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Abstract

Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infec-

tion in plants by preventing plant cells from becoming infected by any pathogen. This gene

is widely known for growth inhibition, premature leaf chlorosis, and defense-related pro-

grammed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific

amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoim-

mune symptoms including constitutive defensive responses and necrosis without pathogen

awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to

ascertain. The purpose of our study was to find the most deleterious mutation position in the

ACD11 protein and correlate them with their abnormal expression pattern. Using several

computational methods, we discovered PCD vulnerable single nucleotide polymorphisms

(SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynon-

ymous SNPs (nsSNP), built genetically mutated protein structures and used molecular

docking to assess the impact of mutation. Our results demonstrated that the A15T and

A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that

inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well

as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant

was more likely to destabilize the protein structure. In conclusion, these mutants can aid in

the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene

GLTP domain activation.
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Author summary

Non synonymous single nucleotide polymorphism (nsSNP) is a process in which amino

acid sequence of a protein is altered as a result of single nucleotide alteration in the coding

region (mRNA) of any living organism. Therefore, the entire protein structure, interac-

tions and stability are altered, which may have a negative impact on living organisms.

Hence, to completely comprehend this biological process, we must first solve the unre-

solved mutational protein structure and mutated protein interactions. The major goal of

our research is to identify the most harmful mutation in our target protein structure and

how it interacts within cells. However, it was discovered that only a few alterations in resi-

dues had the largest negative impact on the protein’s internal structure and also on the

protein-ligand interactions. We show that based on the amino acid sequence of a protein

computationally, it is feasible to discover mutational positions in the sequence, generate

mutation protein structure and interactions with related ligands. Our findings show that

the essential mechanisms underlying protein mutations generated by this process are

identical. The capacity to correctly detect mutations from sequence allows the annotation

and study of protein-ligand interactions throughout a whole organism, which might aid

function prediction and gene expression.

1. Introduction

Plant possesses an immune system to defend themselves during interactions with pathogen

and many component play significant roles in this defense mechanism. For the sake of defense

response, programmed cell death (PCD) or apoptosis occurs, and it occurs during various

developmental processes like mature pollen stage, visible stage of two to twelve leaves, stage of

germinated pollen, flowering stage, stage of mature plant embryo, as well as stage of petal dif-

ferentiation and expansion, bilateral cotyledonary, globular stage of plant embryo and finally

in vascular leaf senescent stage of plants [1–4]. In Arabidopsis, during infection the acceler-

ated-cell-death11 (ACD11) response to salicylic acid (SA) resulting PCD and cease pathogen

infection. Moreover, ACD11 also performs a role in ceramide transport as a ceramide-1-phos-

phate transfer protein (second messengers in apoptosis) and as a regulator of phytoceramide.

In addition, it also acts in intermembrane lipid transfer and represent itself as sphingosine

transmembrane transporter which also response to apoptosis [5–7]. Thus, in Arabidopsis
ACD11 gene is associated with multiple function starting from plant development to immune

response against any stress or pathogen.

Mutant of the ACD11 provides a genetic model for studying immune response activation

in Arabidopsis. As it is proved that ACD11 is associated with sphingolipid, so any disruption

in this gene may cause PCD. For example, previous study revealed that this lethal, recessive,

mutant gene could activate immune response and PCD in the absence of pathogen attack or

any stress condition that knockout ACD11 mutant, reveals PCD which is SA-dependent [8,9].

In Drosophila, disruption of sphingolipid metabolism cause apoptosis which is associated to

reproductive defects [10]. Another study hypothesized that the non-existence of ACD11 may

be perceives by the agnate nucleotide-binding as well as leucine-rich repeat (NB-LRR) protein,

which subsequently triggers PCD [11].

Single nucleotide polymorphisms (SNPs) are the most common type of variation which is

abundantly found. In the human genome, SNPs occurs at a frequency of approximately every

100 to 300 base pairs. In short, SNP represents replace or change of a single nucleotide which

is called DNA building block. For instance, in a stretch of DNA, SNP may replace the
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nucleotide cytosine (C) with the nucleotide thymine (T) that is a single nucleotide [12]. Maxi-

mum SNPs are synonymous and thus neutral allelic variants. However, main targets of SNP

research mainly focus on either the identification of functional SNPs or non-synonymous SNP

which is responsible for crop improvement, bringing complex traits and diseases in plants as

well as in animals. In crop improvement, single nucleotide polymorphisms (SNPs) is consid-

ered as a great source of genetic variations which is not lethal and is associated with cold resis-

tance, draught resistance and disease resistance such as blight, bacterial canker etc. [13–15]. A

study in Tea showed that, current Camellia sinensis and its wild relatives has genetic diver-

gence which is revealed using genome-wide SNPs from RAD sequencing [16]. In rice, genetic

diversity was analyzed using SNP based approaches and revealed important alleles associated

with seed size in rice [17].

However, sometimes deleterious nonsynonymous SNPs could have lethal effect on plant

and could be dangerous for crops especially when it occurs within a regulatory region of gene.

These non-synonymous SNP have the ability to alter the DNA sequence which will lead to dis-

ruption in the amino acid sequence of a protein resulting in a biological change in any individ-

ual. This is because SNP induces functional impact in protein, for example in protein stability.

Therefore, the interaction with other proteins is hampered [18,19]. This deleterious effect

could be predicted in A. thaliana and likely in other plant species using bioinformatics tools. A

previous study identified the SNP diversity in recently cultivated tomato and wild type tomato

species by using computational tools [20,21]. In addition, another study revealed that in other

eukaryotes, CYP1A1 gene, belonging to the cytochrome P450 family, induces production of

polycyclic aromatic hydrocarbon in the lungs and resulting in cardiovascular pathologies, can-

cer, and diabetes like diseases. SNP rate was higher in this gene and those diseases were pre-

dicted using a systematic in silico approach. Moreover, CYP11B2 gene undergoes SNP which

was also been predicted using computational approaches [22,23]. Thus, there are many bioin-

formatics tools are being used for predicting SNP in both plant and animal.

