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mattia.pierpaoli@pg.edu.pl (M.P.)

3 Faculty of Microbiology, Immunology and Genetics, Health Science Center, University of North Texas,
3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Ignacy.Gryczynski@unthsc.edu
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Abstract: The investigation of innovative label-free α-amino acids detection methods represents a
crucial step for the early diagnosis of several diseases. While 1,8-diazafluoren-9-one (DFO) is known
in forensic application because of the fluorescent products by reacting with the amino acids present
in the papillary exudate, its application for diagnostic purposes has not been fully investigated.
The stabilization of DFO over a transparent substrate allows its complexation with biomolecules for the
detection of α-amino acids. In this study, DFO was immobilized into a titanium dioxide (TiO2) matrix
for the fluorescence detection of glycine, as a target α-amino acid (a potential marker of the urogenital
tract cancers). The DFO/TiO2 composite was characterized by atomic force microscopy, spectroscopic
ellipsometry, fluorescence spectroscopy and fluorescence microscopy. The performed fluorescent
studies indicate spectacular formation of aggregates at higher concentration. The measurements
performed using various fluorescence and microscopic techniques together with the suitable analysis
show that the aggregates are able to emit short-lived fluorescence.

Keywords: DFO; TiO2; thin films

1. Introduction

The aromatic ketone, 1,8-diazafluoren-9-one (DFO) contains heteroatoms (nitrogen and oxygen)
in a ring structure. In our previous study, we investigated the solvation effects and the influence
on the lowest singlet excited state of DFO. It was shown that, in protic environments, DFO forms a
solute–solvent hydrogen bond complex in its ground and excited state [1].

Research carried out in this work shows in turn the concentration-dependent properties of DFO
in TiO2 matrix, which can be attributed to the formation of aggregates in pores of the examined
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matrix, where mean local concentration of the DFO is considerably higher than that in bulk
solution. The presence of DFO aggregates, in concentrated systems, may significantly influence
the physicochemical and biological processes after the photoexcitation of the system. Therefore, one of
the goals of this work was to study basic aggregate properties in the titanium dioxide thin film, which is
important for its potential application, since the aggregation process can shorten the fluorescence decays
and lifetimes of monomers. This is the case of many other molecular systems in which aggregates are
formed [2–6], for example in some medical applications [7,8]. The knowledge of whether we are dealing
with aggregate or monomer form at a given concentration of the active compound is vital as the actual
form may alter the pharmacological activity of the compound as well as its ability to penetrate through
biological membranes. Molecular aggregates also play a crucial role as energy transmitters from
sunlight in many biological systems [9–12] and their unusual optical properties are frequently studied
and used in various fields of nanoscience and nanotechnology such as efficient energy collecting,
spectral broadening of the optical response of fluorescent systems and biosensing on plasmonic
platforms [13–15]. Although, TiO2 nano-objects have demonstrated toxicity and ecotoxicity [16–19],
its use in the biomedical devices is widespread and in many cases does not seem to lead to serious
side effects. The affinity of DFO with TiO2 and the versatility of the sol–gel technique allow designing
and developing an organic–inorganic framework exhibiting the desired optical/chemical properties.
In particular, the transparency over a broad spectral range allows the use of spectroscopic techniques
for the investigation of chemically-bonded molecules and the intermolecular processes occurring in
the matrix to be investigated. Moreover, the facile preparation allows the substrate properties to be
tailored, such as the pore size and density, to create materials with spatially different distributions
of fluorophores, which, in turn, can tune the desired optical properties [20,21]. This study aimed to
propose a potential luminescent probe in the form of a thin TiO2 film with an integrated DFO dye
and to optimize the spectroscopic features of the luminescent probe, which is very important in the
selection of cancer markers.

Table 1 presents the exemplary, recently proposed metabolic markers of these diseases [22].
However, it should be underlined that highly specific and sensitive indicators have not been confirmed
and validated in clinical practice yet.

Table 1. The list of putative metabolic markers of urogenital tract cancers obtained with the use of the
metabolomics approach.

