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Simple Summary: Low expression of programmed death-ligand 1 (PD-L1), epidermal growth
factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLCs) are refractory, and only
few therapeutic options exist. This study aims to clarify the molecular basis of this special
subtype of NSCLC and identify potential therapeutic targets. We performed integrating data
from multiple sources including transcriptome, methylome, and clinical outcome to uncover the
effect of epigenetic changes acting this special subtype lung cancer. We elucidated both aberrant
methylation and associated aberrant gene expression and the emerging methylation-transcription
patterns were classified as HypoUp, HypoDown, HyperUp, or HyperDown. We found that the
aberrant methylation-transcription patterns significantly affect the overall survival time of the patients.
We used protein–drug interaction data and molecular docking analysis to identify potential therapeutic
candidates. This study uncovered the distinct methylation-transcription characteristics of this special
subtype lung cancer, and provided an adaptable way to identify potential therapeutic targets.

Abstract: Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have demonstrated remarkable
treatment efficacy in advanced non-small cell lung cancer (NSCLC). However, low expression of
programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) wild-type NSCLCs
are refractory, and only few therapeutic options exist. Currently, combination therapy with ICIs is
frequently used in order to enhance the treatment response rates. Yet, this regimen is still associated
with poor treatment outcome. Therefore, identification of potential therapeutic targets for this
subgroup of NSCLC is strongly desired. Here, we report the distinct methylation signatures of
this special subgroup. Moreover, several druggable targets and relevant drugs for targeted therapy
were incidentally identified. We found hypermethylated differentially methylated regions (DMRs)
in three regions (TSS200, TSS1500, and gene body) are significantly higher than hypomethylated
ones. Downregulated methylated genes were found to be involved in negative regulation of immune
response and T cell-mediated immunity. Moreover, expression of four methylated genes (PLCXD3
(Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3), BAIAP2L2 (BAR/IMD
Domain Containing Adaptor Protein 2 Like 2), NPR3 (Natriuretic Peptide Receptor 3), SNX10 (Sorting
Nexin 10)) can influence patients’ prognosis. Subsequently, based on DrugBank data, NetworkAnalyst
3.0 was used for protein–drug interaction analysis of up-regulated differentially methylated genes.
Protein products of nine genes were identified as potential druggable targets, of which the
tumorigenic potential of XDH (Xanthine Dehydrogenase), ATIC (5-Aminoimidazole-4-Carboxamide
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Ribonucleotide Formyltransferase/IMP Cyclohydrolase), CA9 (Carbonic Anhydrase 9), SLC7A11
(Solute Carrier Family 7 Member 11), and GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase)
have been demonstrated in previous studies. Next, molecular docking and molecular dynamics
simulation were performed to verify the structural basis of the therapeutic targets. It is noteworthy that
the identified pemetrexed targeting ATIC has been recently approved for first-line use in combination
with anti-PD1 inhibitors against lung cancer, irrespective of PD-L1 expression. In future work,
a pivotal clinical study will be initiated to further validate our findings.

Keywords: DNA methylation; EGFR mutation-negative; low PD-L1 expression; immune checkpoint
inhibitors; combination strategies

1. Background

Although tyrosine kinase inhibitors (TKI) have shown remarkable benefits against lung cancer,
they are not effective for epidermal growth factor receptor (EGFR) mutation-negative patients.
More recently, the introduced immune checkpoint inhibitors (ICIs) therapy has shown marked
clinical responses, especially effective towards these cases [1–4]. In the KEYNOTE 024 phase III
trial, pembrolizumab, an anti-programmed death 1 (PD1) antibody, showed better therapeutic effect
than standard chemotherapy against EGFR wild type lung cancers overexpressing programmed
death-ligand 1 (PD-L1) [5]. In addition to findings of the KEYNOTE 024 trial, results of the KEYNOTE
42 trial [6] which included any PD-L1 positive non-small cell lung cancer (NSCLC) patients led to the
approval of pembrolizumab as the first-line single agent for the treatment of metastatic NSCLC. Indeed,
immunotherapy is the first-line treatment of advanced stage NSCLC patients harboring EGFR/ALK
(ALK receptor tyrosine kinase) wild type with PD-L1 expression≥ 50%, and is the second-line treatment
when PD-L1 expression ranges between 1 and 50%. However, some patients, including cases with low
PD-L1 expression, often do not benefit from this treatment. Thus, regimens combining PD-1/PD-L1
blockade with other approaches, including chemotherapy, have been created with the aim of enhancing
response rates. In the KEYNOTE 021 study, combining chemotherapy with pembrolizumab increased
overall response rate by about 57% relative to chemotherapy alone (13%) in cases exhibiting low PD-L1
levels. However, combined treatment exhibited modest improvement on overall survival (OS) and
was associated with more treatment-related adverse effects in grade 3 and 4 [7–9]. Other approved
combination regimens involve inhibitors of vascular endothelial growth factor (VEGF) [10] and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) [11,12]. Experimental combination regimens include
lymphocyte-activation gene 3 (LAG-3) [13,14] and T-cell immunoglobulin mucin 3 (TIM-3) [15,16].
However, establishing the best combination regimen for EGFR wild type lung cancers with low PD-L1
expression remains daunting. In addition, both carcinogenic mechanisms and molecular basis of this
special subtype of NSCLC are still elusive.

