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In Kohn-Sham density functional theory (DFT) the interacting electron problem is mapped into a
noninteracting problem in an effective potential vKS. It is known that the charge gap of the interacting
system is different from the gap of the effective problem due to a jump Dxc in vKS when an electron is added
but its magnitude and its role in the ubiquitous discrepancy between the experimental gaps and approximate
DFT computations is poorly understood. Here we compute the exact vKS of a strongly interacting
one-dimensional lattice model which can be driven from an ionic to a Mott insulating state. Presence of a
‘‘vacuum’’ region allows to determine the absolute value of vKS. We show that in the ionic regime Dxc is
determined by nearest-neighbor interaction, while in the Mott regime Dxc is determined by on-site Hubbard
interaction.

D
ensity functional theory (DFT)1–3 plays a major role in our understanding of ground state properties of
materials. However most approximate DFT approaches fail to predict the fundamental gap DC of insu-
lators and semiconductors (band gap problem)4–20 in systems ranging from bulk Silicon8 to ZnO13 and

other correlated insulators14. Here DC ; IN 2 AN where IN and AN indicate respectively the ionization energy and
the electron affinity of the N-particle system, IN:EN{1

0 {EN
0 AN~EN

0 {ENz1
0 with EN

0 denoting the ground
state energy of the N-particle system.

Almost all DFT computations are based on Kohn and Sham (KS) scheme2, in which the ground-state density r
of N interacting electrons in an external potential is reproduced by a system of non-interacting electrons in an
effective potential vN

KS. The effective potential can be expressed as the sum of three contributions: the external
potential, v, the Hartree potential vN

H , and a term which accounts for exchange and correlation effects, vN
xc. The

latter is the functional derivative of a universal ‘‘divine functional’’21 of the density whose precise form is not
known.

As first discussed by Perdew et al.4,5 and by Sham and Schlüter6, even for the exact functional, the charge gap of
an interacting system does not coincide with the single particle gap in the Kohn-Sham non-interacting system but
there is a correction due to a discontinuity in the functional derivative vN

xc vs. the particle number,

DC~DKSzDxc: ð1Þ
More precisely Sham and Schlüter6 consider a large periodic system and argue that the correction is given by

Dxc~vNz1
xc xð Þ{vN

xc xð Þ ð2Þ

with the right hand side becoming a constant in the thermodynamic limit, independent of position x in the solid.
Perdew et al. obtain a similar result by considering instead a finite open system4,5.

It is believed that the jump in the exchange correlation potential, which is absent in local and semi-local
approximate functionals10,13,20, may account for the error on the fundamental gap5,6. The size of this effect is
however controversial7–20 and even its existence16 has been questioned.

This debate, along with the need to understand and correct the deficiencies of approximate DFT approaches,
has over the years concurred to focus the attention of the scientific community on two classes of systems: small
systems (zero dimensional), whose exchange-correlation potential can be calculated exactly or very accur-
ately17,18,22–28, and lattice models, where DFT schemes can be tested and analyzed in a controlled environment
retaining many of the subtleties of the many-body problem29–42.

In a pioneering work Gunnarsson and Schönhammer7 studied a model of a one-dimensional spinless insulator
and they found that Dxc is small in the band insulating regime. Other authors have, however, argued that the
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discontinuity should be large and it should account for a large part of
the band gap problem8,9,11. More recently Sagvolden and Perdew
studied analytically and numerically the case of an hydrogen ion
described by a statistical mixture so that the average number of
particles can be fractional and showed rigorously the validity of the
assumptions that lead to Eq. (1) in the special case where the particle
number crosses N 5 1. A rigorous investigation of these issues in an
open many-particle system is however still lacking.

