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Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM) is the most
lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultra-
violet (UV) light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets
of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have
identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human,
p16INK4a and p14ARF. Recent developments in molecular biotechnology and research using laboratory animals have made a signif-
icant gene breakthrough identifying the components of the p16INK4a/Rb pathway as the principal and rate-limiting targets of UV
radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved
in melanoma development and its relationship to sunlight UV radiation.

INTRODUCTION

Cutaneous malignant melanoma (CMM) is a neo-
plasm affecting melanocytes, pigmented cells found pre-
dominantly in the epidermal layer of the skin [1]. Whilst
once a rarity, this type of skin cancer has become a com-
mon cancer in the United Kingdom and has increased in
incidence faster than any other cancer [2]. Although much
less prevalent than its nonmelanoma skin cancer (NMSC)
counterparts, it affects a younger population and mor-
tality rates are high for thicker lesions (5 years survival
for lesions > 3.5 mm is 48%) [3]. CMM constitutes only
2% of all cancers but it is the seventh commonest cause
of cancer death in the UK. In the USA, melanoma will
claim 7000 lives per year with a predicted lifetime risk of
1 in 90 [2]. The alarming increase of CMM incidence and
its resistance to currently available therapies has empha-
sized the need to understand the molecular mechanisms
involved in its development. Accumulating evidence indi-
cates that the risks of CMM include both genetic and en-
vironmental factors [4]. Using well-characterized murine
ultraviolet (UV) radiation melanoma model, recent study
has provided evidence identifying the components of the
retinoblastoma (Rb) pathway as the principal targets of
UV mutagenesis in melanoma development [5]. In addi-
tion to the Rb pathway, activation of the Ras-Raf-MAPK
signalling pathway is linked to CMM development [6].
This review will focus on examining the relationship
between UV and the recent findings in the molecular
mechanisms of melanoma development.

CYTOGENETIC STUDIES

Cytogenetic studies on melanoma families have been
meticulously carried out to find chromosome band re-
gions of 1p, 1q, 6q, 9p, and 11q as being involved at a
significantly increased frequency (reviewed in [7, 8]). 1p
has been reported to be structurally abnormal in 82% of
analyzed cases, the largest proportion for any chromo-
some, and anomalies of chromosome 9 were detected in
46% of the cases [9]. However, the chromosome band re-
gion 9p21 was disrupted in premalignant atypical nevi
and early primary melanomas, raising the possibility that
the genes encoded at 9p21 are important in the patho-
genesis and progression of early malignant melanomas.
The melanocyte initially becomes dysplastic then has a su-
perficial spreading phase or the radial growth phase, fol-
lowed by the vertical growth phase when tumour cells in-
vade the dermis [1]. Studies of melanoma families have
identified two genes predisposing to melanoma, CDKN2A
(INK4a/ARF) and CDK4 located at 9p21 and 12q13, re-
spectively (reviewed in [10]). The loss of the INK4a/ARF
locus (seen in 50% of melanomas), along with activation
of the BRAF mutation, is considered the most common
genetic lesion in human melanoma. This gene is mutated
in a large majority of melanoma cell lines, as well as in
many uncultured melanoma cells and in the germline of
melanoma kindreds [10].

The CDKN2A (INK4a/ARF) locus mapping to chro-
mosome 9p21 encodes for tumour suppressor genes
which are strongly associated with familial melanoma and
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Figure 1. The structure of the CDKN2 gene.

altered in 10–60% of sporadic melanomas [1, 10, 11]. In
human, INK4A/ARF encodes two distinct tumour sup-
pressor proteins, the inhibitor of kinase 4A, p16INK4a and
p14ARF (p19ARF arising in major part from an alternative
reading frame of the mouse INK4a gene) [1, 12, 13, 14].
The locus has three regions named 1(α and β), 2, and
3. P16INK4A is composed of exons 1α, 2, and 3, whereas
P14ARF is composed of exons 1β, 2, and 3 (Figure 1). The

p16INK4A and p14ARF genes are interesting as they are
both from the same locus, CDKN2A, but from different
promoters.