Metabolite FDR p Value VIP

Glycine 1.2 × 10−4 2.9
Alanine 4.0 × 10−2 1.1

Acetic acid 9.3 × 10−11 1.7
Hippuric acid 4.5 × 10−3 1.8

Meso-erythritol 2.1 × 10−9 1.5
Threonic acid 4.9 × 10−8 1.6
Butanoic acid 2.7 × 10−2 1.5

Inositol 8.9 × 10−5 1.1
Hydroxytryptophan 4.4 × 10−5 1.4

Methyllinosine 4.4 × 10−5 1.5
Xanthosine 2.4 × 10−3 1.3

Dimethylguanosine 1.9 × 10−4 1.8
Methylguanosine 2.0 × 10−2 1.1

Tryptophan 2.8 × 10−3 1.4

FDR, false discovery rate; VIP, variable importance into projection.

Recently, the metabolomics approach has been commonly applied to discover and propose new,
specific metabolic indicators of urogenital tract cancer disorders, especially prostate cancer [22–24].
The VIP (variable importance into projection) scores were computed and variables with a VIP score of
>1 were considered important in this model; glycine is proposed as a potential biomarker of urogenital
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tract cancer. The elaboration of a sensitive composite for the estimation of glycine seems important from
the point of view of further potential applications, i.e. a luminescent probe for potential biomarkers.
The ability of DFO to form complexes with specific α-amino acids (e.g., glycine, sarcosine, etc.) and
the idea of using this compound, after introducing it into the TiO2 matrix, as a potential marker of
the metabolic urogenital carcinoma was the reason for the study of spectroscopic properties of DFO
presented in this work.

To the best of our knowledge, this is the first attempt to study the spectroscopic properties of
potential metabolic markers of urogenital tract cancer incorporated into a thin layer matrix of TiO2 and
characterized as a biomaterial.

2. Materials and Methods

All reagents used in this study were of analytical grade. 1,8-diazafluoren-9-one was
purchased from Aldrich (Sigma-Aldrich Munich, Germany) and it was spectroscopically pure
(dye content 99%). Titanium(IV) tetra(2-propanolate)-99.000% trace metals basis, poly(ethylene
glycol) p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100), hydrochloric acid, propan-2-ol and
pentane-2,4-dione were purchased from Aldrich (Sigma-Aldrich, Munich, Germany). Ethanol was
purchased from POCH Company (POCH Company, Gliwice, Poland). Deionized water was obtained
from a Hydrolab system, prior to use. The sol–gel method was adopted to prepare DFO/TiO2 thin films.
The DFO/TiO2 precursor solution was obtained using titanium(IV) tetra(2-propanolate), propan-2-ol,
Triton X-100 and hydrochloric acid (37%). Separately, DFO was dissolved in ethanol. Next, both solutions
were mixed by vigorous stirring. Three drops of sodium hydroxide (10−1 [M]) were used as a catalyst to
promote the reaction of the sol–gel process. The so-obtained solution was distributed over a clean piece of
a microscopic glass using the spin-coating technique (SCI-40 LOT, Oriel spin coater) at 60 rpm for 60 s, in
order to obtain a homogenous thin film. The sol–gel process allows DFO to be incorporated into TiO2

matrices at room temperature and atmospheric pressure. Using this method, the following concentrations
of the dye were obtained: 2 × 10−2, 1 × 10−2, 2 × 10−3, 1 × 10−3, 1 × 10−4 and 1 × 10−5 [M]. The optical
density of the films was in any case below 0.1, which is low enough to neglect the inner filter effects.
The thickness of the thin films was tuned by controlling the gelation times through the sol–gel method.
The gelation time was measured from the moment of mixing all of the components and, for the purpose
of this work, was kept at 110 min.

