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Abstract

We present an efficient and flexible method for computing likelihoods for phenotypic traits on a phylogeny. The method does

not resort to Monte Carlo computation but instead blends Felsenstein’s discrete character pruning algorithm with methods for

numerical quadrature. It is not limited to Gaussian models and adapts readily to model uncertainty in the observed trait values.

Wedemonstrate the frameworkbydevelopingefficientalgorithms for likelihoodcalculationandancestral state reconstructionunder

Wright’s threshold model, applying our methods to a data set of trait data for extrafloral nectaries across a phylogeny of 839 Fabales

species.

Key words: likelihood algorithm, quantitative traits, continuous traits, comparative method, numerical quadrature, numerical

integration.

Introduction

Statistical models for nucleotide or amino acid mutations and

substitutions, and the algorithms for computing with them,

are fundamental to the study of molecular evolution and

biology. As we widen our focus from the evolution of genes

to the evolution of genomes, individuals, and populations, a

whole new class of modeling challenges present themselves.

These include the development of realistic quantitative models

for traits which vary over a continuous range of values

(O’Meara 2012). Of course, the usefulness of any new

model is contingent on the tools available to compute with

them. The main contribution of this article is to show how, by

combining ideas from statistical phylogenetics and numerical

mathematics, we can compute efficiently with a far larger

range of evolutionary models.

The algorithms we develop are for computation of the like-

lihood, that is the probability of the data given the phylogeny,

evolutionary model and parameters. If we are working with an

evolutionary model with only a small (finite) number of states,

then likelihoods can be computed using the dynamic pro-

gramming algorithm of Felsenstein (1981a). We will show

how to extend this algorithm to also compute likelihoods for

(essentially) arbitrary continuous trait models.

There is already a wide range of evolutionary phenomena

that are studied using continuous trait models. Much of

comparative genomics relies on implicit or explicit models

for the evolution of morphology (Stevens 1991; Felsenstein

2002; Ronquist 2004; Harmon et al. 2010; O’Meara 2012),

many of which make gross simplifying assumptions about

how traits vary over time. Continuous evolutionary models

have been used in comparative transcriptomics to study her-

itable aspects of gene expression levels (Khaitovich et al. 2005,

2006), an area with exceptional promise given recent im-

provements in accuracy and the ability to sample in situ

(Voelckel et al. 2002).

Continuous trait models will be of growing importance in

evolutionary studies of whole-genome single nucleotide poly-

morphism-databases. Inference methods based on the coales-

cent such as SNAPP (Bryant et al. 2012) do not scale well as

the number of individuals grows, while those based on con-

tinuous models of gene frequencies (Cavalli-Sforza and

Edwards 1967; Felsenstein 1981b; Sirén et al. 2011) depend

only on proportions of populations with each allele, so scale

extremely well. In addition, it is often easier to model the

effect of selection on continuous gene frequency models

than with the coalescent. Continuous evolutionary models

have also been applied successfully to the study of ancestral

geography distributions (Lemey et al. 2010).

Our interest is in developing techniques used to compute

with these models, and to expand the range of models we can
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work with. Early work of Felsenstein (1968, 1973), revisited by

Freckleton (2012) and FitzJohn (2012), demonstrated that if

traits are evolving according to Brownian motion then we can

compute likelihoods quickly and (up to numerical precision)

exactly. Felsenstein’s approach extends to other Gaussian pro-

cesses, notably the Ornstein–Uhlenbeck (OU) process (Lande

1976; Felsenstein 1988; Hansen 1997), and for several dec-

ades, Gaussian models were used almost exclusively to model

the evolution of quantitative traits. Ho and Ané (2014) used

clever algebraic techniques to develop an alternative algorithm

for computing the likelihood and related quantities. They

survey several other models which can be handled using the

same approach.

These methods are very efficient, and when they can be

used, they should be used. The drawback of these methods is

that they are fundamentally restricted to models which are

Gaussian processes or transforms of Gaussian processes,

where the computational bottleneck lies in the computation

of a quadratic form involving the covariance matrix of Ho and

Ané (2014). Many evolutionary models cannot be handled

within this framework (e.g., Ronquist 2004; Landis et al.

2013). Some of the properties of Gaussian processes are

quite restrictive: Gaussian processes have single modes, so

can only model adaptive landscapes with single peaks;

Brownian motion has independent increments, so the rate

of change is independent of the value of a trait. The standard

strategy for computing with non-Gaussian models is to resort

to Monte-Carlo strategies. Even when we are working with a

model satisfying the assumptions of Ho and Ané (2014), the

algorithms they describe do not give an efficient method for

integrating over sets of trait values at the tips, as in the thresh-

old models we discuss below.

Computing the probability of quantitative character evolu-

tion may be framed as a numerical integration (quadrature)

problem. For most models, if we know the value of the trait at

each ancestral node in the phylogeny, we can quickly com-

pute the various transition probabilities. Because we do not

usually know these ancestral trait values we integrate them

out. This is a multidimensional integration problem with one

dimension for each ancestral node (or two dimensions for

each node if we are modeling covarying traits) see

Felsenstein (2004).

Methods for estimating or approximating integrals are usu-

ally judged by their “rate of convergence”: how quickly the

error of approximation decreases as the amount of work

(function evaluations) increases. Consider the problem of

computing a one-dimensional integralZ 1

0

f ðxÞdx ð1Þ

where f is a “nice” function with continuous and bounded

derivatives. Simpson’s rule, a simple textbook method re-

viewed below, can be shown to have an OðN�4Þ rate of

convergence, meaning that, asymptotically in N, evaluating

ten times more points reduces the error by a factor of 104.

In contrast, a standard Monte Carlo method has a rate of

convergence of OðN�
1
2Þ, meaning that evaluating ten times

more points will only reduce the error by a factor of around

3. For this reason, numerical analysis texts often refer to

Monte Carlo approaches as “methods of last resort.”

