator
was developed with rigorous methodology, including
the use of highly granular clinical observations, time-
dependent covariates, and discrete time survival analysis
in a registry from a diverse 5-hospital health care system.
We found that readily available clinical information, such
as pulse oximetry, oxygen supplementation, respiratory
rate, and pulse, and their trends are highly predictive of
progression to severe illness or death. The resulting risk
calculator allows clinicians to input a sparse set of

adaptively chosen variables for an individual patient into a
web-based tool to obtain an accurate probability of pro-
gression to severe disease or death in time frames that
are highly relevant to patient care.

Knowledge of the immediate risk for progression to
severe COVID-19 within the next 24 hours is important to
ensure that patients have access to life-saving care and
therapeutics. Some patients with moderate COVID-19
progress rapidly from mild hypoxia to respiratory failure
requiring intubation (23). As the COVID-19 pandemic
has spread from large cities in high-income countries
with advanced tertiary care centers to every region of the
United States as well as to low- andmiddle-income coun-
tries, patients with COVID-19 are more likely to receive
care in settings without access to advanced supportive
care. Mortality from COVID-19 is higher in hospitals with
fewer intensive care unit beds and in poorer neighbor-
hoods. Accurate prediction of the risk for clinical deterio-
ration in the next 24 hours may guide transfer of patients
to the most appropriate setting within an individual hos-
pital or between hospitals in larger health care systems.

Most patients with COVID-19, even those who are
hospitalized, recover with only supportive care. For
patients with low risk for progression to severe illness or
death, the benefit of unproven therapeutics may be lim-
ited. Some emerging therapeutics for COVID-19 are
most efficacious when administered early in the disease
course (24). Clinicians therefore face the challenge of
striving to prescribe therapeutics as early as possible,
but given resource limitations, may only do so for a sub-
set of patients with COVID-19 (23, 25). The ability to
identify the minority of patients with the greatest risk for
progression to severe illness or death will allow clinicians
to make informed decisions regarding the use of thera-
peutics and provide clinical trialists with tools to target
patients whomay benefit most from novel interventions.

Numerous clinical prediction tools for COVID-19
have already been described, but these have several lim-
itations (6, 26–28). Liang and colleagues (6, 26) created
calculators to predict severe illness or death that
achieved AUCs of 0.88 by using the least absolute shrink-
age and selection operator (LASSO) and logistic regres-
sion to develop a predictive risk score (called COVID-
GRAM) and 0.91 by using a deep learning survival Cox
model. However, these methods depend on baseline
variables and have limited tolerance to missing data.

Table 2. AUCs for 1-Day and 1-Week Risk Predictions*

Validation approach 1-Day Risk Predictions 1-Week Risk Predictions

AUC for
First Week

AUC for
Second Week

AUC for
First Week

AUC for
Second Week

All 5 hospital sites and time 0.89 (0.88–0.90) 0.89 (0.87–0.91) 0.83 (0.83–0.84) 0.87 (0.86–0.89)
Leave out hospital 2 0.90 (0.88–0.92) 0.96 (0.95–0.98) 0.82 (0.80–0.83) 0.93 (0.91–0.95)
Leave out hospital 3 0.92 (0.90–0.93) 0.83 (0.75–0.91) 0.84 (0.83–0.86) 0.79 (0.75–0.83)
Leave out hospital 4 0.86 (0.84–0.87) 0.79 (0.76–0.83) 0.83 (0.82–0.84) 0.87 (0.85–0.89)
Leave out hospital 5 0.91 (0.89–0.93) 0.88 (0.80–0.95) 0.83 (0.81–0.85) 0.89 (0.83–0.94)
Prospective validation 0.89 (0.87–0.90) 0.90 (0.85–0.95) 0.83 (0.83–0.84) 0.78 (0.73–0.82)

AUC = area under the receiver-operating characteristic curve.
* The first row corresponds to the estimate of the cross-validated AUC including data from all hospital sites. The following rows correspond to hos-
pital-specific performance, from leave-one-hospital-out cross validation. For the hospital-site cross validation, the main hospital (site 1) was always
included in the training data. The last row corresponds to prospective validation in which data from 5 March to 4 July 2020 were used for training
and data from 5 July to 4 December 2020 were used for validation. Further details are provided in the Supplement (available at Annals.org).
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Furthermore, when applied to a large United Kingdom
cohort, COVID-GRAM did not outperform CURB-65, a
simple pneumonia severity score (29). The Coronavirus
Clinical Characterisation Consortium (4C) mortality score
used observations from more than 35000 patients in the
United Kingdom to derive a score that predicts inpatient
mortality with an AUC of 0.77. However, the 4C mortality
score only provides predictions at hospital admission,
and values for all variables must be available for the cal-
culator to function, including C-reactive protein, a labora-
tory value that is not always available (29). The Northwell
COVID-19 Survival Calculator derived from patients in
New York has a stable AUC of approximately 0.86 over
the first 10 days of hospitalization to predict 7-day mor-
tality, but it also requires input of all variables, including
components of a complete blood cell count with differ-
ential, which are not always readily available (27). Our
prior tool provides accurate prediction of progression to
severe disease or death at the time of admission, but it
requires input of 23 variables including symptoms,
Charlson Comorbidity Index score, and a full suite of lab-
oratory values with limited tolerance for missingness and
is applicable only on the day of admission (8). These
existing tools do not taken advantage of the predictive
potential of time-dependent covariates, including updated
measurements of vital signs and the changes in these val-
ues, which are among the most important predictors we
found for progression to severe illness or death.