Epigenetic modification ensures the maintenance and inheritance of gene expression programs
through cell division. It includes DNA methylation, which occurs predominantly at CpG dinucleotides
in mammals [17,18]. Previous studies have proven that DNA methylation readers and writers are vital
components of the adaptive immune response [19–23]. DNA methylation is also implicated in T-cell
exhaustion, and blocking epigenetic processes may promote T cell rejuvenation, thus supporting the
anti-tumor effects of checkpoint blockade [24]. In NSCLC, epigenomics has been shown to influence
clinical effects of anti-PD-1 therapy [25]. Aberrant DNA methylation has been shown to enhance
resistance to immunotherapy in lung cancer [26]. However, few studies have investigated DNA
methylation changes in EGFR wild type lung cancers with low PD-L1 expression.

In this study, based on the multiple platforms utilized within the Cancer Genome Atlas (TCGA),
we performed integrating data from multiple sources including transcriptome, methylome, and clinical
outcome to uncover the effect of epigenetic changes acting in the development and progression of
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EGFR wild type lung cancers with low PD-L1 expression. Notably, to minimize noise from unrelated
methylations and gene expression, methylation sites and associated genes were treated as single units.
We elucidated both aberrant methylation and associated aberrant gene expression and the emerging
methylation/expression patterns were classified as HypoUp, HypoDown, HyperUp, or HyperDown.
The results also indicated that aberrant methylation-transcription patterns significantly affect the overall
survival time of the patients since a risk assessment model including four differentially methylated
and expressed genes (DMEGs; PLCXD3 (Phosphatidylinositol-Specific Phospholipase C, X Domain
Containing 3), BAIAP2L2 (BAR/IMD Domain Containing Adaptor Protein 2 Like 2), NPR3 (Natriuretic
Peptide Receptor 3), SNX10 (Sorting Nexin 10)) successfully categorized patients into high- and
low-risk classes. Furthermore, FDA-approved drugs targeting up-regulated differentially methylated
genes were explored using protein–drug interaction data from DrugBank database. The binding mode
of target-drug complex was verified through molecular docking analysis and molecular dynamics
simulation at a molecular level, deserving further investigation to validate.

2. Materials and Methods

2.1. Sample Datasets and Data Preprocessing

Publicly available NSCLC and adjacent non-cancer tissue gene expression (RNA-SeqV2) and
methylation data (Illumina Infinium HumanMethylation450 BeadChip; Illumina, San Diego, CA, USA),
and corresponding clinical data were downloaded from TCGA on 2 March 2020. These data comprised
of 108 normal samples and 133 EGFR wild type lung cancer samples with low PD-L1 expression, of
which 75 normal samples and 115 above-mentioned tumor samples contained both gene expression
and DNA methylation data. The mutation annotation format files of 132 tumor samples (one was
missing) were also downloaded, and clinical sample characteristics are detailed in Table S1. The bottom
25% samples, with regards to PD-L1 expression, were considered PD-L1 low expression. The NSCLC
expression dataset and methylation data as well as the corresponding clinical information in Gene
Expression Omnibus (GEO) were included to validate our results (GSE31210).

2.2. Immune Profile Analysis

Tumor-infiltrating lymphocytes including B, and dendritic cells, neutrophils, CD8+ T, macrophages,
CD4+ T, was analyzed among “EGFR Wild Type/Low PD-L1 expression” NSCLC and normal samples
using tumor immune estimation resource (TIMER; https://cistrome.shinyapps.io/timer). The expression
scores of micro-environmental factors (tumor, immune, and stromal purity) were obtained using the
ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression
data) algorithm [27].