Apparatus

The topography and the roughness of the surface were analyzed using atomic force microscopy
(AFM Nanosurf Easyscan 2, Nanosurf, Liestal, Switzerland) in contact mode. The surface analysis of
images was conducted using Gwyddion 2.47 software (Department of Nanometrology, Czech Metrology
Institute, Brno, Czech Republic). Atomic force microscopy (AFM) images were collected by scanning
dry sample wafers with an atomic force microscope equipped with an AFM dry scanner and APPNANO
SICON probe which is nanofabricated using highly doped single crystal silicon. This probe has a
long, thin cantilever allowing for a low spring constant (0.29 N/m). The AFM scanner was calibrated
using a standard calibration grid as well as 100 nm diameter gold nanoparticles (T = 20 ◦C, the relative
humidity = 60%, the atmosphere: air).

Spectroscopic ellipsometry (SE) studies were handled using a Jobin-Yvon UVISEL phase-modulated
ellipsometer (HORIBA Jobin-Yvon Inc., Edison, Middlesex County, NJ, USA) over the 300–1100-nm
wavelength range. The SE measurements were carried out at 60◦ angle of incidence in agreement with the
Brewster’s angle of the quartz glass substrate. The DeltaPsi software (v. 2.4.3) (HORIBA, Kyoto, Japan)
was used to determine the spectral variations of refractive index n(λ) and the extinction coefficient k(λ)
of DFO/titanium dioxide composite films. Additionally, the optical band-gap was derived by means of
a Tauc plot. The dispersion of nanocomposite DFO/TiO2 films was simulated by the Forouhi–Bloomer
model [25], coherent with the Kramers–Kronig approach, relevant to the amorphous and polycrystalline
TiO2 phase [26].
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The fluorescence spectra and fluorescence intensity decays were measured upon front face
excitation (magic angle mode) with a universal spectrofluorometer (laser LDH-D-C-470-Picoquant,
Germany; photomultiplier-Hamamatsu H10721P-01, Hamamatsu Photonics K.K., Japan; monochromator-
Shamrock 303i-B, Andor Technology, UK) constructed in our laboratory [10]. As an excitation source,
we used an LDH380 laser emitting pulses of about 288 ps (FWHM) half-width at lambda = 380 nm
(Pico-Quant, Germany).

To obtain two types of images of the samples, namely fluorescence (epi-illumination mode,
U-FBW Fluorescence Filter Cube) and phase contrast, an inverted Olympus IX73 microscope (Olympus,
Japan) was used. Both observations were performed with 10× objective (N.A. = 0.3, Olympus, Japan).
The images were acquired using a monochromatic camera (Orca flash 4.0 CMOS, Hamamatsu, Japan)
with the fixed exposure time t = 1 s.

Time-resolved emission spectra (TRES) were recorded using the pulsed spectrofluorometer
(2501S Spectrograph, Bruker, Optics Inc., Billerica, MA, USA) described previously in detail [27].

3. Results and Discussion

3.1. Morphology of DFO/TiO2 Thin Films

The AFM topography images of DFO/TiO2 thin films with various DFO concentrations are
displayed in Figure 1. The presented microscopic images are representative of the obtained samples.
The thin film appears to be smooth with a roughness smaller than 1 nm for samples with DFO
and slightly rougher (Sa > 2.5 nm) for pure TiO2. This result highlights the high smoothness of the
prepared thin film, which suggests that DFO particles are rather evenly distributed in the TiO2 matrix.
The presented structural analysis shows that the obtained hybrid thin films are homogeneous with low
roughness, which decreases with increasing DFO concentration.
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Figure 1. AFM image of thin films of: (a) TiO2; (b) 10−5M DFO/TiO2; and (c) 2·10−2 M DFO/TiO2.

Spectroscopic ellipsometry was utilized to investigate the optical constants and the thickness of
the sol–gel deposited DFO/TiO2 nanocomposite thin films. Figure 2 illustrates the refractive index
and extinction coefficient for TiO2-based nanocomposite films with various DFO dye concentrations.
The strong relative variation of TiO2 optical constants was noticed once the DFO dye admixture was
varied. Hence, the dispersion reveals normal behavior in the visible wavelength range as known for
crystalline forms of TiO2.