Despite this apparently lacklustre performance guarantee,

Monte Carlo methods have revolutionized phylogenetics in

general and the analysis of quantitative characters in particu-

lar. The reason is their partial immunity to the curse of dimen-

sionality. Methods like Simpson’s rule are not practical for a

high number of dimensions as the asymptotic convergence

rate, quoted above, is only achieved for an infeasibly large

number of function evaluations N. The effective convergence

rate for small N can be very poor, and typically worse than

Monte Carlo. In contrast, there are Monte Carlo approaches

which achieve close to OðN�
1
2Þ convergence irrespective of

dimension. This has been critical when computing the likeli-

hoods of complex evolutionary models with as many dimen-

sions as there are nodes in the phylogeny.

The main contribution of our article is to demonstrate how

to efficiently and accurately compute likelihoods on a phylog-

eny using a sequence of one-dimensional integrations. We

obtain a fast algorithm with convergence guarantees that

far exceed what can be obtained by Monte Carlo integration.

Our approach combines two standard tools: classical numer-

ical integrators and Felsenstein’s pruning algorithm for dis-

crete characters (Felsenstein 1981a). Indeed, the only real

difference between our approach and Felsenstein’s discrete

character algorithm is that we use numerical integration tech-

niques to integrate states at ancestral nodes, instead of just

carrying out a summation.

The running time of the algorithm is OðN2nÞ, where N is

the number of points used in the numerical integration at

each node and n is the number of taxa (leaves) in the tree.

Using Simpson’s method, we obtain a convergence rate of

OðnN�4Þ, meaning that if we increase N by a factor of 10, we

will obtain an estimate which is accurate to four more decimal

places.

To illustrate the application of our general framework, we

develop an efficient algorithm for computing the likelihood

of a tree under the threshold model of Wright (1934)

and Felsenstein (2005, 2012). We also show how to infer

marginal trait densities at ancestral nodes. We have imple-

mented these algorithms and used them to study evolution

of extrafloral nectaries (EFN) on an 839-taxon phylogeny of

Marazzi et al. (2012). MATLAB code for computing the

threshold likelihood has been posted on MATLAB Central

and complete MATLAB code for all analyses and simulations

can be found in supplementary material, Supplementary

Material online.

The combination of numerical integrators and the pruning

algorithm opens up a large range of potential models and
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approaches which we have only just begun to explore. It may

well be that Gaussian type models provide good approxima-

tions in many contexts, however the extent to which this is

true will be unknown until we have computational tools for

handling richer models.

Materials and Methods

Models for Continuous Trait Evolution

Phylogenetic models for continuous trait evolution, like those

for discrete traits, are specified by the density of trait values at

the root and the transition densities along the branches. We

use f ðxr jyrÞ to denote the density for the trait value at the

root, where �r is a set of relevant model parameters. We use

f ðxijxj; yiÞ to denote the transitional density for the value at

node i, conditional on the trait value at its parent node j. Here,

�i represents a bundle of parameters related to node i such as

branch length, population size, and mutation rate. All of these

parameters can vary throughout the tree.

To see how the model works, consider how continuous

traits might be simulated. A state Xr is sampled from the

root density f ðXr jyrÞ. We now proceed through the phylogeny

from the root to the tips, each time visiting a node only after

its parent has already been visited. For each node i, we gen-

erate the value at that node from the density f ðXijxj; yvÞ,

where xj is the simulated trait value at node j, the parent of

node i. In this way, we will eventually generate trait values for

the tips.

We use X1, . . ., Xn to denote the random trait values at

the tips and Xnþ1; . . . ;X2n�1 to denote the random trait

values at the internal nodes, ordered so that children

come before parents. Hence, X2n�1 is the state assigned to

the root. Let

EðT Þ ¼ fði; jÞ : node i is a child of node jg ð2Þ

denote the set of branches in the tree. The joint density for all

trait values, observed and ancestral, is given by multiplying the

root density with all of the transition densities

f ðx1; . . . ; xn; xnþ1; . . . ; x2n�1jyÞ
¼ f ðx2n�1jyÞ

Y
ði;jÞ2EðT Þ

f ðxi jxj; yiÞ: ð3Þ

The probability of the observed trait values x1; . . . ; xn is

now determined by integrating out all of the ancestral trait

values:

LðTÞ ¼ f ðx1; . . . ; xnjyÞ ¼
Z Z
� � �

Z
f ðx2n�1jyrÞY

ði;jÞ2EðTÞ

f ðxijxj; yiÞdxnþ1; . . . ; dx2n�1:
ð4Þ

In these integrals, the bounds of integration will vary ac-

cording to the model.

The oldest, and most widely used, continuous trait models

assume that traits (or transformed gene frequencies) evolve

like Brownian motion (Cavalli-Sforza and Edwards 1967;

Felsenstein 1973). For these models, the root density f ðxr jyÞ
is Gaussian (normal) with mean 0 and unknown variance s2

r .

The transition densities f ðxijxj; yvÞ are also Gaussian, with

mean xj (the trait value of the parent) and variance propor-

tional to branch length. Note that there are identifiability

issues which arise with the inference of the root position

under this model, necessitating a few tweaks in practice

(see the discussion in Chapter 23 of Felsenstein 2004).

It can be shown that when the root density and transitional

densities are all Gaussian, the joint density (4) is multivariate

Gaussian. Furthermore, the covariance matrix for this density

has a special structure which methods such as the pruning

techniques of Felsenstein (1968, 1973), Freckleton (2012),

and FitzJohn (2012) exploit, as does the top-down approach

of Ho and Ané (2014). This general approach continues to

work when Brownian motion is replaced by an OU process

(Lande 1976; Felsenstein 1988; Hansen 1997), or indeed to

many linear or generalized linear models.

Gaussian models, and their relatives, are mathematically

and computationally convenient, but rely on assumptions

which are unrealistic and inappropriate in many contexts.

Numerous researchers have implemented models which do

not fit into the general Gaussian framework; most have re-

sorted to Monte Carlo computation to carry out their analyses.

Landis et al. (2013) discuss a class of continuous trait

models which are based on Lévy processes and include

jumps. At particular times, as governed by a Poisson process,

the trait value jumps to a value drawn from a given density.

Examples include a compound Poisson process with Gaussian

jumps and a Variance Gamma model given by Brownian

motion with time varying according to a gamma process.

Both of these processes have analytical transition probabilities

in some special cases.