Bioinformatics tools make the research easier, resourceful and well ordered. Nowadays,

whole genome sequencing of many plants, animals, and microorganisms has revealed poly-

morphism, gene sequence variation, genetic marker, SNP and so on. But this big data analysis

required computational approaches for predicting these in short time and for saving resources

before going for wet lab practices. Moreover, in silico SNP analysis also facilitate the research

and predict the most deleterious and damaging SNPs [24,25]. For example, mutated structure

of protein or motif binding may be changed because of SNP, but it has direct correlation with

gene expression and variation which could be predicted using computational approaches.

Either the SNP is synonymous or nonsynonymous, lethal or not, and have any serious impact

on plant or not, all these could be predicted using computational approach [20,26–28].

Here, we focus on predicting the deleterious nonsynonymous SNPs of Arabidopsis ACD11

gene using computational approaches. Previous research suggests that this kind of study is pos-

sible, and SNP diversity with its effects are already identified in recent cultivated tomato and

wild tomato species following molecular simulations [18]. As of now, ACD 11 is not well stud-

ied and SNP in this gene could be lethal for Arabidopsis which may induced PCD in the

absence of infection resulting loss of plant and these reasons make us curious, inquisitive to

work with this gene.

2. Methods

2.1 Acquisition of sequences and retrieval of protein crystal structure

All the data of the ACD11 gene were retrieved from various web-based data resources such as

The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org), Ensemble Plant
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(https://plants.ensembl.org/index.html), and Nucleotide and Protein database of National

Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) and the amino acid

sequence (FASTA format) of the reference protein was obtained from the UniProt database

(ID-O64587) (https://www.uniprot.org/). Protein sequences and the Protein Deformylases

(PDF) corresponding structures were retrieved from the RCSB (Research Collaboratory for

Structural Bioinformatics), Protein Data Bank (PDB) (http://www.rcsb.org/pdb/), and a global

repository for structural data on biological macromolecules [29]. The protein model with PDB

ID: 4NT2 was chosen for the subsequent research work. The PDBSum (http://www.ebi.ac.uk/

thorntonsrv/databases/cgbin/pdbsum/GetPage.pl?pdbcode=index.html) was used to gather

several key structural information deposited at the PDB.

2.2 Analyzing cellular localization and gene expression ACD11 gene in

plant physiology

ePlant (http://bar.utoronto.ca/eplant) offers an analytic visualization of multiple levels of Ara-
bidopsis thaliana data by connecting a number of freely accessible web services. The tool

downloads genome, proteome, interactome, transcriptome, and 3D molecular structure data

for the gene(s) or the gene products of interest in a form of conceptual hierarchy [30]. The

ePlant tool was used for the single-cell analysis and biotic stress expression including the envi-

ronmental, pathological and entomological aspects of the ACD11 gene. The SUB cellular loca-

tion database for Arabidopsis proteins (SUBA4, http://suba.live) is a detailed collection of

published data sets that have been manually curated. It uses a list of Arabidopsis gene identifi-

ers to provide relative compartmental protein abundances and proximity relationship analysis

of protein-protein interaction (PPI) and co-expression partners [31]. The SUBA4 database was

employed to generate a confidence score for each distinct subcellular compartment or region,

with experimentally-determined localizations being weighted five times more than the pre-

dicted ones. The expression of the ACD11 gene in different stages of the plant life cycle was

investigated using RNA-Seq and Affymetrix microarray ATH1 GeneChips (Affymetrix, Santa

Clara, CA, USA) data. The ePlant (http://bar.utoronto.ca/eplant) and the eFP-Seq Browser

(https://bar.utoronto.ca/eFP-Seq_Browser/) allows exploring RNA-seq-based gene expression

levels for the gene of interest [32]. GEO Affymetrix microarray data (https://www.ncbi.nlm.

nih.gov/geo/) and NASCArrays Information (http://arabidopsis.info/affy) tools was utilized in

the process. The RNA-seq profiling data of the Arabidopsis thaliana were generated by devel-

opmental transcriptome. Total RNA was extracted with RNeasy Plant Kit and Illumina cDNA

libraries were generated using the respective manufacturer’s protocols. cDNA was then

sequenced using Illumina HiSeq2000 with a 50bp read length [33]. The read data are publicly

available in NCBI’s Sequence Read Archive under the BioProject (GEO accession:

PRJNA314076). Reads were then aligned to the reference TAIR10 genome using TopHat

[34,35]. Reads per gene were counted with Python script using functions from the HTSeq

package [36]. The developmental data were taken from ePlant server [37,38]. Gene expression

data generated by the Affymetrix ATH1 array [39] and were normalized by the GCOS (Gene-

Chip Operating Software) method [40] and the analysis parameter of TGT value was 100.

Most tissues were sampled in triplicate. The Arabidopsis ATH1 Genome Array, designed in

collaboration with The Institute for Genomic Research (TIGR), contains more than 22,500

probe sets representing approximately 24,000 gene sequences on a single array. The R package

for Statistical Computing (https://www.R-project.org/) provides a wide variety of statistical

and graphical techniques, and is highly extensible. Based on the microarray data, the R pro-

gramming is used to scrutinize the degree to which ACD11 gene expression varies during sev-

eral stages of the plant growth.
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2.3 Tissue specific expression of ACD11 gene

Using the ePlant tools, tissue specific expression of the ACD11 gene was examined, including

gene expression in the embryo developmental stage, the stem epidermis and vascular bundle

area, micro gametogenesis, stigma, and ovaries. The gene expression analysis data was

obtained from the ePlant server and NASCAffimatrix microarray data [41] (http://bar.

utoronto.ca/NASCArrays/index.php), and all of the tissue-specific RNA-Seq data came from

separate experiments. Wild-type Col-0 ecotype Arabidopsis thaliana plants were used to obtain

embryo developmental expression, epidermis expression, and xylem and cork expression data.