The increasing DFO dye concentration induces slight increase of refractive index of TIO2 matrix
from 1.51 to 1.59 at 550 nm. The largest observed refractive index reaches 1.62, which is attributed
to the mixture of crystalline anatase and amorphous TiO2. It should be stated that the DFO/TiO2

thin nanocomposites were not annealed in the experimental procedure. Additionally, 10−2 M of DFO
dye admixture causes a shift of resonance to the shorter wavelengths, as reported for amorphous or
nanocrystalline structures [26].
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DFO dye concentration.

The DFO induced variations in the refractive index (n@550 nm), energy bandgap, thickness and
porosity P are listed in Table 2. The band gap Eg of the films was indirect and was derived by use of
the Tauc plot analysis.

Table 2. The SE-estimated properties of DFO/TiO2 films versus different concentrations of DFO dye.

DFO Energy Bandgap
(eV)

Thickness
(nm)

Refractive Index
@550nm

Porosity,
p (%)

10−2 M 2.62 356 1.624 69.4
10−5 M 2.97 386 1.592 71.32

0 2.95 300 1.514 75.85

The Eg values decreases for increasing DFO concentration. Lower Eg could be attributed to the
shift in film density where the structure of the DFO/TiO2 thin films is converted from the amorphous
(Eg ~ 3 eV) phase to the denser nanocomposite form.

The porosity P of the DFO/TiO2 composites was approximated by the formula reported by
Gartner et al. [28] for nanostructures. The relation between the refractive indices n@550nm of the studied
DFO/TiO2 samples and the dense, non-porous anatase TiO2 phase (nd = 2.52) was used to estimate
porosity rates (see Table 2).

Thereafter, the larger refractive indices (n@550nm) indicate the reduced porosity and increased film
density caused by DFO incorporation. Such observations reveal homogenous incorporation of the
DFO dye within the titania matrix decreasing also porosity. The densification effect is attributed to
high polarity of DFO molecule stereochemistry during sol–gel process and improved crystallization
of titania clusters. The fitting procedure gives accurate values of film thickness. The thickness of
DFO/TiO2 thin films decreases with decreasing of concentration of DFO because of the elimination
of ethanol and dyes residue. The minor increase of the film thickness is linked with the increased
viscosity of the sol–gel precursors rich in DFO [29].
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3.2. The Luminescence Properties of the DFO/TiO2 Thin Films

The luminescence properties of the DFO in TiO2 thin films were studied by fluorescence
spectroscopy techniques. Figure 3 presents the time evolution of the fluorescence spectra for low and
high concentrations of DFO in the TiO2 matrix and original TRES images, respectively.
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((a,d) 2 × 10−2 [M] DFO/TiO2; (b,e) 1× 10−5 [M] DFO/TiO2; and (c,f) 0 [M]DFO/TiO2) at room temperature
(T = 293 K). The excitation wavelength was 380 nm.

The measurement results were obtained as a quasi-three-dimensional, colorful flat image, with the
wavelength on the horizontal axis, the time on the vertical axis and the intensity of color scale. By slicing
the image along the wavelength axis at a given time after the moment of excitation, the emission
spectrum corresponding to that time was obtained. Experimental, trivial reasons for the changes
observed such as inner filter effects were rejected by measuring the fluorescence at low optical densities,
where such effects are negligible.

At the smallest DFO concentration (10−5 [M]) in TiO2 thin films, a fluorescence spectrum similar
to the spectrum of TiO2 was observed. The matrix carries the contribution to sample fluorescence,
but its intensity is smaller than that of the matrix with DFO.