Lepage et al. (2006) use the Cox–Ingersoll–Ross (CIR) pro-

cess to model rate variation across a phylogeny. Like the OU

process (but unlike Brownian motion), the CIR process is er-

godic. It has a stationary Gamma density which can be used

for the root density. The transition density is a particular

noncentral chi-squared density and the process only assumes

positive values.

Kutsukake and Innan (2013) examine a family of com-

pound Poisson models, focusing particularly on a model

where the trait values make exponentially distributed jumps

upwards or downwards. In the case that the rates of upward

and downward jumps are the same, the model has jumps that

follow a double exponential distribution. Kutsukake and Innan
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(2013) use approximate Bayesian computation to carry out

inference.

Sirén et al. (2011) propose a simple and elegant model for

gene frequencies whereby the root value is drawn from a Beta

distribution and each transitional density is Beta with appro-

priately chosen parameters.

Trait values at the tips are not always observed directly. A

simple, but important, example of this is the threshold model

of Wright (1934), explored by Felsenstein (2005). Under this

model, the trait value itself is censored and we only observe

whether or not the value is positive or negative. A similar

complication arises when dealing with gene frequency data

as we typically do not observe the actual gene frequency but

instead a binomially distributed sample based on that fre-

quency (Sirén et al. 2011).

If the trait values at the tip are not directly observed we

integrate over these values as well. Let pðzijxiÞ denote the

probability of observing zi given the trait value xi. The margin-

alized likelihood is then

LðT jz1; . . . ; znÞ ¼

Z Z
� � �

Z
f ðxr jyÞ

Y
ði;jÞ2EðT Þ

f ðxi jxj; yv Þ
Yn

i¼1

pðzijxiÞdx1; . . . ;dx2n�1:

ð5Þ

Numerical Integration

Analytical integration can be difficult or impossible. For the

most part, it is unusual for an integral to have an analytical

solution and there is no general method for finding it when it

does exist. In contrast, numerical integration techniques (also

known as numerical quadrature) are remarkably effective and

are often easy to implement. A numerical integration method

computes an approximation of the integral from function

values at a finite number of points. Hence, we can obtain

approximate integrals of functions even when we do not

have an equation for the function itself. See Cheney and

Kincaid (2012) for an introduction to numerical integration,

and Dahlquist and Björck (2008) and Davis and Rabinowitz

(1984) for more comprehensive technical surveys.

The idea behind most numerical integration techniques is

to approximate the target function using a function which is

easy to integrate. In this article, we will restrict our attention to

Simpson’s method which approximates the original function

using piecewise quadratic functions. To approximate an

integral
R b

a f ðxÞdx we first determine N + 1 equally spaced

points (N even)

x0 ¼ a; x1 ¼ aþ
b� a

N
; x2 ¼ aþ 2

b� a

N
; . . . ;

xk ¼ aþ k
b� a

N
; . . . ; xN ¼ b:

ð6Þ

We now divide the integration into N=2 intervals

Z b

a

f ðxÞdx ¼
XN=2
‘¼1

Z x2‘

x2‘�2

f ðxÞdx: ð7Þ

Within each interval ½x2‘�2; x2‘�, there is a unique quadratic

function which equals f(x) at each the three points

x ¼ x2‘�2; x ¼ x2‘�1, and x ¼ x2‘. The integral of this qua-

dratic on the interval ½x2‘�2; x2‘� is

ðb� aÞ

3N
f ðx2‘�2Þ þ 4f ðx2‘�1Þ þ f ðx2‘Þð Þ ð8Þ

Summing over ‘, we obtain the approximationZ b

a

f ðxÞdx&
XN=2
‘¼1

ðb� aÞ

3N
f ðx2‘�2Þ þ 4f ðx2‘�1Þ þ f ðx2‘Þð Þ: ð9Þ

With a little rearrangement, the approximation can be writ-

ten in the formZ b

a

f ðxÞdx&
ðb� aÞ

N

XN

k¼0

wkf ðxkÞ ð10Þ

where wk ¼ 4=3 when k is odd and wk ¼ 2=3 when k

is even, with the exception of w0 and wN which both equal

1/3. Simpson’s method is easy to implement and has a con-

vergence rate of OðN�4Þ. Increasing the number of intervals

by a factor of 10 decreases the error by a factor of 10�4. See

Dahlquist and Björck (2008) and Davis and Rabinowitz (1984)

for further details.

It should be remembered, however, that the convergence

rate is still only an asymptotic bound, and gives no guarantees

on how well the method performs for a specific function and

choice of N. Simpson’s method, for example, can perform

quite poorly when the function being integrated has rapid

changes or sharp peaks. We observed this behavior when

implementing threshold models, as described below. Our re-

sponse was to better tailor the integration method for the

functions appearing. We noted that the numerical integra-

tions we carried out all had the formZ b

a

e�
ðx�mÞ2

2s2 f ðxÞdx ð11Þ

where � and � varied. Using the same general approach as

Simpson’s rule, we approximated f(x), rather than the whole

function e�
ðx�mÞ2

2s2 f ðxÞ, by a piecewise quadratic function p(x).

We could then use standard techniques and tools to evaluateR b

a e�
ðx�mÞ2

2s2 pðxÞdx numerically. The resulting integration for-

mula, which we call the “Gaussian kernel method,” gives a

significant improvement in numerical accuracy.

A further complication is that, in models of continuous

traits, the trait value often ranges over the whole real line,
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or at least over the set of positive reals. Hence, we need to

approximate integrals of the formZ 1
�1

f ðxÞdx or

Z 1
0

f ðxÞdx ð12Þ

though the methods discussed above only apply to integrals

on finite intervals. We truncate these integrals, determining

values U and L such that the differenceZ 1
�1

f ðxÞdx �

Z U

L

f ðxÞdx ð13Þ

between the full integral
R1
�1

f ðxÞdx and the truncated inte-

gral
R U

L f ðxÞdx can be bounded analytically. Other strategies

are possible; see Dahlquist and Björck (2008) for a compre-

hensive review.

A Pruning Algorithm for Integrating Continuous Traits

Felsenstein has developed pruning algorithms for both

continuous and discrete characters (Felsenstein 1981a,b). His

algorithm for continuous characters works only for Gaussian

processes. Our approach is to take his algorithm for discrete

characters and adapt it to continuous characters.