In this work we fill this gap using lattice DFT to investigate the
band-gap problem. We calculate numerically the exact exchange-
correlation potential of a correlated insulator described by a general-
ized Hubbard model which can be tuned continuously from an ionic
to a Mott insulating regime43. Differently from previous works, we
consider a Hubbard chain connected to a free surface. As we show
below, this allows us to compute each term on the left and right of
Eq. (1) separately enabling us to check the validity of the assumptions
that lead to this equation and to clarify the physics in a context
very different from previous studies. Indeed differently from
Refs. 17,18,25–28 we consider a lattice model (rather than the con-
tinuum) and a many (rather than few) particle system and we go
beyond Ref. 31 both by including a nearest-neighbor interaction and
by using an exact reverse-engineered exchange-correlation potential.
Following Sham and Schlüter6 the discontinuity Dxc is estimated
using finite differences and errors due to the finite size of our system
are discussed.

We find that the contribution of Dxc to the charge gap is non-
negligible both in the ionic and Mott insulating regimes, and we are
able to trace back this contribution to different interaction terms in
the Hamiltonian giving simple analytical estimates. Eventually we
study the structure of the exchange-correlation potential in the
vacuum sites where we find a barrier close to the bulk-vacuum inter-
face, which appears as the system enters the Mott phase, an effect
similar to the one studied in Refs. 17,18,26 in the case of few particle
systems and Ref. 25 in the case of an extended system but neglecting
correlation effects.

Dealing with the physics of the Hubbard model with the language
and the tools of DFT this work lies at the border between two fields.
For this reason and to unify the language, our presentation empha-
sizes some aspects, which are known in one community but not
always recognized in the other, in a somehow pedagogical way. In
addition we provide a generalization of some celebrated results for
DFT in the continuum to the lattice like Koopmans theorem and the
relation between charge decay rate and ionization energy.

Results
Model. We consider a Hubbard chain of LB sites with a large binding
energy, called ‘‘the bulk’’, followed by a chain of LV sites with zero
binding energy, termed ‘‘the vacuum’’, with open boundary

conditions as shown in Fig. 1. The bulk is thus a truly open
system, i.e. the number of particle in the bulk is not fixed, this is
crucial to completely determine the exchange-correlation potential.

The total Hamiltonian can be written as H 5 T 1 HU 1 Hv with

T~{t
X

xs

c{xscxz1s{nxszH:c:
� �

HU~U
X

x

nx:nx;z
X

xss’

nxsnxz1s’

Hv~
X

xs

vxnxs,

ð3Þ

where c{xs creates an electron with spin s 5",# at site x, U and V are
respectively the Hubbard interaction and nearest-neighbour inter-
action, t is the nearest-neighbour hopping and we set nxs~c{xscxs.
We included a constant energy shift in the lattice kinetic energy T so
that single particle energies are measured from the bottom of the
band.

In order to simulate the work function of a solid the potential in
the bulk is taken as vx 5 2w0 1 d(21)x where w0 is a large positive
constant such that all particles in the system are bound in the bulk
region and the second term is a site dependent potential. The poten-
tial in the vacuum is by definition vx 5 0.

We apply DFT to this problem by considering the site occupancy
rx 5 SsÆnxsæ as the fundamental variable7,29. The density and the
energy of the ground state are obtained using Lanczos exact diago-
nalization44. The exchange correlation potential is obtained from the
exact density inverting the Kohn-Sham problem as discussed in
Section Methods.

An important result of DFT, which we will use, is Koopmans’
theorem4 which states that the highest occupied eigenvalue of the
Kohn-Sham potential coincides with the ionization energy of the
system. Notice that the usual uniform Hubbard model consisting
of T 1 HU and periodic boundary conditions is particle-hole sym-
metric while the theorem distinguish between occupied and unoc-
cupied states. It will become clear below that vacuum levels, which
obviously break particle-hole symmetry, can not be neglected from
the model in order to make the system compliant with the theorem.

Homogeneous Hubbard bulk. We first consider the case of constant
potential in the bulk (d 5 0) and vanishing nearest-neighbour
interaction V 5 0. This corresponds to the uniform Hubbard
model which has been discussed in the framework of lattice DFT
in Refs. 7,29,31–33.