UV-MELANOMAGENESIS: THE ROLE OF
THE RB PATHWAY

Melanoma is a multifactorial disease, where both ge-
netic and environmental sun exposure factors are involved
[15]. The role of UV light in inducing CMM is a long-
held belief although there is more evidence for this in the
NMSC whose distribution mirrors the areas of high ex-
posure to UV [16, 17]. Epidemiological studies that sug-
gested a link between sun exposure and melanoma were
first published in 1956 in Australia [18]. These studies
noticed that mortality from the disease increased closer
to the equator. This research was extensively reviewed in
1992 by the International Agency for Research on Cancer,
who definitively concluded that “there is sufficient evi-
dence in humans for the carcinogenicity of solar radiation
in causing melanoma” [19]. Retrospective epidemiologi-
cal data currently suggest that unlike other skin cancers
that are associated with cumulative lifetime UV exposure,
CMM is provoked by intense intermittent exposure to UV,
particularly during childhood [5, 17]. In addition to UVB,
exposure to UVA is now thought to play a part in the
development of melanoma [20]. However, the functional
relationship between genes and sunlight in melanoma
pathogenesis is not well understood. Recently, prospects
for elucidating this relationship have brightened consid-
erably through the development of UV-responsive exper-
imental animal models of melanoma [21, 22]. In the skin,
absorption of UV photons by the DNA of epidermal cells
and the rearrangement of electrons lead to the formation
of photoproducts at adjacent pyrimidine sites and unre-
paired damage can lead to specific gene mutations, which
are usually C to T or CC to TT, considered as “UV molec-
ular signature” [23]. The most significant mutations in-
duced by UV in the skin occur in tumour suppressor

genes, p53 and p16INK4a genes being the major targets of
UV [23, 24]. Recent studies using laboratory animals have
identified the components of the Rb pathway (divided
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Figure 2. UV radiation and the components of the Rb pathway
in the skin.

into two genetically distinct pathways: “p16INK4A/Rb” and
“p14ARF/p53”) as the main UV target(s) disrupted in the
early stages of melanoma genesis [5]. However, a defini-
tive UV-p16-melanoma relationship, and the nature of
this interaction, is yet to be clarified. UV light is known
to initiate a series of molecular events in the skin, acting
via two distinct biochemical pathways; the p16 and p53
pathways (Figure 2).

UV radiation and the P16INK4A pathway in the skin

P16INK4a is a cell cycle regulator that inhibits specifi-
cally CDK4/6 and consequently cyclin D-dependent phos-
phorylation of the Rb, leading to less transcription of E2F-
responsive genes necessary for S phase entry (Figure 2)
[25]. When p16 is induced, the Rb protein is maintained
in its nonphosphorylated (active) form, E2F is not acti-
vated, and replication is halted. The relationship between
p16 and melanoma has been explained by the observation
that UV light can induce p16 expression in human skin
[26, 27], thereby implying a role for p16INK4a in the re-
pair of UV-induced DNA damage. In cells irradiated with
low doses of UVB, P16INK4A is upregulated within 12–
24 hours leading to a cell cycle arrest at G1 [28]. This is
thought to allow DNA repair before allowing resumption
of the cell cycle (Figure 2). If P16INK4A is inactivated via
missense mutation, deletion, or methylation [29, 30, 31],
the Rb protein is no longer maintained in its active form
and cell replication is unchecked.

The CDK4 gene, situated on chromosome 12q13 and
coding for cyclin-dependent kinase 4 which binds to
p16 (Figure 2), has also been identified as a melanoma-
susceptibility gene [32]. The CDK4 (Arg24Cys) germline
mutation has been identified in melanoma-prone fami-
lies [33, 34] and produced a mutated protein that inter-
feres with the binding of the CDK4 protein to p16 and
so prevents the inhibition of its enzymatic activity [35].
As a result, the CDK4 protein is constantly activated pro-
moting the Rb pathway and subsequent cellular division.
Therefore, unlike CDKN2A, the CDK4 gene functions as
an oncogene [35] and not as a tumour suppressor gene.
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UV radiation and the p53 pathway in the skin