The (discrete character) pruning algorithm is an application

of dynamic programming. For each node i, and each state x,

we compute the probability of observing the states for all tips

which are descendants of node i, conditional on node i having

ancestral state x. This probability is called the partial likelihood

at node i given state x. Our algorithm follows the same

scheme, with one major difference. Since traits are continu-

ous, we cannot store all possible partial likelihoods. Instead,

we store likelihoods for a finite set of values and plug these

values into a numerical integration routine.

Let i be the index of a node in the tree not equal to the root,

let node j be its parent node. We define the partial likelihood,

F iðxjÞ; to be the likelihood for the observed trait values at the

tips which are descendants of node i, conditional on the

parent node j having trait value xj. If node i is a tip with ob-

served trait value xi we have

F iðxjÞ ¼ f ðxijxj; yiÞ ð14Þ

recalling that f ðxijxj; yiÞ is the density for the value of the

trait at node i conditional on the value of the trait for its

parent. More generally, we may only observe some value zi

for which we have the conditional probability pðzi jxiÞ condi-

tional on the trait value xi. In this case, the partial likelihood is

given by

F iðxjÞ ¼

Z
f ð~x ijxj; yiÞpðzij~x iÞd~x i : ð15Þ

Suppose node i is not the root and that it has two children u

and v. Since trait evolution is conditionally independent on

disjoint subtrees, we obtain the recursive formula

F iðxjÞ ¼

Z
f ð~x ijxj; yiÞF uð~x iÞF vð~x iÞd ~x i : ð16Þ

Finally, suppose that node i is the root and has two children

u and v. We evaluate the complete tree likelihood using the

density of the trait value at the root,

LðT Þ ¼

Z
f ðxjyrÞF uðxÞF vðxÞdx: ð17Þ

The bounds of integration in (15)–(17) will vary according

to the model.

We use numerical integration techniques to approximate

(15)–(17) and dynamic programming to avoid an exponential

explosion in the computation time. Let N denote the number

of function evaluations for each node. In practice, this might

vary over the tree, but for simplicity we assume that it is con-

stant. For each node i, we select N + 1 trait values

Xi ½0� < Xi ½1� < � � � < Xi ½N�: ð18Þ

How we do this will depend on the trait model and the

numerical integration technique. If, for example, the trait

values vary between a and b and we are applying Simpson’s

method with N intervals we would use Xi ½k� ¼ aþ b�a
N k for

k ¼ 0;1; 2; . . . ;N.

We traverse the tree starting at the tips and working to-

ward the root. For each nonroot node i and k ¼ 0; 1; . . . ;N

we compute and store an approximation Fi ½k� of F iðXj ½k�Þ,

where node j is the parent of node i. Note that this is an ap-

proximation ofF iðXj ½k�Þ rather than ofF iðXi ½k�Þ sinceF iðxÞ is

the partial likelihood conditional on the trait value for the

parent of node i. The value approximation Fv ½i� is computed

by applying the numerical integration method to the appro-

priate integral (15)–(17), where we replace function evalua-

tions with approximations previously computed. See below

for a worked example of this general approach.

The numerical integration methods we use run in time linear

in the number of points being evaluated. Hence, if n is the

number of tips in the tree, the algorithm will run in time

OðnN2Þ. For the integration techniques described above, the

convergence rate (in N) for the likelihood on the entire tree had

the same order as the convergence rate for the individual one-

dimensional integrations (see below for a formal proof of a

specific model). We have therefore avoided the computational

blow-out typically associated with such high-dimensional inte-

grations, and achieve this without sacrificing accuracy.

Posterior Densities for Ancestral States

The algorithms we have described compute the joint density

of the states at the tips, given the tree, the branch lengths, and

other parameters. As with discrete traits, the algorithms can

be modified to infer ancestral states for internal nodes in the

tree. Here, we show how to carry out reconstruction of

Hiscott et al. GBE

1342 Genome Biol. Evol. 8(5):1338–1350. doi:10.1093/gbe/evw064 Advance Access publication April 6, 2016

Deleted Text: p
Deleted Text: a
Deleted Text: i
Deleted Text: c
Deleted Text: t
Deleted Text: , 
Deleted Text: , 
Deleted Text: )&mdash;(
Deleted Text: )&mdash;(
Deleted Text: s
Deleted Text: -
Deleted Text: )&mdash;(
Deleted Text: d
Deleted Text: a
Deleted Text: s


the marginal posterior density of a state at a particular node.

The differences between marginal and joint reconstructions

are reviewed in Yang (2006, p. 121).

First consider marginal reconstruction of ancestral states at

the root. Let u and v be the children of the root. The product

F uðxÞF vðxÞ equals the probability of the observed character

conditional on the tree, branch lengths, parameters, and a

state of x at the root. The marginal probability of x, ignoring

the data, is given by the root density f ðxjyrÞ. Integrating the

product of F uðxÞF v ðxÞ and f ðxjyrÞ gives the likelihood LðT Þ,

as in (17). Plugging these into Bayes’ rule, we obtain the pos-

terior density of the state at the root:

f ðxr jz1; . . . ; znÞ ¼
F uðxrÞF vðxrÞf ðxr jyrÞ

LðT Þ
: ð19Þ

With general time reversible models used in phylogenetics,

the posterior distributions at other nodes can be found by

changing the root of the tree. Unfortunately, the same

trick does not work for many quantitative trait models.

Furthermore, recomputing likelihoods for each possible root

entails a large amount of unnecessary computation.

Instead, we derive a second recursion, this one starting at

the root and working toward the tips. A similar trick is used to

compute derivatives of the likelihood function in Felsenstein

and Churchill (1996). For a node i and state x we let GiðxÞ

denote the likelihood for the trait values at tips which are not

descendants of node i, conditional on node i having trait value

x. If node i is the root r, then GrðxÞ is 1 for all x.

Let node i be any node apart from the root, let node j be its

parent and let node u be the other child of j (that is, the sibling

of node i). We let ~x denote the trait value at node j. Then GiðxÞ

can be written

GiðxÞ ¼

Z
f ð~x jx; yiÞGjð~xÞF uð~xÞd ~x : ð20Þ

This integral can be evaluated using the same numerical

integrators used when computing likelihoods. Note that f ð~x j

x; yiÞ is the conditional density of the parent state given the

child state, which is the reverse of the transition densities used

to formulate the model. It should be noted that while

Brownian motion has reversible transition probabilities, the

OU process does not. How GiðxÞ is computed will depend

on the model and its properties; see below for an implemen-

tation of this calculation in the threshold model.