Just after excitation, the emission spectrum of the sample with the highest DFO concentration
consisted of three bands at 460, 500 and 550 nm. This means that we are dealing here with the monomer
and aggregate emission. The time evolution of the emission spectrum shows that the monomer
emission at 460 nm vanishes gradually and only the broad band with the maximum at 550 nm remains
visible. Certain changes observed in the fluorescence spectra profiles with concentration may originate
from the following reasons:

1. Emission of monomers and weakly fluorescent TiO2 matrix where both types of emitting species
fluoresce in the similar spectral region. The emission close to about 470 nm was present in
amorphous film TiO2, although with a small intensity [30]. An increase in the intensity of the
monomer fluorescence signal at a small concentration of DFO generally indicates the influence
of the TiO2 matrix. However, a decrease in the intensity of the monomer PL signal at a high
concentration of DFO shows the creation of fluorescence aggregates, which are more dominant
over the TiO2 matrix at long wavelengths.

2. DFO is a solvatochromically sensitive probe; therefore, under some changes in the matrix
polarity, the effect of spectral shift could be anticipated. However, the matrix remains chemically
unmodified for all the samples and the effect of a potential significant polarity change of
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the whole matrix by only a concentration increase of DFO molecules seems rather unlikely.
The location of the fluorescence peak of DFO by comparison to the fluorescence of DFO and other
fluorenone-like molecules in liquid solutions [1,31,32] suggests that the TiO2 matrix belongs to
relatively nonpolar media. This is also in agreement with other results and discussions performed
previously [25,26,33].

To get more insight into the photophysical properties of fluorescent species of DFO,
the determination of mean fluorescence lifetimes from the measurements of fluorescence decays
was made for different concentrations of DFO. Table 3 presents the results of the mean fluorescence
lifetimes of DFO for different concentrations of the dye in the TiO2 matrix. Shortening of fluorescence
lifetime with the increase in the dye concentration evidences the significant presence of aggregates,
which can play a double role in the system: firstly, aggregates can act as perfect or imperfect
traps for excitation energy transferred from monomers [2,12,34–39] and, secondly, the aggregates
at highest concentrations are likely to contribute to the fluorescence signal emitting short living
fluorescence. A similar behavior has been previously observed and analyzed for several other dyes
such as rhodamines and carbocyanines in polymers and hybrid matrices with the only difference that,
in this work, the fluorescence spectral shift was found more pronounced, making those analyses more
straightforward [4,39].

Table 3. The mean fluorescence lifetime (amplitude weighted) of DFO in TiO2 thin films. λobs. = 450 nm;
λex. = 370 nm.

CDFO [M] Mean Fluorescence Lifetime (ns)

2 × 10−2 0.39
2 × 10−3 0.51

10−5 0.63

All of the results support the hypothesis that the increase of the aggregation degree was induced
by the hydrogen bonds (O-H . . . N). This was possibly due to the formation of intermolecular hydrogen
bonds between the DFO and ethanol, water molecules or isopropanol molecules (the solvent remained
in the pores of the TiO2 after the sol–gel process). As a result, the molecules could connect with
neighboring molecules and form aggregates. Meanwhile, the aggregation extent increased with
an increase of the concentration of DFO molecules in the thin films. These spectral changes were
observed only in TiO2 thin films and may be attributed to the formation of aggregates, promoted by
the TiO2 matrix.

3.3. Design of Luminescent Probe Sensitive to the Presence of the Markers of Urogenital Tract Cancer

The above information allowed us to design a luminescent probe sensitive to the presence of
the proposed markers of urogenital tract cancer, i.e., α-amino acids [22]. The was the first attempt at
reactivity studies of thin DFO/TiO2 films relative to glycine in a phosphate buffer.

The measurements performed using various fluorescence and microscopic techniques show that
the aggregates are able to fluorescence. The concentration of DFO in the thin TiO2 film was optimized,
in order to optimize the complexing reaction conditions of the DFO with the amino acids present in the
phosphate buffer at pH = 7.4. Such conditions simulated the sample environment of urogenital tract
cancer cells (Figure 4a).