Laser capture micro dissection was used to generate embryo developmental data from plant

embryos maintained under 16/8-hour light/dark conditions. Manual dissection with forceps

was used to extract epidermal expression data from 3 cm sections of the top and bottom of the

10–11 cm long primary stems of treated plots under 18/6-hour light/dark conditions at 100

mEinstein, 22˚C, and 50%-70% relative humidity [42]. Secondary thickened hypocotyl was

created by continuous removal of the inflorescence stem for 10 weeks, and the plants were

maintained under continuous light conditions at 22˚C to obtain the xylem and cork expression

data (https://www.ebi.ac.uk/arrayexpress/experiments/E-GEDO-6151/samples/?s_page=1%

20&s_page%20size=25). Landsberg erecta (Ler) ecotype Arabidopsis thaliana plant flowers

were utilized to acquire micro gametogenesis, stigma, and ovary expression data, same as they

were for embryo development and vascular bundle area. After emasculating stage 8 buds of

flowers, data on stigma and ovary tissue expression was produced from isolated pistils. Pistils

were collected and frozen in liquid N2 after one day of growth, stigmas were detached from

pistils with superfine scissors, and the remaining ovaries were put in separate tubes on dry ice

until collection was complete [43]. Pollen from Arabidopsis plants in the 5th to 10th develop-

ment stages, cultivated under 16/8-hour light/dark conditions at 21˚C, was used to produce

micro gametogenesis expression data [44]. All the tissue specific RNA was isolated and hybrid-

ized to the ATH1 GeneChip. Microarray Suite version 5.0 (MAS 5.0) was used to analyze the

data, with Affymetrix default analysis settings and global scaling (TGT 100) as the normaliza-

tion method.

2.4 Expression analysis of ACD11 gene in various stress condition

Using the eplant server expression analysis tool, the ACD11 gene expression was examined

under abiotic conditions such as heat, cold, osmotic, salt, drought, wounding, and other envi-

ronmental variables. Using the same browsing tool, the pathological and entomological aspect

of the ACD11 gene was also scrutinized. All the abiotic and biotic expression data was gener-

ated from wild-type Columbia-0 ecotype Arabidopsis thaliana plants and all of the pathological

expression data was collected in triplicates from half and full infiltrated leaves. The pathologi-

cal gene expression data was generated from 5-week-old plants where half and full portion of a

plant leaf getting infected with Phytophthora infestans respectively. Plants were grown at 22˚C

with a light/dark cycle of 8/16 hours and bacterial infiltration performed with 10 to 8 cfu/ml in

10 mM MgCl2 (GEO accession: GSE5616). The entomological data was gathered from an Ara-
bidopsis plant that was cultivated in soil at 20˚C with a 16/8 hours of light/dark cycle for 3–4

weeks before being cultured with Myzus persicaere (apterous aphids) in clip cages and collected

the leaves after 8 hours (GEO accession: GSM157299). Then RNA was isolated and hybridized

to the ATH1 GeneChip [45]. Aside from the biotic stress, the abiotic stress expression study

was performed at 18-day-old plants that were cultivated under long-day conditions of 16/8

hours of light/dark, 24˚C, 50% humidity, and 150 Einstein/cm2 sec light intensity and this

expression analysis was a part of the AtGenExpress project (https://www.arabidopsis.org/

portals/expression/microarray/ATGenExpress.jsp). The data for cold and heat stress were

PLOS COMPUTATIONAL BIOLOGY Prediction and expression analysis of deleterious nonsynonymous SNPs of Arabidopsis ACD11

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009539 June 16, 2022 5 / 26

http://bar.utoronto.ca/NASCArrays/index.php
http://bar.utoronto.ca/NASCArrays/index.php
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEDO-6151/samples/?s_page=1%20&s_page%20size=25
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEDO-6151/samples/?s_page=1%20&s_page%20size=25
https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp
https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp
https://doi.org/10.1371/journal.pcbi.1009539


collected in a 4˚C crushed ice-cold chamber and 3 hours at 38˚C followed by recovery at 25˚C,

respectively. Punctuation of the leaves with three successive applications of a custom-made

pin-tool with 16 needles was used to collect wounding expression data. Similar to other experi-

ments, the osmotic, salt, drought and oxidative stress also performed by 300 mM Mannitol,

150mM NaCl and rafts were exposed to the air stream for 15 min and 10 uM Methyl viologen

accordingly [46]. All the tissue specific RNA was isolated and hybridized to the ATH1 Gene-

Chip. Microarray Suite version 5.0 (MAS 5.0) was used to analyze the data, with Affymetrix

default analysis settings and global scaling (TGT 100) as the normalization method.

2.5 Single nucleotide polymorphism (SNP) annotation in ACD11 genes

The 1001 Genomes Project (https://tools.1001genomes.org/polymorph/) has already released a

complete investigation of 1135 Arabidopsis thaliana genomes, with the goal of annotating

them with transcriptome and epigenome data, is a powerful resource for polymorphism study

in the reference plant. The nsSNP data of the ACD11 gene were extracted from the 1001

Genome project and considered for further analysis. Beside this, the Ensemble Plant web

server presents the variant table (https://plants.ensembl.org/Arabidopsis_thaliana/Tools/VEP)

which analyze the 1001 genome project data and predict their effects.

2.6 Determination of functional SNPs in coding regions

Sorting Intolerant From Tolerant (SIFT) was used to see how each amino acid substitution

affects protein function in order to distinguish between tolerant and intolerant coding muta-

tions. It aligns data at each position in the query sequence to predict damaging SNPs based on

the degree of conserved amino acid residues to the closely related sequences. Substitutions

with probabilities less than or equal to 0.05 are considered intolerant or deleterious, while

those with probabilities greater than or equal to 0.05 are expected to be tolerated [47,48]. Pro-

tein Analysis through Evolutionary Relationships (PANTHER) predicts pathogenic coding

variants based on evolutionary conservation of amino acids. It uses an alignment of evolution-

arily linked proteins to determine how long the current state of a given amino acid has been

preserved in its ancestors. The higher the risk of functional consequences, the longer the reten-

tion period [49]. The Protein Variation Effect Analyzer (PROVEAN) is a sequence based pre-

diction tool that was employed to predict the damaging effect of nsSNPs in the ACD11 gene.

The tool utilizes delta alignment scores that measures the change in sequence similarity of a

protein before and after the introduction of an amino acid variation. An equal score or below

the threshold of -2.5 indicates deleterious nsSNP alignment [50]. PolyPhen2, examines the

protein sequence and replacement of amino acids in protein sequence to predict the structural

and functional influence on the protein. If any amino acid alteration or a mutation is detected

in protein sequence, it classifies SNPs as possibly damaging (probabilistic score >0.15), proba-

bly damaging (probabilistic score >0.85), and benign (remaining) [51]. Furthermore, Poly-

Phen2 calculates the position-specific independent count (PSIC) score for each variant in

protein. The difference of PSIC score between variants indicates that the functional influence

of mutants on protein function directly [52]. Using the PolyPhen2, Panther Server, and PRO-

VEAN algorithms, the effects of SIFT were investigated further by looking at the influence of

nsSNPs on the structure and function of the protein.