Once GiðxÞ has been computed for all nodes, the actual

(marginal) posterior densities are computed from Bayes’ rule.

Letting u, v be the children of node i,

f ðxijz1; . . . ; znÞ ¼
GiðxiÞF uðxiÞF vðxiÞf ðxiÞ

LðT Þ
: ð21Þ

Case study: threshold models

In this section, we show how the general framework can be

applied to the threshold model of Wright (1934) and

Felsenstein (2005, 2012). Each trait is modeled by a continu-

ously varying “liability” which evolves along branches accord-

ing to a Brownian motion process. While the underlying

liability is continuous, the observed data are discrete: at each

tip we observe only whether the liability is above or below

some threshold.

We will use standard notation for Gaussian densities. Let �

ðxjm;s2Þ denote the density of a Gaussian random variable x

with mean � and variance s2; let

�ðyjm;s2Þ ¼

Z y

�1

�ðxjm;s2Þ ð22Þ

denote its cumulative density function, with inverse

��1ðajm;s2Þ.

Let X1; . . . ;X2n�1 denote the (unobserved) liability values at

the n tips and n�1 internal nodes. As above we assume that

the i< j whenever node i is a child of node j, so that the root

has index 2n� 1.

The liability value at the root has a Gaussian density with

mean �r and variance s2
r :

f ðx2n�1jyrÞ ¼ �ðx2n�1jmr ;s
2
r Þ: ð23Þ

Consider any nonroot node i and let j be the index of its

parent. Let ti denote the length of the branch connecting

nodes i and j. Then Xi has a Gaussian density with mean xj

and variance s2tv :

f ðxi jxj; yiÞ ¼ �ðxijxj;s
2tiÞ: ð24Þ

Following Felsenstein (2005), we assume thresholds for the

tips are all set at zero. We observe 1 if the liability is positive, 0 if

the liability is negative, and ? if data are missing. We can in-

clude the threshold step into our earlier framework by defining

pðzijxiÞ ¼
1 if zi ¼ 1 and xi > 0; or zi ¼ 0 and xi � 0; or zi ¼ ?

0 otherwise:

(

ð25Þ

The likelihood function for observed discrete values z1; . . . ;

zn is then given by integrating over liability values for all nodes

on the tree:

LðT jz1; . . . ; znÞ ¼

Z 1
�1

� � �

Z 1
�1

�ðx2n�1jmr ;s
2
r Þ

Y
ði;jÞ

�ðxi jxj;s
2tiÞ
Yn

i¼1

pðzijxiÞ dx1 . . . dx2n�1:

ð26Þ
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The first step toward computing LðT jz1; . . . ; znÞ is to

bound the domain of integration so that we can apply

Simpson’s method. Ideally, we would like these bounds to

be as tight as possible, for improved efficiency. For the

moment we will just outline a general procedure which can

be adapted to a wide range of evolutionary models.

The marginal (prior) density of a single liability or trait value

at a single node is the density for that liability value marginal-

izing over all other values and data. With the threshold model,

the marginal density for the liability at node i is Gaussian with

mean �r (like the root) and variance vi equal to the sum of the

variance at the root and the transition variances on the path

from the root to node i. If Pi is the set of nodes from the root to

node i, then

vi ¼ s2
r þ s2

X
j2Pi

tj : ð27Þ

The goal is to constrain the error introduced by truncating

the integrals with infinite domain. Let � be the desired bound

on this truncation error. Recall that the number of internal

nodes in the tree is n�1. Define

Li ¼ ��1 �

2ðn� 1Þ
jmr ; vi

� �
ð28Þ

and

Ui ¼ ��1 1�
�

2ðn� 1Þ
jmr ; vi

� �
: ð29Þ

The bounds Li and Ui are chosen so that the (marginal) prob-

ability Xi lies outside the interval ½Li;Ui � is at most �=ðn� 1Þ.

For this model, these are given by the inverse distribution

function of a Gaussian; other models would involved different

transition densities. By the inclusion–exclusion principle, the

joint probability Xi 2 ½Li;Ui � for any internal node i is at

most �. We use this fact to bound the contribution of the

regions outside these bounds.Z 1
�1

� � �

Z 1
�1

f ðx2n�1jmr ;s
2
r Þ
Y
ðu;vÞ

f ðxv jxu; yvÞ

Yn

i¼1

pðzi jxiÞdx1 . . . dx2n�1

�

Z b2n�1

a2n�1

� � �

Z bnþ1

anþ1

Z 1
�1

� � �

Z 1
�1

f ðx2n�1jmr ;s
2
r Þ

Y
ðu;vÞ

f ðxv jxu; yvÞ
Yn

i¼1

pðzijxiÞdx1 . . . dx2n�1

ð30Þ

�

Z 1
�1

� � �

Z 1
�1

f ðx2n�1jmr ;s
2
r Þ
Y
ðu;vÞ

f ðxv jxu; yvÞdx1 . . . dx2n�1

�

Z b2n�1

a2n�1

� � �

Z bnþ1

anþ1

Z 1
�1

� � �

Z 1
�1

f ðx2n�1jmr ;s
2
r Þ

Y
ðu;vÞ

f ðxv jxu; yvÞdx1 . . . dx2n�1 ð31Þ

� PðXnþ1 =2 ½Lnþ1;Unþ1� or Xnþ2 =2 ½Lnþ2;Unþ2� or � � � orX2n�1

=2½L2n�1;U2n�1�Þ

ð32Þ

< �: ð33Þ

We therefore compute values Li, Ui for nþ 1 � i � 2n� 1

using (28) and (29) repeatedly, and use these bounds when

carrying out integration at the internal nodes. We define

Xi ½k� ¼ Li þ
Ui � Li

N
k ð34Þ

for k ¼ 0;1; . . . ;N and each internal node i.