The mechanism of formation of complex DFO with glycine was probed by reacting DFO with
glycine (α-amino acids) in an ethanol solution. Glycine differs from other α-amino acids in ethanol to
give a cycloadduct in which the carboxyl group was retained while the other α-amino acids underwent
cycloaddition via the decarboxylated azomethine ylide [41].
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In this study, biomaterials containing a complex luminophore-potential marker were studied
using a fluorescence microscope. Figure 4 shows the fluorescent complex DFO with α-amino acids
after impregnation in a buffer solution with glycine having a concentration of 10−6 [M] [42].
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Figure 4. (a) Reaction of DFO with α-amino acids: The hemiketal attack from the nitrogen of amino
acid at the electron-deficient carbon; after the loss of water, the imine is formed, which maintains
the alkyl fragment from the amino acid and decarboxylation to form (IV). Hydrolysis shows at the
nitrogen-carbon double bond formatting of an aromatic amine (V) and acetaldehyde and reacts with
another DFO molecule to create 9-(1,8-diazafluoren-9-ylidene)amino-1,8-diazafluorenone (VI) [40].
(b) Fluorescence micrograph of DFO in TiO2 thin films at different DFO concentrations after reacting
with glycine, with λexc = 450 nm.

In Figure 4, we can observe that the fluorescence of complex fluorophores with biomarkers was
induced by the high concentration of DFO in the TiO2 thin film. Negative control of the fluorescence
micrograph without glycine (Figure S1) and the highest contrast in fluorescence for 2 × 10−2 [M] with
glycine (Figure S2), have been reported in Supplementary Materials. For this reason, it is possible to
control the aggregation degree of the dyes in the thin films, by varying the amount of DFO. These results
suggest that it is possible to optimize the DFO aggregation within the matrix, exhibiting the desired
luminescent properties, by a proper design of the DFO/TiO2 substrate matrix.
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4. Conclusions

In this study, we observed enhanced solid-state luminescence by using TiO2 thin films in the
presence of aggregates at high concentrations of DFO. We designed a luminescent probe, which can
react with α-amino acids to create a fluorescent complex.

For the first time, it was found that the aggregation process of DFO, in the TiO2 matrix,
at a sufficiently high concentration, developed rapidly. As confirmed by different complementary
spectroscopic and microscopic techniques, the formed aggregates can emit short-lived fluorescence.
The aggregation process is promoted both by the local surrounding of the DFO molecules to TiO2

nanochannels and pores and by the presence of residual solvents, which affect the ability of DFO to
aggregate into larger structures. At high DFO concentration, aggregates were formed, which affect the
fluorescence emission. We observed increased intensity of fluorescent with increasing concentration of
DFO in TiO2 thin films (in short living fluorescence). Therefore, it seems reasonable to assume that the
determined mean fluorescence lifetime of DFO at high concentration is connected to the presence also
non-fluorescent aggregates of DFO.

In this work, we report that the synthesized DFO/TiO2 thin films can be successfully employed
for the rapid detection of glycine, due to the enhanced fluorescence.

We believe that the results obtained will be helpful in further studies dedicated to biosensing
platforms exploiting DFO as a luminescent probe to monitor non-fluorescent markers of urogenital
tract cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/13/3014/s1,
Figure S1: Negative control of the fluorescence micrograph without glycine, Figure S2: Fluorescence for 2 × 10−2 M
with glycine, when the best fluorescence was obtained.
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3. Grajek, H.; Zurkowska, G.; Bojarski, P.; Kukliński, B.; Smyk, B.; Drabent, R.; Bojarski, C. Spectroscopic
manifestations of flavomononucleotide dimers in polyvinyl alcohol films. Biochim. Biophys. Acta Protein
Struct. Mol. Enzymol. 1998, 1384, 253–267. [CrossRef]

4. Rangełowa-Jankowska, S.; Jankowski, D.; Bogdanowicz, R.; Grobelna, B.; Bojarski, P. Surface plasmon-coupled
emission of rhodamine 110 aggregates in a silica nanolayer. J. Phys. Chem. Lett. 2012, 3, 3626–3631. [CrossRef]
[PubMed]

http://www.mdpi.com/1996-1944/13/13/3014/s1
http://dx.doi.org/10.1016/j.molliq.2019.04.110
http://dx.doi.org/10.1016/S0304-4165(02)00498-1
http://dx.doi.org/10.1016/S0167-4838(98)00010-7
http://dx.doi.org/10.1021/jz301728y
http://www.ncbi.nlm.nih.gov/pubmed/26290997