2.7 Identification of potential domains in ACD11

A number of servers and tools were utilized for understanding the available protein domains

of ACD11 protein and its associated protein superfamily and subfamily. To get an insight into

the domain locations of the ACD11 gene and the positions of the possible superfamily
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domains, the servers Gene3D (1.10.3520.10) and Superfamily Server (SSF110004) were used.

Gene3D (http://gene3d.biochem.ucl.ac.uk) is a database that contains protein domain assign-

ments for sequences from all of the major sequencing databases. Domains are predicted using

a library of representative profile HMMs generated from CATH super families or directly

mapped from structures in the CATH database. The server facilitates complicated molecular

function, structure, and evolution connections [53]. SUPERFAMILY is a structural and func-

tional annotation database for all proteins and genomes. This service annotates structural pro-

tein domains at the SCOP superfamily level using a set of hidden Markov models. A

superfamily is a collection of domains with a shared evolutionary history [54]. Furthermore,

PANTHER (PTHR10219) and Pfam (PF08718) were used to investigate the protein subfamily

of the ACD11 protein. The PANTHER (Protein Analysis through Evolutionary Relationships)

Classification System was created to help high-throughput analysis by classifying proteins (and

their genes). Proteins are divided into families and subfamilies. Pfam is a protein family and

domain database that is frequently used to evaluate new genomes and metagenomes, as well as

to drive experimental work on specific proteins and systems. A seed alignment for each Pfam

family comprises a representative collection of sequences for the entry [55].

2.8 Homology modelling, validation and molecular docking study

On the basis of a sequence alignment between the target protein and the template structure, a

three-dimensional model for the target protein is generated [56]. I-TASSER is an online plat-

form which implements the TASSER-based algorithms and helps to predict the structure of a

given protein. In this study, we used I-TASSER for A15T and A39D mutation modeling and

then carried out the mutational protein modeling [57]. Then the effects of A15T and A39D

mutations in the native protein structure were visualized by Pymol. Next, we considered the

ERRAT [58], varify3D [59], [60] and PROCHECK [61] programs to determine and validate

the structural stability and residue quality of mutant and native protein. To assess the impact

of a particular mutation on the local and global environment of ACD11 protein structure, we

have calculated van der Waals, hydrogen bonding, electrostatic and hydrophobic interactions

in ACD11 mutant using Arpeggio web server [62]. Furthermore, molecular docking was per-

formed by AutoDock Vina v1.1.2 software (https://vina.scripps.edu/downloads/) which

allowed the binding of the mutant ACD11 structure with the entire surface of the native

ACD11 protein. The ACD11 gene possesses two ligand including SPU (2-{[(R)-{[(2S,3R,4E)-

2-amino-3-hydroxy octadec-4-en-1-yl]oxy}(hydroxy) phosphoryl] oxy}- N, N, N-trimethyl

ethanaminium) and EDO (1, 2-ETHANEDIOL). SPU and EDO bind to the ACD11 gene at

the MET59, ASP60, HIS142, HIS143, and GLY144 positions, and MET82, ASP83, LEU196,

PHE197, SER199, and LYS200 binding pockets, respectively. MGLTools v1.5.6 (https://ccsb.

scripps.edu/mgltools/downloads/) and autodock v4.2.6 (https://autodock.scripps.edu/

download-autodock4/) were used to prepare our protein and ligands for docking study. The

protein was prepared by locating and fixing missing atoms in the protein structure. Then polar

hydrogen and kollman charges were added to the protein atom, atom type was to AD4, and

saved as a PDBQT file. Ligands were prepared by loading them into the MGLTools v1.5.6 pro-

gram, then setting it to identify root and saving the file in PDBQT format. The SPU ligand

contained 21 rotatable bonds and 6 aromatic carbons, whereas the EDO ligand had just 3

rotatable bonds. Further, for better results, grid parameter file (gpf) and docking parameter file

(dpf) were created with the genetics algorithm parameter being fixed to 50 GA runs and popu-

lation size was set to 300. Default value was utilized for the other options and the best cluster

confirmation result was selected (S1 Table). Finally, the docked complexes were analyzed and

visualized by Pymol [63].
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3. Results

3.1 Acquisition of sequences and retrieval of protein crystal structure

We utilized the ACD11 gene’s genomic sequence, which is found on chromosome 2 between

14,629,986 and 14,632,082 kb of forward strand, has 4 exons and 3 introns. This gene codes for

a glycolipid transfer protein (GLTP) family protein with a 1363bp (NM 129023.5) mRNA that

translates into a 206 amino-acid protein (NP 181016.1) (S2 Table). This protein contains just

one chain in its crystal structure (PDB 4NT2), with 14 helices, 30 helix-helix interactions, and

4 beta turns. This protein contains 5 SO4 (Sulphur-di-oxide) ion contacts, 2 SPU (Sphingosyl-

phosphorylcholine), and 2 EDO (Ethylene glycol) ligand interactions and also interacts with

the proteins BPA1, PRA1F2, and PRA1F3. The molecular weight of this protein is 22681.60

Da, The IEP (isoelectric point) value is 8.47 and the GRAVY (grand average of hydropathy)

value of 0.05 (S3 Table).

3.2 Analyzing cellular localization and gene expression of ACD11 gene in

plant physiology

3.2.1 Cellular localization. In vitro, the ACD11 protein transfers sphingosine, a glycolipid

precursor, through membranes [64]. As a result, we examined gene expression at the cellular

level. The output clearly explained that the ACD11 is a transmembrane protein as this gene is

strongly expressed in the cell membrane region. Aside from this location, the ACD11 gene had

been found to be expressed in a variety of ways across the cell, apart from the vacuole. In the

cytosol and mitochondrion, the ACD11 gene is abundantly expressed. It also had a medium

degree of expression in the nucleus and plastid, and a very low level of expression in the endo-

plasmic reticulum, golgi, peroxisome, and extracellular location. (S1 Fig and S4 Table).