The next step is to use dynamic programming and numer-

ical integration to compute the approximate likelihood. Let

node i be a tip of the tree, let node j be its parent and let zi

be the binary trait value at this tip. For each k ¼ 0; 1; . . . ;N

we use standard error functions to compute

Fi ½k� ¼ F iðXj ½k�Þ ð35Þ

¼

Z 1
0

�ð~x jXj ½k�;s2tiÞd~x if zi ¼ 1

Z 0

�1

�ð~x jXj ½k�;s2tiÞd~x if zi ¼ 0

1 if zi ¼ ?:

8>>>>>><
>>>>>>:

ð36Þ

Here, �ðxjm;s2Þ is the density of a Gaussian with mean �

and variance s2.

Now suppose that node i is an internal node with parent

node j and children u and v. Applying Simpson’s rule to the

bounds Li, Ui to (16) we have for each k ¼ 0; 1; . . . ;N:

Fi ½k� ¼
Ui � Li

N

XN

‘¼0

w‘�ðXi ½‘�jXj ½k�;s
2tiÞFu½‘�Fv ½‘� ð37Þ

&F iðXj ½k�Þ: ð38Þ

Suppose node i is the root, and u, v are its children.

Applying Simpson’s rule to (17) gives an approximate likeli-

hood of

U2n�1 � Ln�1

N

XN

‘¼0

w‘�ðXi ½‘�jmr ;s
2
r ÞFu½‘�Fv ½‘�: ð39Þ
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Pseudocode for the algorithm appears in Algorithm 1.

Algorithm 1: Compute probability of a threshold character.

Input:
N : Number of intervals in numerical integration.
t1, . . . , t2n−2: branch lengths in tree.
μr, σ

2
r : mean and variance of root density

σ2: variance of transition densities (per unit branch length)
z1, . . . , zn observed character (zi ∈ {+1, 0, ?})

Output:
Probability L of observed character under the threshold model.

Construct the vector x = [0, 1, 2, . . . , N ]/N .
Construct the vector w = [1, 4, 2, 4, 2, . . . , 4, 2, 1] as in (??)
Compute the path length pi from the root to each node i.
Initialize Fi[k] ← 1 for all nodes i and 0 ≤ k ≤ N .
For all i = n + 1, n + 2, . . . , 2n−1

Li ← Φ−1( nN−4

2(n−1) |μr, σ
2
r + σ2pi)

Ui ← Φ−1(1 − nN−4

2(n−1) |μr, σ
2
r + σ2pi)

Xi ← (Ui − Li)x + Li

For all tip nodes i = 1, 2, . . . , n
Let j be the index of the parent of node i
For k = 0, . . . , N

If zi = 1
Fi[k] = 1 − Φ(0; Xj [k], σ2ti)

else if zi = 0
Fi[k] = Φ(0;Xj [k], σ2ti)

For all internal nodes i = n+1, ..., 2n−2, excluding the root
Let j be the index of the parent of node i
Let u, v be the indices of the children of node i
For k = 0, 1, . . . , N

Fi[k] ← Ui − Li

N

N∑

�=0

w�φ(Xi[�];Xj [k], σ2ti)Fu[�]Fv[�]

Let u, v be indices of the the children of the root.

L ← U2n−1 − Ln−1

N

N∑

�=0

w�φ(Xi[�]; μr, σ
2
r)Fu[�]Fv[�]

Algorithm 1 Pseudo-code of the likelihood approximation

algorithm for a single character, under the threshold model.

The nodes are numbered in increasing order from tips to the

root.

Regarding efficiency and convergence we have:

Theorem 1 Algorithm 1 runs in OðnN2Þ time and approx-

imates L(T) with OðnN�4Þ error.

Proof

The running time follows from the fact that for each of the

O(n) nodes in the tree we carry out O(N) applications of

Simpson’s method.

Simpson’s rule has OðN�4Þ convergence on functions with

bounded fourth derivatives (Dahlquist and Björck 2008). The

root density and each of the transition densities are Gaussians,

so individually have bounded fourth derivatives. For each node

i, let ni denote the number of tips which are descendants of

the node. Using induction on (16), we see that for all nodes i,

the fourth derivative of F iðxÞ is OðniÞ.

If we use � ¼ nN�4 in (28) and (29) then replacing the

infinite domain integrals with integrals on ½Li;Ui � introduces

at most nN�4 error. Using a second induction proof on (16)

and (37) together with the bound on fourth derivatives, we

have that jF iðXj ½k�Þ � Fi ½k�j is at most OðniN
�4Þ for all nodes i,

where node j is the parent of node i. In this way we obtain

error bound of Oðn2n�1N�4Þ ¼ OðnN�4Þ on the approxima-

tion of LðT jz1; . . . ; zn; yÞ: «
We can estimate posterior densities using the recursion (20)

followed by equation (21). The conditional density

f ð~x jx; yiÞ ¼ � ~x jmr þ
vj

vi
x � mr

� �
;
s2tivj

vi

� �
ð40Þ

can be obtained by plugging the transitional density

f ðxj~x; yiÞ ¼ �ðxj~x;s
2tiÞ ð41Þ

and the two marginal densities (27)

f ð~xÞ ¼ �ð~x; vjÞ; f ðxÞ ¼ �ðx; viÞ ð42Þ

into the identity f ð~x jx; yiÞ ¼ f ðxj~x; yiÞ
f ð~x Þ
f ðxÞ

. We thereby obtain

the recursion

GiðxÞ ¼

Z
� ~x jmr þ

vj

vi
x � mr

� �
;
s2tivj

vi

� �
Gjð~xÞF uð~xÞd ~x ð43Þ

which we estimate using Simpson’s method. Algorithm esti-

mates values of the posterior densities at each node, evaluated

using the same set of grid points as used in Algorithm 1. An

additional round of numerical integration can be used to

obtain posterior means and variances.

Evolutionary Precursors of Plant Extrafloral Nectaries

To study the methods in practice, we reanalyze trait data pub-

lished by Marazzi et al. (2012), using a fixed phylogeny.

Marazzi et al. (2012) introduce and apply a new discrete

state model for morphological traits which, in addition to

states for presence and absence, incorporates an intermediate

“precursor” state. Whenever the intermediate state is ob-

served at the tips it is coded as “absent.” The motivation

behind the model is that the intermediate state represents

evolutionary precursors, changes which are necessary for

the evolution of a new state but which may not be directly

observed. These precursors could explain repeated parallel

evolution of a trait in closely related traits (Marazzi et al.