Materials 2020, 13, 3014 10 of 11

5. Kim, S.; Ohulchanskyy, T.Y.; Pudavar, H.E.; Pandey, R.K.; Prasad, P.N. Organically modified silica
nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing
fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 2007, 129, 2669–2675.
[CrossRef]

6. Holzwarth, A.R.; Gnebenow, K.; Gnebenow, K.; Schaffner, K. A Photosynthetic Antenna System which
Contains a Protein-Free Chromophore Aggregate. Z. für Nat. C 1990, 45, 203–206. [CrossRef]

7. Starzyk, J.; Gruszecki, M.; Tutaj, K.; Luchowski, R.; Szlazak, R.; Wasko, P.; Grudzinski, W.; Czub, J.;
Gruszecki, W.I. Self-association of amphotericin b: Spontaneous formation of molecular structures responsible
for the toxic side effects of the antibiotic. J. Phys. Chem. B 2014, 118, 13821–13832. [CrossRef]

8. Wasko, P.; Luchowski, R.; Tutaj, K.; Grudzinski, W.; Adamkiewicz, P.; Gruszecki, W.I. Toward understanding
of toxic side effects of a polyene antibiotic amphotericin B: Fluorescence spectroscopy reveals widespread
formation of the specific supramolecular structures of the drug. Mol. Pharm. 2012, 9, 1511–1520. [CrossRef]

9. Holzwarth, A.R.; Schaffner, K. On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes
of green bacteria. A molecular modelling study. Photosynth. Res. 1994, 41, 225–233. [CrossRef]

10. Gruszecki, W.I. Structure-function relationship of the plant photosynthetic pigment-protein complex LHCII
studied with molecular spectroscopy techniques. In Advances in Protein Chemistry and Structural Biology;
Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 93, pp. 81–93. ISBN 9780124165960.

11. Janik, E.; Bednarska, J.; Zubik, M.; Sowinski, K.; Luchowski, R.; Grudzinski, W.; Gruszecki, W.I. Is It
Beneficial for the Major Photosynthetic Antenna Complex of Plants to Form Trimers? J. Phys. Chem. B
2015, 119, 8501–8508. [CrossRef]

12. Grajek, H. Review—Flavins as photoreceptors of blue light and their spectroscopic properties.
Curr. Top. Biophys. 2012, 34, 53–65. [CrossRef]

13. Polavarapu, L.; Pérez-Juste, J.; Xu, Q.H.; Liz-Marzán, L.M. Optical sensing of biological, chemical and ionic
species through aggregation of plasmonic nanoparticles. J. Mater. Chem. C 2014, 2, 7460–7476. [CrossRef]

14. Synak, A.; Grobelna, B.; Raut, S.; Bojarski, P.; Gryczyński, I.; Karczewski, J.; Shtoyko, T. Metal enhanced
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29. Karasiński, P. Influence of technological parameters on the properties of sol-gel silica films. Opt. Appl.
2005, 35, 117–128.

30. Buha, J. Photoluminescence study of carbon doped and hydrogen co-doped TiO2 thin films. Thin Solid Film.
2013, 545, 234–240. [CrossRef]

31. Józefowicz, M.; Heldt, J.R. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent
mixtures. Chem. Phys. 2003, 294, 105–116. [CrossRef]

32. Józefowicz, M.; Heldt, J.R.; Heldt, J. Solvent effects on electronic transitions of fluorenone and
4-hydroxyfluorenone. Chem. Phys. 2006, 323, 617–621. [CrossRef]

33. Khataee, A.; Mansoori, G.A. Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications;
World Scientific Publishing: Hackensack, NJ, USA, 2012.

34. Bojarski, P.; Matczuk, A.; Bojarski, C.; Kawski, A.; Kukliński, B.; Zurkowska, G.; Diehl, H. Fluorescent dimers
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