3.2.2 RNA-Seq data and developmental transcriptome expression. As the ACD11 gene

causes rapid cell death of plants in different abiotic and biotic stress conditions, we further

analyzed this gene expression in the different stages of the plant life cycle using RNA-Seq and

Affymetrix microarray data to find out when and where this gene is expressed highly in nor-

mal condition. From the RNA-Seq analysis data, it is clear that the ACD11 gene is strongly

expressed in the mature leaf, first stage of germinating seeds, leaf petiole of the mature leaf,

and petals of the mature flower. In the hypocotyl of seedling, leaf lamina of mature leaf, carpel

of the mature flower, senescent internodes, and in the root apex, the ACD11 gene is expressed

moderately. Apart from these locations, the ACD11 gene is poorly expressed in seeds from the

senescent silique, pod of the silique with seed and without seed condition, dry seed and leaf

petiole of the young leaf (Fig 1A and S5 Table). According to developmental transcriptome

data, the ACD11 gene dramatically increases its expression in mature pollen, cauline leaf, sec-

ond internode, 24 hour imbed seeds, and other floral components. This gene is expressed

moderately in the cotyledon, distal half of the leaf, sepals, petals, rosette leaf, and root part. In

seeds with and without silique, vegetative rosette, and 9th to 12th flower stage, the lowest

expression is anticipated (Fig 1B and S6 Table).

3.2.3 An insight of expression data based on different parameter comparison. We

anticipated that our target gene ACD11 expresses significantly at various plant growth stages

based on our microarray data. We also used prediction findings in this study to see how far the

data is related to one another. According to parameter-based RNA-Seq data, the virulent bac-

terium infected 6-week-old short day plant leaf had the highest number of read counts in the

locus with the highest total number of reads, as well as a higher rpb (point basal correlation)

and RPKM value. However, the highest percentage of rpb and RPKM values are detected in

5-day old dark growing seedlings and etiolated 5-day old seedlings. The amount of readings in
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Fig 1. RNA-Seq data and developmental transcriptome expression. A: ACD11 gene expression in developmental

transcriptomics. B: ACD11 gene expression in RNA-Seq transcriptomics.

https://doi.org/10.1371/journal.pcbi.1009539.g001
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total are counted but read mapped per locus is not. Moreover, seedling and floral bud stages

had the maximum rpb value and the lowest percentage of reads mapped and RPKM value. In

addition, the highest number of reads mapped to a locus were observed in the leaves of long-

day and short-day grown plants, the root tip of dark-raised seedlings, variously treated seed-

lings (e.g., NaCl, cytokinin, etc.), and plants infected with virulent pathogens (Fig 2A). Devel-

opmental transcriptome data, like RNA-Seq data, is used to construct dendrogram clustering

to estimate how closely cells are expressed. The leaf-fruit cluster and the carpel-pollen cluster

had the most expression similarity, according to the findings. Then the carpel-pollen cluster

had the most in common with the flower pedicel, and this cluster had the most relationship

with the leaf-fruit cluster (Fig 2B). In these procedures, all of the data forms a cluster with each

other and displays their expression affinity. With the rosette leaf, the carpel-pollen cluster had

the least expression.

3.3 Tissue specific expression of ACD11 gene

3.3.1 Gene expression in embryo developmental stage. The ACD11 gene appears to be

divergent in tissue-specific embryo development. The ACD11 gene appears at every stage of

embryo development, according to the microarray study. This gene expresses itself more

strongly in the apical region of the globular stage than in the basal. During the embryo devel-

oping stage, the globular structure of the embryo develops into a heart shape composed of cot-

yledons and root. Roots express themselves significantly more effectively than cotyledons at

this stage. Torpedo stage is the third stage of embryo development. It is divided into five sec-

tions: root meristem, basal, apical, and cotyledons. During the torpedo stage, the ACD11 gene

exhibits itself in a unique way, with expression steadily increasing from root to cotyledons.

The ACD11 gene was robustly expressed in the cotyledons during the torpedo stage, with an

expression level of 2101.77. Moderate expression was observed in the apical, basal, and meri-

stem portions, with the lowest expression predicted in the root part at 59.53 (S7 Table and S2

Fig).

3.3.2 Gene expression in the stem epidermis and vascular bundle region. From the Ara-
bidopsis microarray data analysis, we predicted that ACD11 gene expresses itself in stem and

vascular bundle region. Through analysis output, it is clear that the ACD11 gene is highly

expressed in the bottom portion of stem, then in the top potion and epidermal peel is

expressed more strongly than whole stem. In the top portion of stem, epidermal peel was

expressed negatively compared to the whole stem. On the other hand, the gene expresses itself

in the bottom epidermal peel more vigorously than the whole bottom stem (S8 Table and S3

Fig). ACD11 gene expression was assessed in the cork and xylem areas in addition to the stem

epidermis. We compared several genotypes of Arabidopsis plants in our xylem and cork

expression study. Compared to Col-0 and MYB61 knockout genotypes, the ACD11 gene is

substantially expressed in the cork area in the MYB50 knockout genotype, according to the

study results. However, this gene was expressed more significantly in the xylem area through-

out the Col-0 genotype than in the MYB61 knockout genotype, whereas MYB50 knockouts

showed no expression. Different forms of expression were observed between genotypes in

Hypocotyl. The ACD11 gene is highly expressed in the hypocotyl area of the plant stem in the

Col-0 genotype, whereas the aba1 genotype had the lowest projected expression. The expres-

sion sequence of the ACD11 gene within different Arabidopsis genotypes from highest to low-

est expression was observed in Col-0, axr1, max4, abi1, Ler, and aba1 genotype respectively (S9

Table and S4 Fig).

3.3.3 Gene expression in micro gametogenesis, stigma and ovaries. As RNA-Seq and

developmental transcriptome data predicted that our target gene ACD11 was highly expressed
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in the mature pollen, so our data analysis was focused on microgametogenesis process of

megasporangium, stigma and ovaries. From stigma and ovary analysis output, it was predicted

that ACD11 gene is vigorously expressed in ovary tissues with an expression level of 634.27

and poorly expressed in stigma tissues with an expression value of 285.77 (S10 Table and S5

Fig 2. Insight of expression data based on different parameter; A: Insight on ACD11 gene data on rpb vs RPKM based on reads mapped to locus

and total number of reads; B: Cluster of plant different portion based on gene expression similarity.

https://doi.org/10.1371/journal.pcbi.1009539.g002
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Fig). Apart from stigma and ovary expression analysis, we also observed expression of gene at

the pollen developing stage (micro gametogenesis). The RNA-Seq and developmental tran-

scriptome data fit seamlessly with our findings. According to the findings, the ACD11 gene is

more consistently expressed in mature pollen grains than in Bicellular Pollen. The expression

data demonstrated that the ACD11 gene slightly shows up in uninucleate microphore and

then drops its expression in bicellular pollen. After that, it gradually intensified its expression

in tricellular pollen and maximize its expression in mature pollen grain (S11 Table and S6 Fig).