In the upper and lower panels of Fig. 2, we plot respectively the
electron density and the exact effective potential for U 5 6t and
w0 5 8t. We consider in particular the case when the bulk is half-
filled, i.e. N 5 LB, and the cases of a bulk above and below half-filling,
N 5 LB 6 1.

As shown in the lower panel, while the change in the bulk effective
potential in going from N 5 LB 2 1 case to the N 5 LB is small and
can be attributed to a O(1/N) effect, there is a sizable O(1) jump in
going from N 5 LB to N 5 LB 1 1. For all other fillings different from
N 5 LB we find that the jump due to the addition of one particle is
O(1/N).

Notice that the jump is confined to the region of bound charges
and even there is not perfectly constant due to the finite-size of our
system. Similar finite-size effects were discussed in Refs. 17,18,26
where the exchange-correlation potential of small systems in the
continuum was calculated. These computations have shown that
the jump due to the addition of a small but finite fractional charge
0 , f , 1 is spatially constant inside a region of radius R around the
bound charges of the system with R R ‘ when f R 01. Analogously
we expect that in our case the jump remains constant within a region
with a boundary defined by R R ‘ when N R ‘ keeping N/LB

constant so that the excess density 1/LB R 01. Such a limit is outside
Figure 1 | Model. Structure of the system consisting of LB bulk and LV

vacuum sites. The bulk sites have a large binding energy, w0.
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the reach of our numerical capabilities. Notice that here we are
dealing with a many-body system with many electrons showing band
behaviour while in Refs. 17,18,26, where the f R 01 limit could be
studied numerically, only one and two electron systems were con-
sidered. In support of our expectation, similar effects were observed
by Horowitz et al. in the exact exchange potential of a jellium slab (c.f.
Fig. 7 of Ref. 25) without the use of an ensemble density but partially
populating a band. At first sight, since Horowitz et al. neglect cor-
relation, it may appear that their effect is different from ours.
However it is easy to see that it is enough that the functional has a
discontinuity in the Kohn-Sham potential, no matter form what
origin, to obtain this effect.

In order to obtain an estimate of the exchange-correlation contri-
bution to the charge-gap for our finite system we follow Ref. 6 and
use,

DN
xc~

X

x

QNz1
Nz1 xð Þ2

�� �� vNz1
KS xð Þ{vN

KS xð Þ
� �

ð4Þ

with N 5 LB. This equation can be seen as a weighted average of the
jump where only the regions where the density of the less bound
electron is finite contribute. Also the replacement of vxc by the whole
KS potential makes no difference in the thermodynamic limit since
only the exchange correlation part of the potential has a jump of
order one. Equation (4) arises naturally when one computes the
charge gap directly from the functional as it is done in Ref. 6 for
the continuum and it is shown for the lattice case in the
Supplementary material. There we also show how errors due to the
finite difference estimate of the jump cancel to the lowest order in 1/
N, giving on the whole a surprisingly small contribution even for
relatively short bulk chains.

Fig. 3 shows the U dependence of the exact charge gap for the N 5

LB electron system with the ionization energy and the electron
affinity energies obtained with the Lanczos computation. We also
show Dxc 1 DKS, where DKS is the exact KS gap, i.e. the gap in the
spectrum of the effective non-interacting N-particle Kohn-Sham
system.

We see that indeed Eq. (1) is well fulfilled. As discussed below the
Kohn-Sham gap should vanish in the thermodynamic limit for a
Hubbard chain so its finiteness is a finite size effect.

The charge density in the vacuum remains for all fillings much
smaller than 1 and it decays exponentially as shown by the logarith-
mic plot in the inset of Fig. 2 (upper panel). The change in the density
decay rate in the vacuum as the filling becomes larger than one (N .