The SCARP tool substantially advances the perform-
ance and reliability of clinical prediction of COVID-19 se-
verity by using time-varying covariates, highly granular
clinical information, and robust survival analysis meth-
ods. It is designed to provide interpretable and personal-
ized risk prediction for severe disease or death in
patients hospitalized with COVID-19 at any time in the
first 2 weeks of their hospitalization. The tool is adaptive
and interactive in that it allows users to sequentially input
variables to increase the usability and interpretability of
clinical prediction. The prediction windows for this tool
were based on the clinical demand for determining the
trajectory of hospitalized patients at an individual level to
inform key decisions regarding clinical care in real time.
Clinical features measured after or concomitant with the
onset of severe illness do not contribute to prediction;
for that reason, we chose to exclude patients who
became severely ill or died within the first 6 hours of
presentation because their presence would probably
unfairly favor the model performance. To further aid in
the transparency and interpretability of the predictions
from SCARP, we use summary trees to provide visual
representations underlying the predictions and further
understanding of how the estimation of risk is influenced
by each additional variable.

Our study has limitations. Although the JH-CROWN
registry includes 5 hospitals serving a mix of urban and
suburban populations, the hospitals are all members of a
single health system, which may limit the generalizability
of SCARP to patients in other health systems. However,
as in our previous analyses (8), we observed limited het-
erogeneity in performance across the hospital sites in
this study, suggesting that our tool has the potential to
be more broadly applicable to other hospitals. By
design, the focus of this work is on the prediction of

severe illness or death and is therefore not intended to
predict the trajectory of patients who are already
severely ill and only predicts outcomes up to a 1-week
time frame in the future. Because almost all patients who
develop severe illness or die do so in the first 2 weeks of
their hospital admission (8), we believe that a 1-week for-
ward-looking predictor will adequately predict progres-
sion of disease within a clinically useful timeframe. The
cohort is observational and encompasses a period of
more than 9 months, during which supportive care stand-
ards evolved, treatment options expanded, and clinical tri-
als enrolled participants. As treatment options for COVID-
19 expand and outcomes improve, the risk probabilities
reported here may overstate the risk for progression to
severe disease or death in future patients. We are commit-
ted to preserving the long-term utility of this risk calculator
by continuously updating the tool and reporting its pro-
spective performance as treatment options for COVID-19
expand and clinical outcomes improve.

In conclusion, we developed SCARP, a novel, easy-
to-use clinical prediction tool that adaptively and dynam-
ically reports the probability that an individual patient
with COVID-19 will progress to severe illness or death.
The tool uses readily available clinical information and
has undergone internal and temporal validation. Further
studies with national-level, external data sets have been
planned for larger-scale validation and generalizability.
In addition, work is under way to integrate a simplified
version of SCARP into the electronic medical record and
assess its utility in clinical practice. SCARP has the poten-
tial to serve as a quantitative tool to help guide clinicians
managing patients hospitalized with COVID-19, whose
clinical courses are complex and seemingly unpredict-
able, and inform hospital operations to best use resources
in meeting the ever-changing demand for intensive care.
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Appendix Figure 1. Study flow diagram.

Patients admitted 5
March–4 December

2020 who tested
positive for SARS-
CoV-2 (n = 3550)

Age <18 y (n = 56)

Adults admitted
with SARS-CoV-2

infection (n = 3494)

Died within 6 h of
hospitalization (n = 13)

Became severely ill but
survived the first 6 h

of hospitalization
(n = 318)

At risk for severe illness
or death after first 6 h of

hospitalization
(n = 3163)

Did not become
severely ill or die within
14 d of hospitalization

(n = 2524)

Developed severe
illness or died within

14 d of hospitalization
(n = 639)

Among patients who were at risk for severe illness or death after the first
6 hours of hospitalization, 639 developed severe illness or death within
14 days of hospitalization. SARS-CoV-2 = severe acute respiratory syn-
drome coronavirus 2.
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Appendix Figure 2. Calibration curves for predictions of severe illness or death in the next 1 day and 7 days.
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The points and 95% CIs show calibration by decile. Dashed lines indicate linear fit through the decile points. The dotted line shows the locally weighted
smoothing (loess) curve through the predicted probabilities versus observed outcomes. Histograms of the distribution of predicted values are shown
below the calibration plots.
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Appendix Figure 3. Summary trees of random forest for survival, longitudinal, and multivariate predictions of 1-day and 1-week risk
for severe disease or death.
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The predicted probabilities are expressed in the terminal nodes and shaded according to predicted probability from lowest risk (0%) to highest risk
(100%). ALC = absolute lymphocyte count; ANC = absolute neutrophil count; BUN = blood urea nitrogen; GFR = glomerular filtration rate; leuk = leuko-
cyte; lymph = lymphocyte.
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