3.4 Expression analysis of ACD11 gene in biotic and abiotic stresses

3.4.1 Abiotic stress and ACD11 gene expression. When plants are subjected to biotic

stressors, the ACD11 gene expresses itself. We investigated ACD11 gene expression under

diverse abiotic circumstances such as heat, cold, osmotic, salt, drought, wounding, and other

environmental variables. This discovery implies that, the ACD11 gene expresses itself uniquely

depending on the stressor. The results from the control samples analysis suggested that this

gene had not been overexposed. Different biotic stress conditions, on the other hand, predicted

that the ACD11 gene was expressed both positively and negatively (Fig 3). This gene expressed

itself highly within half an hour of being exposed to cold biotic stress, but its expression gradu-

ally declined over time. However, in the presence of osmotic stress, the ACD11 gene rapidly

expressed itself within nearly an hour, then progressively decreases its expression for the next

6 hours, before gradually increasing its expression over the next 24 hours. The ACD11 gene

Fig 3. ACD11 gene expression in different abiotic stresses.

https://doi.org/10.1371/journal.pcbi.1009539.g003

PLOS COMPUTATIONAL BIOLOGY Prediction and expression analysis of deleterious nonsynonymous SNPs of Arabidopsis ACD11

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009539 June 16, 2022 12 / 26

https://doi.org/10.1371/journal.pcbi.1009539.g003
https://doi.org/10.1371/journal.pcbi.1009539


expresses positively around half an hour of being exposed to salt, then progressively reduces its

expression until it reaches 3 hours, then steadily raises its expression until it reached to 12

hours. This gene is adversely expressed for the first 3 hours of drought biotic stress, then

increased its expression for the next 24 hours. When a plant is injured, the ACD11 gene

expressed strongly for approximately nearly an hour and starts to increase its expression

throughout the next 24 hours. When a plant is introduced to a heated environment, it

expresses itself slowly for the first half hour, then gradually decreases for the next couple of

hours, and then shows a high expression level after 4 hours and slightly declines over the next

24 hours (S12 Table).

3.4.2 Pathological and entomological aspect. In aspect of plant-pathogen interaction,

the ACD11 gene revealed dramatically high expression when plants were subjected to any

biotic stresses such as Phytophthora infestans. The experimental data predicted that when

plants get afflicted by Phytophthora infestans, the expression of ACD11 elevated immensely.

When half of the leaf within a plant gets affected by an avirulent pathogen Phytophthora infes-
tans (ES4326/avrRpt2), the expression of the ACD11 gene increased slightly after 4 hours of

infection. In the next few hours, the expression dropped gradually. Subsequently, after 16

hours, the expression increased gradually up to 24 hours, then dropped slightly after 48 hours.

In contrast, when the full leaf of a plant is treated with a virulent pathogen (ES4326), the

ACD11 gene expression gradually increased for up to 48 hours after infection (Fig 4 and S13

Table). Quite apart from pathological expression, entomological quantitative analysis

Fig 4. ACD11 gene expression in different biotic stresses.

https://doi.org/10.1371/journal.pcbi.1009539.g004
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demonstrated that the ACD11 gene was abundantly induced when insects (Myus persicaere)
attacked Arabidopsis plant. The infected plant had a substantially higher expression level than

the control plant, with a value of 465.98 (S14 Table).

3.5 Single Nucleotide Polymorphism (SNP) annotation in ACD11 genes

The STK11 gene polymorphism data was gathered from the 1001 genome project database,

which had a total of 78 SNPs for the STK11 protein [65,66]. There were 25 SNPs in the intron

area, 8 nsSNPs (missense), 4 coding synonymous, 25 in the 50 UTR region, and 16 in the 30

UTR region, for a total of 78 SNPs (Fig 5). The majority of SNPs were identified in the intron

region (32.05 percent) and 50UTR (32.05 percent), correspondingly, followed by 30UTR SNPs

(20.51 percent), missense (10.25 percent), and coding synonymous (5.13 percent). The pro-

posed research is interested in nsSNPs because they change the encoded amino acid. For the

purposes of this study, only ACD11 nsSNPs were examined (S15 Table).

3.6 Identification of effective SNPs in coding sequence

The aim of the numerous studies was to discover significant nsSNPs in ACD11 using compu-

tational prediction techniques. The SIFT method screened eight nsSNPs as harmful out of four

missense SNPs that might have a measurable effect on the protein. Using the PolyPhen2, Pan-

ther Server, and PROVEAN algorithms, the effects of SIFT were investigated further by look-

ing at the nsSNPs that have an impact on the structure and expression of proteins (Fig 6). In

PolyPhen2, 3 nsSNPs were predicted to be deleterious. Panther’s evolutionary study of coding

SNPs predicted 1 nsSNPs that could cause changes in protein stability due to mutation. PRO-

VEAN anticipated that three nsSNPs were harmful and may have a practical impact on the

protein. For the detection of high-risk nsSNPs in this analysis, four separate computational

Fig 5. Distribution of ACD11 missense, coding synonymous, intron, 30UTR, and 50UTR SNPs.

https://doi.org/10.1371/journal.pcbi.1009539.g005
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algorithms were used. Based on their compared prediction scores, two nsSNPs (A15T and

A39D) were found to be extremely deleterious by integrating the effects of all the algorithms.

A15T and A39D mutants were chosen for further investigation (S16 Table).