LB), reflects a change in the ionization energy. Indeed, as first dis-
cussed in Ref. 45, the density decay rate, k, far from the surface of a
bulk metal or a molecule is related to the ionization energy as

k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mI= 2

p
. For lattice systems we find in a similar way that the

following relation holds: k 5 2 arccosh (1 1 IN/2t). Therefore an
accurate computation of the density profile in the vacuum region
fixes the ionization energy and it allows to compute the absolute
value of the Kohn-Sham potential in the bulk following the route
outlined by Almbladh and von Barth in Ref. 46. There they provide a
proof of Koopmans theorem of DFT4 relating the highest occupied
KS eigenvalue to the ionization energy (see the Supplementary
Material for a discussion of this theorem in the lattice and a proof
of the above expression for k).

The inset of Fig. 3 shows schematically the behaviour of Kohn-
Sham bands in a large Hubbard chain which can be solved exactly
with periodic boundary conditions47. Since the charge is uniform,
Kohn-Sham potential is a constant which, without the vacuum,
remains undetermined, i.e. any constant potential yields the correct
ground state density. However we know from the exact solution that
the chemical potential as a function of the filling has a jump at half-
filling equal to the Mott-Hubbard gap DMott. Then, if we loosely
consider the atoms of the Hubbard chain to have a large constant
binding energy vx 5 2w0 and to be immersed in a ‘‘vacuum’’ with
zero binding energy, we expect the ionization energy to have a jump
at half-filling due to the jump in the chemical potential. At the same
time, by DFT Koopmans theorem, we expect Kohn-Sham potential
and Kohn-Sham bands to shift rigidly so that Dxc 5 DMott, as shown

Figure 3 | Mott gap and xc-potential jump. Exact charge gap DC, Kohn-

Sham gap, DKS and contribution of the xc-potential jump, Dxc for a half-

filled Hubbard chain with a free surface as a function of the on-site

Coulomb repulsion. Other parameters are as in Fig. 2.DMott is the Mott gap

for an infinite system calculated using Bethe Ansatz47. The inset shows

Kohn-Sham band structure of a uniform Hubbard chain (periodic

boundary conditions) at half-filling (N 5 LB) and with one added electron

(N 5 LB 1 1).

Figure 2 | From the exact density to the exact KS potential. Panel (a) and

(b) show respectively the charge density and the KS potential for U 5 6t at

three different fillings, namely N 5 LB, N 5 LB 6 1. The inset of panel

(a) presents a logarithmic plot of the density in the vacuum while the inset

of panel (b) presents a schematic comparison between the spectrum of the

Hubbard model and of the effective KS system for N 5 LB 1 1 which we use

below to qualitatively explain the peak in the main panel (b) appearing for

this filling close to the surface. Other parameters are: w0 5 8t, d5 0, LB 5 6

and LV 5 11.
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schematically in the inset of Fig. 3. Indeed in Fig. 3 we also see that in
spite of the bulk chain being short (LB 5 6), Dxc approximately
coincides with DMott for the infinite system calculated by Bethe
Ansatz showing that this picture7,31 is correct and finite size correc-
tions to Dxc due to the use of Eq. (4) are negligible.