The effect of UV radiation on p53 expression in the
skin has been well documented (Figure 2). Using hairless
mouse model, we have characterized the temporal events
implicated in the immediate and adaptive responses in the
skin [36, 37]. Following acute UV irradiation of mouse
skin, p53 expression increased 12 hours post-UV followed
by using p21 protein to arrest the cell cycle and permit
the repair of UV DNA damage [36]. If the damage is se-
vere, apoptosis is induced in the skin (in keratinocytes and
melanocytes) via p53-dependent or independent path-
ways [36, 38, 39, 40]. To date, no direct link has been
established between p53 and melanomagenesis. However,
ARF (also known as p14, or p19 in mice), also a regulator
of the cell cycle, has been shown to be a principal regu-
lator of HDM2 (MDM2 in mice), an E3 ubiquitin ligase
regulating p53 degradation and stability [41]. The ARF
protein prevents the interaction between p53 and MDM2
and consequently p53 levels rise (Figure 2). This activates
p21 which then inhibits phosphorylation of Rb, leading
to cell cycle arrest in both G1 and G2. ARF is ubiquitously
expressed and is elevated in cells lacking functional p53.
Somatic mutations have been observed which affect the
ARF-coding sequence exclusively [42, 43]. If the ARF gene
is mutated, the events described above will be disrupted
disabling ARF’s tumour suppressor function that might
promote melanoma development. In UV skin carcinogen-
esis, p53 and p16 pathways work in tandem (Figure 2),
and mutations in either p16 or p53 could cause unreg-
ulated cell proliferation leading to tumour development
in the skin.

OTHER GENES ASSOCIATED WITH MELANOMA

The Ras-Raf-MAPK/extracellular signal-regulated ki-
nase signalling pathway is activated in the vast major-
ity of melanomas (reviewed in [44]). Activation occurs
through either NRAS or BRAF mutations, both of which
arise early during melanoma pathogenesis and are pre-
served throughout tumour progression. This cascade is
activated by sequential phosphorylation of a number of
kinases in order to alter cellular behaviour in response to
different environmental factors. The extracellular-signal-
regulated kinases (ERK1 and ERK2) belong to one branch
of this cascade responsible for sensing extracellular stim-
uli, including UV light. This stimulus then activates the
Ras family of proteins which then activates the RAF family
of serine/threonine kinases (c-RAF 1, BRAF, and ARAF).
This activation subsequently phosphorylates and activates
ERK1 and ERK2. ERK phosphorylation has been linked to
G-protein-coupled receptor (GPCR) signalling, as well as
activation by upstream receptor tyrosine kinases (RTKs).
N-Ras mutations are found in melanomas from chroni-
cally UV-exposed sites in 26% of melanomas [45]. These
proteins are stimulated at the cell membranes by epi-
dermal growth factors causing senescence with the cells
remaining in G1 phase of the cell cycle. Ras proteins

also upregulate p53 via ARF [46] and p16INK4A protein
[47]. However, although Ink4a/Arf-/- mice did not exhibit
melanoma tumours [48], expression of activated H-Ras
on an Ink4a/Arf-deficient background produced a high
incidence of melanoma [49].

The BRAF gene encoding a serine/threonine kinase is
a key component of the MAPK signalling pathway highly
mutated in CMM [50]. However, although BRAF somatic
missense mutations have been detected at a very high fre-
quency in melanoma tumours, and at a lower frequency in
many human cancers, this gene may not be a melanoma-
susceptibility gene [51]. Thus, other genes in the Ras-
Raf-MAP kinase pathway might play a significant role in
melanoma susceptibility.

CONCLUSION

Although a number of different genes have been asso-
ciated with melanoma development and progression, the
CDKN2A remains the candidate gene in UV radiation-
induced melanoma. The two products of this gene form
the main backbone of the Rb pathway acting via two dis-
tinct pathways (Figure 2): one involving loss of the tu-

mour suppressor gene p16INK4A which acts through the
Rb protein and the other involving ARF regulating p53
degradation and stability. Both can lead to a loss of the cell
cycle control following UV-induced DNA damage. Ongo-
ing work is aiming to further elucidate the mechanisms of
action of UV light on the regulation of the components
of the Rb pathway and identification of novel UV-target
genes involved in melanomagenesis.
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