3.7 Identification of potential domains in ACD11

The glycolipid transport superfamily protein ACD11 belongs to the GLTP domain-containing

protein subfamily. According to previous research, this gene’s domain location varies. Accord-

ing to the Gene3D (1.10.3520.10) and Superfamily (SSF110004) servers, the Glycolipid transfer

protein superfamily domain lies between 1–206 and 26–205 amino acids. In addition, the

PANTHER (PTHR10219) and Pfam (PF08718) servers proposed that the Glycolipid transfer

protein domain is placed between 5–205 and 32–169 amino acids. The chosen nsSNPs (A15T

and A39D) were found in the glycolipid transfer protein domain. The two nsSNPs investigated

in our study (A15T and A39D) (S17 Table) were found to be present in the glycolipid transport

protein domain.

3.8 Structural analysis of native and mutant models

For native models, the Ramachandran plot revealed that out of 206 amino acid residues, 173

residues were in the preferred region (95.6%) and 8 residues in the allowed region (4.4%). On

the other hand, the A15T mutant versions, the preferred region had 172 residues (92.0%), the

approved region had 14 residues (7.5%), and the outer region had just 1 residue (0.5%). The

structure assessment of A39D mutant model predicted that in the recommended zone, 166

residues (88.8%) were discovered, whereas in the allowed region, 18 amino acid residues

(9.6%) were discovered. Also, there was 1 residue (0.5%) in the outer region, and just 2 resi-

dues (1.1%) in the disallowed region. Next, we considered the ERRAT and varify3D programs

Fig 6. Different database data prediction.

https://doi.org/10.1371/journal.pcbi.1009539.g006
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to determine protein structural stability and residue quality. These programs suggested that all

of our native and mutant structures had extremely excellent residue coordination and back-

bone structures with values greater than 95% and 99.95% respectively (S7–S9 Figs and S18

Table).

3.9 Structural comparison of native and mutant protein

The ACD11 gene in Arabidopsis plays a significant function in the plant’s defense mechanism

[67]. A mutation causes a substantial alteration in the protein’s structure [68]. According to

our findings, the mutant form of this protein loses more ligand protein interactions than the

natural protein and A15T and A39D mutations trigger a significant change in the native pro-

tein structure. The alanine in position 15 has a polar interaction with the protein residues

Arg11, Ser14, and Lys19 in the native structure (Table 1). However, when alanine is replaced

with thymine in the 15th position, the protein loses the Ser14 polar interaction and gains

Lys12 and Ala16 interactions (Fig 7A). As alanine is replaced with aspartic acid in the 39th

position, the protein structure lost its Leu42 polar interaction and achieved new polar interac-

tion with Lys19 residue (Fig 7B). This single point mutation has a significant influence on the

overall structure of the protein. To demonstrate this point, we examined our whole protein

structure and discovered that the overall number of contacts, van-der-wall interactions, polar

interactions, hydrogen bonds, and ionic interactions had altered significantly (Table 2). A total

of 8084 interactions were discovered in the natural protein structure. This number of contacts

was raised to 8430 with the A15T mutation whereas A39D contained 8926 contacts. Van der

Waals interactions, aromatic contacts, and hydrophobic contacts were found to be lower in

A15T. However, in certain way, these mutant structures gained more connections than the

normal protein structure. For example, more polar contacts, hydrogen bonds, ionic interac-

tions, and hydrophobic contacts were formed in the A15T and A39D mutant structures than

in the native protein structure. Apart from this, when we super imposed our structures, we

found that mutate structure build a loop where native structure had helix (Fig 7B).

3.10 Homology modelling, validation and molecular docking study

The ACD11 gene has two ligands which plays an important role in molecular activity of the

gene [69]. According to the protein ligand docking review, the mutant ACD11 structure binds

to the SPU and EDO ligand in a significantly different alignment than the native ACD11 struc-

ture. SPU (sphingosylphosphorylcholine) is a cationic phosphosphingolipid consisting of

sphingosine having a phosphocholine moiety attached to its primary hydroxyl group. EDO

(Ethylene Glycol) is a clear, colorless syrupy liquid.

When compared to the A39D mutant, the A15T mutant had a greater variance. In A15T

mutation, both ligand SPU and EDO binds differently than native protein structure. Besides

this, the A15T mutant structure losses many of its native interactions. The native structure has

Table 1. Intramolecular interactions between native and mutant protein structure (Å = 10-10m).

Interacting Residue Distance (Å) Interacting Residue Distance (Å) Interacting Residue Distance (Å) Interacting Residue Distance (Å)
Native ACD11 Mutant A15T Native ACD11 Mutant A39D
Arg11 3.0 Arg11 2.0 Gln35 3.2 Lys19 1.9

Ser14 2.9 Lys12 1.8 Phe36 3.2 Lys19 2.0

Lys19 3.5 Lys12 2.5 Leu42 3.2 Gln35 2.0

Ala16 2.8 Phe36 2.8

https://doi.org/10.1371/journal.pcbi.1009539.t001
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binding affinity of -2.67 kcal/mol and -1.82 kcal/mol, accordingly for SPU and EDO ligands.

The A15T mutant model, on the other hand, binds to SPU and EDO ligands differently, with

binding affinity value of -1.15 kcal/mol and -2.65 kcal/mol, respectively. When native and

mutant proteins were compared, both SPU and EDO binds to various binding pockets; how-

ever, examination of the binding pose of SPU and EDO revealed a substantial difference in

Fig 7. Protein ligand interaction (A) A15T mutation gained some new interaction and loses some native

interaction; (B) A39D interaction also gained some new interaction.

https://doi.org/10.1371/journal.pcbi.1009539.g007

Table 2. Total number of molecular interactions of native and mutant protein.

Mutation Total no. of
Contacts

VdW
Interactions

VdW clash
Interactions

Polar
Contacts

Hydrogen
Bonds

Ionic
Interactions

Aromatic
Contacts

Hydrophobic
Contacts

Carbonyl
Interactions

Native 8084 188 277 411 191 24 30 488 7

A15T 8430 173 345 451 294 52 7 482 8

A39D 8626 190 347 463 311 57 30 500 12

https://doi.org/10.1371/journal.pcbi.1009539.t002

PLOS COMPUTATIONAL BIOLOGY Prediction and expression analysis of deleterious nonsynonymous SNPs of Arabidopsis ACD11

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009539 June 16, 2022 17 / 26

https://doi.org/10.1371/journal.pcbi.1009539.g007
https://doi.org/10.1371/journal.pcbi.1009539.t002
https://doi.org/10.1371/journal.pcbi.1009539


both ligands’ terminal interactions between native and A15T mutant protein complexes. Cer-

tain residues in native ACD11 bind with SPU, such as Asp60 and Gly144, but these connec-

tions were lacked in mutant proteins, as Lys55 and Phe56 contacts with EDO ligand (Fig 8).