In Figure 2 we eventually note the appearance of a peak at the
boundary between vacuum and bulk on the vacuum side with width
and height depending on the filling. This peak has the same origin as
the plateaus, appearing in computations of the exchange-correlation
potential of finite systems17,18,26 and of jellium slabs25 with a small but
finite amount of fractional charge f. Such behaviour was qualitatively
understood in terms of the different ionization potential of the dif-
ferent components of the density18 and a similar explanation can be
put forward here. Just as the leading (slowest) decay rate of the wave
function is determined by the first ionization energy, ionization from
deeper states will determine subleading decays rates which are
important at short distances from the surface46. To better understand
the origin of this peak it is thus useful to compare the photoemission
spectrum of the Hubbard model to the corresponding Kohn-Sham
spectrum. As an example, the inset of Fig. 2 displays a very schematic
picture of the removal spectra of the two systems at large U above
half-filling (shaded regions). In both cases the total weight is propor-
tional to the number of occupied states, N 5 LB 1 1, however in the
Hubbard model only two occupied states, are available48 close to the
chemical potential (binding energy 2I), all the other states have
much lower energy (binding energy , 2I 2 U). On the contrary
in the Kohn-Sham spectrum a full metallic band consisting LB 1 1
states is available at binding energy , 2I (the vacuum level corre-
sponds to zero energy). It is not difficult to show that this large
spectral difference implies different subleading decay rates, with a
tendency of the Kohn-Sham system to have a charge density larger
than that in the interacting system close to the boundary. This excess
charge is eliminated by the appearance of the peak in the Kohn-Sham
potential. Thus, the anomalous transfer of spectral weight in the
Hubbard model, which is the hallmark of strong electron correla-
tion48, reflects in the appearance of the peak. We remark that,
although related, this peak does not have the same origin as the
well-known correlation barrier studied in the context of dissociation
of diatomic molecules and the step structure that appears in the case
of heteronuclear molecules (see e.g. Refs. 27,28,49). Indeed while the
barrier in the dissociation problem appears around the middle point
between two atoms in a stretched molecule, the present one accounts
for the short range behavior of the charge close to a bulk system. To
understand this point it may be useful to consider the dissociation of
a long chain into two identical fragments. In this case we expect that
the Kohn-Sham potential will display both effects, two peaks or
plateaus close to each fragment correcting the short-range decay of
the density and a third one in the middle of the stretched bond.

Charge gap in ionic and Mott-like insulators. We now come to the
discussion of the transition between a Mott insulator and an ionic
insulator. In order to simulate a binary compound we use the model
introduced above with d ? 0, a Hubbard interaction U equal on all
atoms and a nearest neighbour repulsion V. The system shows a
transition from an ionic insulating regime to a Mott insulating
regime when U , 2d 1 zV with z 5 2 the coordination number43.
In the atomic limit one finds that DMott

c ~U{2d in the Mott regime
and DIonic

c ~2dz2zV{U in the ionic regime with both gaps coin-
ciding at the transition. Notice that the latter is larger than the
nearest-neighbour charge transfer energy corresponding to the
excitation of a Frenkel exciton Dex~DIonic

c {V : this becomes rele-
vant below when we discuss the jump in the exchange correlation
potential.

Figure 4 shows again that that Eq. (1) is well satisfied with neg-
ligible finite size corrections (see Supplementary Material for an
explicit analytical expression of finite size corrections to the charge

gap). Panel (a) and (b) show respectively the results for V 5 0 and d
5 2t, and for V 5 0.5t and d 5 t. As one can easily check the total
charge gap at U 5 0 for small t is the same in the two cases. However
in the first case we have DC^DKS in the ionic insulator (small U) and
DC^Dxc in the Mott-insulating phase (large U), while in the second
case we have a finite contribution of Dxc to the gap in both regimes.
Clearly the appearance of a finite Dxc in the ionic regime is linked to
the presence of the non-local interaction V. This can be easily under-
stood by considering the limit of weak tunneling t = Dex. Using
perturbation theory one easily finds that the amount of charge trans-
ferred from odd to even sites in the exact many-body solution is
dr~4t2

�
D2

ex . Neglecting surface effects, by symmetry, the difference
in the Kohn-Sham potential between even and odd sites is equal to
the Kohn-Sham gap. Applying the same perturbative argument to
the Kohn-Sham system we arrive to the conclusion that to match the
exact density DKS 5 Dex. Therefore to leading order Dxc~
DIonic

c {Dex~V . It is easy to check that these relations are valid in
any dimension. They are in good agreement with the numerical
results of Fig. 4 in the ionic regime for finite t.