2012). They compiled a data set recording presence or ab-

sence of plant EFNs across a phylogeny of 839 species of

Fabales, fitting their models to these data.

The threshold model also involves evolutionary precursors

in terms of changes in ancestral liabilities. We use these

models, and our new algorithms to analyze the EFN data

set. Our analysis also makes use of the time-calibrated phy-

logeny inferred by Simon et al. (2009), although unlike

Marazzi et al. (2012) we ignore phylogenetic uncertainty.

Experimental Protocol

We conduct three separate experiments. For the first experi-

ment, we examine the rate of convergence of the likelihood

algorithm as we increase N. This is done for the “All” EFN

character (Character 1 in Marazzi et al. [2012]) for a range of
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estimates for the liability variance at the root, s2
r . The interest

in s2
r stems from its use in determining bounds Li, Ui for each

node, with the expectation that as s2
r increases, the conver-

gence of the integration algorithm will slow. The mean liability

at the root,�r, was determined from the data using Maximum

Likelihood estimation.

We also examined convergence of the algorithm on ran-

domly generated characters. We first evolved liabilities accord-

ing to the threshold model, using the parameter settings

obtained above. To examine the difference in performance

for non-phylogenetic characters, we also simulated binary

characters by simulated coin flipping. Twenty replicates

were carried out for each case.

The second experiment extends the model comparisons

carried out in Marazzi et al. (2012) to include the threshold

models. For this comparison we fix the transitional variances2

at one, since changing this values corresponds to a rescaling of

the Brownian process, with no change in likelihood. With only

one character, the maximum likelihood estimate of the root

variance s2
r is zero, irrespective of the data. This leaves a single

parameter to infer: the value of the liability at the root state.

We computed a maximum likelihood estimate for the state at

the root, then applied our algorithm with a sufficiently large

value of N to be sure of convergence. The Akaike Information

Criterion (AIC) was determined and compared with those ob-

tained for the model of Marazzi et al. (2012).

For the third experiment, we determine the marginal pos-

terior densities for the liabilities at internal nodes, using

Algorithm 2.

Algorithm 2: Compute posterior densities

Input:
N , t1, . . . 2n − 2, μr, σ2

r , and σ2 as in Algorithm 1
Vector p, likelihood L and arrays Fi computed in Algorithm 1.

Output:
Arrays Hi for each internal node i.

Construct the vectors x, w, {Li : i ∈ {n + 1, . . . , 2n − 2}},
{Ui : i ∈ {n + 1, . . . , 2n − 2}}, and path lengths pi as in Algorithm 1.

G2n−1[k] ← 1 for all k.
For all i = 2n−2, 2n − 3, . . . , n + 1

Let j be the index of the parent of node i.
Let v be the index of the sibling of node i.
For k = 0, 1, . . . , N

μ ← μr + σ2
r+σ2pj

σ2
r+σ2pi

(Xi[k] − μr)

V ← σ2ti(σ2
r+σ2pj)

σ2
r+σ2pi

Gi[k] ← Uj − Lj

N

N∑

�=0

w�φ(Xj [�];μ, V )Gj [�]Fv[�]

For all i = n + 1, . . . , 2n − 1
Let u, v be the children of node i.
For all k = 0, 1, . . . , N

Hi[k] ← 1
LGi[k]Fu[k]Fv[k]φ(Xi[k]|μr, σ

2
r + σ2pi)

Algorithm 2 Pseudocode for the algorithm to efficiently

compute ancestral posterior densities under the threshold

model. At the termination of the algorithm, Hi ½k� is an esti-

mate of the posterior density at internal node i, evaluated at

x ¼ Xi ½k�.

These posterior probabilities are then mapped onto the phy-

logeny, using shading to denote the (marginal) posterior prob-

ability that a liability is larger than zero. We therefore obtain a

figure analogous to supplementary figure S7, Supplementary

Material online, of Marazzi et al. (2012).
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FIG. 1.—Log-log plots of error as a function of N for the dynamic programming algorithm with Simpson’s method (left) and with the Gaussian kernel

method (right). The likelihoods were computed under the threshold model on EFN trait data for an 839 taxon tree. Dotted lines have slope�4 (corresponding

to convergence rate of N�4. Note the difference in scale for the two methods.). Logarithms computed to base 10. Letting h be the height of the tree, the

circles in both plots represent errors when s2
r ¼ h, the asterisks represent errors when s2

r ¼ 0:1h, and the triangles represent errors when s2
r ¼ 10h.
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Results

Convergence of the Algorithm

To examine convergence, we compute the absolute error of

each likelihood approximation because the actual likelihood is

not available we use the approximation when N = 1,000. Plots

of error versus N are given in figure 1, both for Simpson’s

method (left) and for the modified Gaussian kernel method

(right). For larger N, the error in a log-log plot decreases with

slope at most �4 (as indicated), corresponding to N�4 con-

vergence of the method. Log-log plots of error versus N for

the simulated data are given in figure 2. In each case, the

method converges for by N&30.

While the level of convergence for both algorithms is cor-

rect, the accuracy of the method based on Simpson’s method

is far worse. When a branch length is short, the transition

density becomes highly peaked, as does the function being

integrated. Such functions are difficult to approximate with

piecewise quadratics, and Simpson’s method can fail misera-

bly. Indeed, for N<50, we would often observe estimated

probabilities equal to 0, or estimates greater than 1! (These

were omitted from the plots). Although we can always bound

estimates computed by the algorithm, a sounder approach is

to improve the integration technique. This we did using the

Gaussian kernel method, and the result was far improved ac-

curacy for little additional computation. For the remainder of

the experiments with this model we used the Gaussian kernel

method when carrying out numerical integration.