Apart from that, the A39D mutation also causes significant differences in protein ligand

binding. SPU and EDO ligands bind to the A39D mutant model with values of -1.48 kcal/mol

and -2.36 kcal/mol, respectively. SPU and EDO bind to distinct binding pockets in native and

mutant proteins, similar to A15T mutant structure; nevertheless, analyzing the binding pos-

ture of SPU and EDO reveals a substantial difference in the terminal contacts of both ligands

between natural and mutant protein complexes. Several residues in normal ACD11 were

engage with SPU, including as Asp60 and Gly144, but these interactions were absent in mutant

proteins, resulting in novel associations with Thr77. Moreover, Lys55 and Phe56 contacts with

EDO ligand, are missing in mutant proteins, and new interactions with Glu5 and Arg11 resi-

due were formed (Fig 9).

SPU interactions with native and mutant proteins revealed less hydrogen bonds and more

enticing electrostatic charge interactions between SPU and mutant protein residues whereas

EDO interactions with protein residues revealed more hydrogen bonds and enticing electro-

static charge interactions in native and mutant protein structures (Table 3).

4. Discussion

The present study findings make a correlation between mutational structural changes and

molecular function alteration. As plants introduce genetically mediated mechanisms such as

Fig 8. Ligand interaction change with protein structure of ACD11 because of A15T mutation.

https://doi.org/10.1371/journal.pcbi.1009539.g008
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accelerated-cell-death 11 (ACD11) for researching localized cellular suicide, and programmed

cell death (PCD) for preventing pathogen dissemination throughout the plant, the recessive

Arabidopsis mutant with accelerated cell death11 (ACD11) is identified [8]. ACD11 is a cer-

amide-1-phosphate (C1P) and phytoceramide-1-phosphate intermembrane transport protein

[6]. ACD11 is a plant gene in Arabidopsis thaliana plant that induces defense-related pro-

grammed cell death (PCD), growth inhibition, and premature leaf chlorosis in seedlings before

flowering, resulting in a lethal phenotype [70]. The ACD11 gene is also linked to the glycolipid

transport protein family (GLTP) found in mammals [71] and enhances sphingosine transport

[8]. In our ATH1 microarray data analysis, the ACD11 gene is favorably expressed in mature

tissues of plants components such as cauline leaf and mature pollen, and negatively expressed

Fig 9. Ligand interaction change with protein structure of ACD11 because of A39D mutation.

https://doi.org/10.1371/journal.pcbi.1009539.g009

Table 3. Docking results of SPU and EDO ligands with native and mutant proteins.

No. Compound Protein RMSD Binding energy (Kcal/Mol) Inhibition Constant (Ki) No of H bonds Amino acid involved in interaction
1 SPU Native 51.28 -2.24 22.81 mM 2 Asp60, Gly144

A15T 109.04 -1.15 142.71 mM 2 Asn25, Asn25

A39D 111.73 -1.48 82.37 mM 2 Thr77, Thr77

2 EDO Native 56.13 -1.82 46.01 mM 2 Lys55, Phe56

A15T 84.51 -2.65 11.35 mM 5 Leu127, Lys128, Pro159, Pro159, Arg161

A39D 80.48 -2.36 18.65 mM 6 Glu5, Glu5, Glu5, Glu5, Arg11, Arg11

https://doi.org/10.1371/journal.pcbi.1009539.t003
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in the early stages of plant growth. Moreover, ACD11 gene plays vital role in plant immunity

because it prevents pathogen buildup in the plant body through constitutive defense responses

[72]. As assessed by flow cytometry, ACD11 cell death is similar to mammalian apoptosis, and

ACD11 produces protective genetic traits constitutively, which are linked to the hypersensitive

reaction induced by virulent and avirulent pathogens [8]. Our RNA-Seq study also illustrated

that the ACD11 gene was expressed robustly when Arabidopsis plants were continually

exposed to viruses and various biotic and abiotic stressors. So, we hypothesis that deleterious

mutations might have huge impact on ACD11 gene functions as well as on the structure.

Therefore, to validate our assumption, we performed some in silico prediction analysis. We

used The Project HOPE web server to calculate the evolutionary stability characteristics of all

ACD11 amino acid residues in order to analyze the two nsSNPs that have a negative influence

(A15T and A39D) on the ACD11 protein [73]. Alanine, at position 39, is projected to be an

embedded composition and amino acid residue with a significant sustainability score by this

server. This mutant residue adds a negative charge to a buried residue, perhaps results in pro-

tein folding issues. Our findings also implies that the A15T and A39D mutations alter the

structure as well as amino acid interactions of ACD11 gene. For further understanding we

used molecular docking analysis to test our hypothesis that the A15T and A39D mutants have

a deleterious impact on the ACD11 protein. The binding pocket of ACD11 was greatly per-

turbed by both mutants, according to docking analysis with SPU and EDO ligands. In the

native ACD11-SPU complex, SPU binds to Asp60, Gly144 but in A15T mutant-SPU complex

it binds to Asn25 and same event happed with A39D mutant-SPU complex as it binds with

Thr77. As a consequence, the SPU ligand binds loosely to the mutants then the native struc-

ture. In the native ACD11-EDO complex, EDO binds to Lys55 and Phe56, but in the A15T

mutant-EDO complex, it binds to Leu127, Lys128, Pro159, and Arg161, and in the A39D

mutant-EDO complex, it binds to Glu5 and Arg11. As a result, the EDO ligand binds with

mutants of ACD11 more tightly than it does to the native protein structure. The favorable con-

tacts needed for ACD11’s functional activity are disrupted by these mutants. It has been

proven in previous studies that when a cell loses its binding affinity or interaction with SPU

and increases its interactions with EDO, cell death multiplies exponentially [7,74]. In addition,

SNPs in Oryza sativa induce seed shattering [75]. As a whole, our research indicated that our

computational findings were significantly correlated with prior research results. Our study

extends our knowledge of how a polymorphism impacts plant phenotypes at the molecular

level. As a consideration, large-scale field experiments on a significant population are needed

to classify the SNP evidence, as well as experimental mutational studies to validate the results.
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