Discussion
We have computed the exact exchange correlation potential of a
correlated extended system including the (usually undetermined)
absolute value with respect to a vacuum level. This allowed to verify
the assumptions leading to Eq. (1) in a context quite different to what
has been previously done18. Namely an extended strongly correlated
system on the lattice. In addition we have found that a surface cor-
relation barrier appears in the effective potential of a correlated sys-
tem when the removal spectrum of the system is very different from
the removal spectrum of the Kohn-Sham system, as expected to
occur in electron-doped Mott insulators.

For Mott insulators we have shown that the discontinuity of the
exchange correlation potential equals the total charge-gap and it is of

Figure 4 | Contributions to the charge gap in the different regimes. Panel

(a) and (b) show the different contributions to the gap, DKS and Dxc and

compare their sum to the exact charge gap calculated by Lanczos

diagonalization, DC. The parameters in the two panels are chosen to have

the same total charge gap at U 5 0 in the small hopping limit. Parameters

are in panel (a) d 5 2t, V 5 0, in panel (b) d 5 t, V 5 0.5t. In both panels we

set w0 5 26t 1 U/2 and the potential of the site closer to the bulk-vacuum

boundary has been shifted to minimize boundary effects.
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the order U for strong correlation, for a homogeneous Hubbard
model we recover the results of Refs. 29,31. On the other hand in a
strong ionic insulator we showed that the discontinuity is determined
by the nearest-neighbour repulsion V which provides a simple estim-
ate of this elusive quantity.

In general we expect that in strongly ionic insulators, to a good
approximation, the Kohn-Sham gap matches the first Frenkel
exciton and that Dxc is given by its binding energy respect to the
fundamental gap. While in ionic salts the Frenkel exciton is easily
accessible experimentally, the fundamental gap is difficult to measure
and is often obtained by a theoretical fit to the observed optical
spectra50. In any case matching of the Frenkel gap by DKS puts a
strong constraint on density functionals in strong ionic insulators.

Methods
To calculate the exact Kohn-Sham (KS) potential, i.e. the effective non-interacting
potential which corresponds to the exact density, we adopt the following strategy: we
first obtain the ground-state density by applying Lanczos diagonalization44 to the
‘‘bulk 1 vacuum’’ chain, we then extract the KS potential by minimizing the differ-
ence between the KS density and the exact one for all values of the KS potential.

The KS density is as usual expressed in terms of KS orbitals, Qi(x, s), as

rKS xð Þ~
X

i,s

Qi x,sð Þj j2:

The orbitals Qi(x, s) are in turn defined through the well-known KS equations,

T̂szvKS x; r½ �
� �

Qi x,sð Þ~eiQi x,sð Þ ð5Þ

where T̂s is defined by T̂sQi x,sð Þ:{t Qi xz1,sð ÞzQi x{1,sð Þ{2Qi x,sð Þð Þ, vKS[x;
r] is the effective KS potential and ei are the KS energies. To find the exact KS
potential, we thus simply minimize the relative mean square error on the density i.e.
we calculate:

min
vKS xð Þ

X

x,s

r x,sð Þ{rKS x,sð Þj j2

r x,sð Þj j2
ð6Þ

where r denotes the exact density obtained by Lanczos diagonalization. After the
minimization the relative error on the density is smaller than 1025 i.e.
1{rKS=rj j 10{5. Such a high accuracy is necessary to correctly describe the

asymptotic decay of the density in the vacuum and to satisfy ‘‘Koopmans theorem’’ of
DFT4. This theorem, which identifies the highest occupied KS eigenvalue with the
exact ionization energy, has been discussed by several authors for DFT in the ‘‘con-
tinuum’’4,46,51 and has been also subject of controversies52–55. In the Supplementary
Material we extend its validity to lattice systems.
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6. Sham, L. J. & Schlüter, M. Density-Functional Theory of the Energy Gap. Phys.
Rev. Lett. 51, 1888–1891 (1983).

7. Gunnarsson, O. & Schönhammer, K. Density-Functional Treatment of an Exactly
Solvable Semiconductor Model. Phys. Rev. Lett. 56, 1968–1971 (1986).
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