Table 1

Table of Log-Likelihood and AIC Values for the Binary Character,

Precursor, and Threshold Models on Six EFN Traits

Trait Model k log L AIC

1 (All) Binary 2 �251.7 507.4

Precursor 1 �246.7 495.4

Threshold 1 �240.6 483.2

2 (Leaves) Binary 2 �240.3 484.6

Precursor 1 �234.5 470.9

Threshold 1 �230.6 463.1

3 (Inflorescence) Binary 2 �108.3 220.5

Precursor 1 �110.9 223.9

Threshold 1 �108.3 218.5

4 (Trichomes) Binary 2 �86.7 177.3

Precursor 1 �86.9 175.9

Threshold 1 �85.8 173.5

5 (Substitutive) Binary 2 �163.0 330.1

Precursor 1 �161.6 325.3

Threshold 1 �161.3 324.6

6 (True) Binary 2 �132.3.1 268.7

Precursor 1 �131.1 264.3

Precursor 2 �126.7 257.3

Threshold 1 �125.3 252.6

NOTE.—Column k indicates numbers of parameters for each model. Data
for the binary and precursor models copied from table 1 in Marazzi et al.
(2012). All likelihoods and AIC values rounded to 1 d.p. Boldface indicates the
best fitting model for each trait. A pre-cursor model with one parameter was
used for all experiments, except for trait 6 where a two-parameter model gave
a better AIC than the one-parameter model (see discussion in Marazzi et al.
(2012).
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FIG. 2.—Plots of log-likelihood values as a function of log ðNÞ for the two types of data simulated from the fixed EFN tree, computed using our algorithm

together with the Gaussian kernel method. Logarithms computed to base 10.
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Model Comparison

Marazzi et al. (2012) describe AIC comparisons between their

precursor model and a conventional binary trait model. We

extend this comparison to include the threshold model. This is

a one parameter model, the parameter being the value of the

liability at the root. We used the MATLAB command fmin-

search with multiple starting points to compute the maximum

likelihood estimate for this value. The resulting log-likelihood

was log?L ¼ �240:6, giving an AIC of 483.2. This compares

to an AIC of 507.4 for the (two parameter) binary character

model and an AIC of 495.4 for the (one parameter) precursor

model of Marazzi et al. (2012).

We analyzed the five other EFN traits in the same way, and

present the computed AIC values in table 1, together with AIC

values for the two parameter binary state model and one pa-

rameter precursor model computed by Marazzi et al. (2012)

(and the two parameter precursor model for trait 6). We see

that the threshold model fits better than either the binary or

precursor models for all of the six traits.

It is not clear, a priori, why the threshold model would

appear to fit some data better than the precursor model be-

cause they appear to capture similar evolutionary phenomena.

It would be useful to explore this observation more thor-

oughly, given the new computational tools, perhaps incorpo-

rating phylogenetic error in a manner similar to Marazzi et al.

(2012).

Inferring Ancestral Liabilities

Figure 3 gives a representation of how the (marginal) posterior

liabilities change over the tree. Branches are divided into three

classes according to the posterior probability that the liability is

positive, with lineages with posterior probability> 0.7 colored

red, lineages with posterior probability< 0.3 colored white,

and remaining lineages colored pink.

Caesalpinioideae*

Other Fabales

Papilionoideae

Mimosoideae

FIG. 3.—Marginal posterior probabilities for the liabilities, for EFN trait 1 of Marazzi et al. (2012) on the phylogeny inferred by Simon et al. (2009).

Lineages with posterior probability > 0.7 colored red, lineages with posterior probability< 0.3 colored white, and remaining lineages colored pink.
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This diagram can be compared with Marazzi et al. (2012),

figure S7. The representations are, on the whole, directly com-

parable. A positive liability corresponds, roughly, to an ances-

tral precursor state. Both analyses suggest multiple origins of a

precursor state, for example for a large clade of Mimosoidae.

Interestingly, there are several clades where the analysis of

Marazzi et al. (2012) suggests widespread ancestral distribu-

tion of the precursor state whereas our analysis indicates a

negative liability at the same nodes.

Once again, our analysis is only preliminary, our goal here

simply being to demonstrate what calculations can now be

carried out.

Discussion

We have introduced a new framework for the computation

of likelihoods from continuous characters, and illustrated the

framework using an efficient algorithm for evaluating (ap-

proximate) likelihoods under Wright and Felsenstein’s thresh-

old model.

This framework opens up possibilities in several directions.

The numerical integration, or numerical quadrature, literature

is vast. In this article, we have focused in on a popular and

simple numerical integration method, and our algorithm

should be seen as a proof of principle rather than a definitive

threshold likelihood method. There is no question that the

numerical efficiency of Algorithm 1 could be improved signif-

icantly through the use of more sophisticated techniques:

better basis functions or adaptive quadrature methods for a

start.

The connection with Felsenstein’s (discrete character) prun-

ing algorithm also opens up opportunities for efficiency gains.

Techniques such as storing partial likelihoods, or approximat-

ing local neighborhoods, are fundamental to efficient phylo-

genetic computations on sequence data (Felsenstein 1981a;

Larget and Simon 1998; Swofford 2002; Pond and Muse

2004; Stamatakis 2006). These tricks could all be now applied

to the calculation of likelihoods from continuous traits.

Finally, we stress that the algorithm does not depend on

special characteristics of the continuous trait model, beyond

conditional independence of separate lineages. Felsenstein’s

pruning algorithm for continuous characters is limited to

Gaussian processes and breaks down if, for example, the

transition probabilities are governed by Levy processes

(Landis et al. 2013). In contrast, our approach works whenever

we can numerically evaluation transition densities, an indeed

only a few minor changes would transform our Algorithm 1 to

one implementing on a far more complex evolutionary

process.

Supplementary Material

Supplementary material is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).

Acknowledgments

This research was supported by an Allan Wilson Centre

Doctoral Scholarship to G.H., financial support to D.B. from

the Allan Wilson Centre, a Marsden grant to D.B., and finan-

cial support to all authors from the University of Otago.

Literature Cited
Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A.

2012. Inferring species trees directly from biallelic genetic markers:

bypassing gene trees in a full coalescent analysis. Mol Biol Evol.

29(8):1917–1932.

Cavalli-Sforza LL, Edwards AW. 1967. Phylogenetic analysis. models and

estimation procedures. Am J Hum Genet. 19(3 Pt 1):233.

Cheney E, Kincaid D. 2012. Numerical mathematics and computing.

Boston (MA): Cengage Learning.
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