2.3. Analysis of DNA Methylation Data

The Illumina HumanMethylation450 BeadChip array is comprised of 485,577 probes covering
99% (n = 21,231) of the RefSeq gene. For each probe, the raw methylation intensity was expressed as a
β value [28]. Differentially methylated CpG sites (DMS) were identified using the R package limma
by comparing CpG site data in normal samples relative to EGFR wild type lung cancer samples with
low PD-L1 expression. p values were converted to false discovery rate (FDR) using the Benjamini and
Hochberg (BH) method. FDR < 0.01 and absolute delta β-value > 0.2 were set as cutoff thresholds for
DMS identification. CpG sites associated with genes were obtained from an annotation file provided
by Illumina (https://www.illumina.com/). Average β-values of genes within different gene regions
(TSS1500, TSS200, 5′-UTR, first exon, gene body, 3′-UTR, and intergenic region) were calculated based
on correspondences [29]. Differentially methylated regions (DMRs) were calculated from the integrated
methylation data using the R package limma using the following criteria: hypermethylated DMRs with
FDR < 0.01 and delta β-value > 0.2; hypomethylated DMRs with FDR < 0.01 and delta β-values < −0.2.
Differentially methylated genes (DMGs) were characterized by genes located in DMRs.

https://cistrome.shinyapps.io/timer
https://www.illumina.com/
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2.4. Gene Expression Data Analysis

Differentially expressed genes in normal vs. “EGFR Wild Type/Low PD-L1 expression” NSCLC
TCGA datasets were identified using the R package limma and p values converted to FDR using the
BH method. Differentially expressed genes (DEGs), were identified by log2 transformation of TCGA
gene expression data and the following criteria: upregulated genes had FDR > 0.01 and log2FC > 1;
downregulated genes had FDR > 0.01 and log2FC < −1 in tumor samples relative to non-cancer tissue.

2.5. Analysis of DMGs and DEGs in Different Regions

To uncover relationships between methylation and expression profiles, DMGs and DEGs
intersections were analyzed to identify DMEGs. The DMEGs fell into 4 groups (Table 1).

Table 1. Differentially methylated and expressed genes (DMEGs) grouping standard.

Groups Methylation Cut-Off Expression Cut-Off

HypoUp FDR < 0.01 and delta β-value < −0.2 FDR < 0.01 and log2FC > 1
HypoDown FDR < 0.01 and delta β-value < −0.2 FDR < 0.01 and log2FC < −1

HyperUp FDR < 0.01 and delta β-value > 0.2 FDR < 0.01 and log2FC > 1
HyperDown FDR < 0.01 and delta β-value > 0.2 FDR < 0.01 and log2FC < −1

2.6. Functional Enrichment Analysis

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of DMGs, DEGs was done using the R package clusterProfiler. Gene enrichment analysis for
DMEGs was carried out by Metascape (http://metascape.org), a web tool for gene annotation [30].

2.7. Evaluation of Expression and Methylation Biomarkers

Principal Component Analysis (PCA) of the DMSs in DMEGs was used to distinguish between
tumor and non-tumor samples. The R package randomForest was used to classify samples based on
DMEGs expression profiles and DMSs methylation profiles and validated using the leave-one-out
cross-validation (LOOCV) approach. The results were then visualized using receiver operating
characteristic (ROC) curve and area under the curve (AUC) analyses.

2.8. Construction of DMEGs-Based Prognostic Signature

Prognostic data were created on the expression matrix of DMEGs and matched survival data.
The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed for
identifying DMEGs with prognostic value by R package glmnet.

2.9. Identification of Potential Drug Targets

NetworkAnalyst3.0 (http://www.networkanalyst.ca/), a web-based tool for analyzing and
interpreting system-level gene expression data, was used to carry out protein–drug interactions
analysis on the Up-expressed and Down-expressed DMEGs. Protein and drug target information was
obtained from DrugBank (Version 5.0).

2.10. Homologous Modeling

To evaluate the binding energy and interaction patterns between drug candidate and their targets,
AutodockVina 1.1.2, a silico protein–ligand docking software was employed [31]. As the absence of a
complete crystal structure of SLC7A11, its theoretical structure was obtained from homology modeling
by Swiss-Model server, using the crystal structure of large neutral amino acids transporter small subunit
1 (PDB ID: 6irt.1.B) as the template. Molecular dynamics simulation was carried out by GROMACS
5.0.6 [32]. Ramachandran plots were used to assess stereo-chemical quality [33]. The parameters were
set to default.

http://metascape.org
http://www.networkanalyst.ca/
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2.11. Molecular Docking

The 3D structures of all candidate drug compounds were drawn by ChemBioDraw Ultra 17.0 and
then subjected to energy optimization by the MMFF94 force field. The 3D structure of XDH (PDB ID:
2e1q), ATIC (PDB ID: 1pl0), CA9 (PDB ID: 5fl6), GAPDH (PDB ID: 3gpd) were downloaded from
the PDB (http://www.rcsb.org/pdb/home/home.do), and 3D structure of SLC7A11 was obtained from
homologous modeling. Before docking analysis, all protein and molecular files were converted into
PDBQT format using AutodockTools 1.5.6. Molecular docking analysis were carried out by Autodock
Vina 1.1.2. The docking parameter ‘exhaustiveness’ was set to ‘20’, and other parameters were set to
default. The conformation with the highest score was selected to further analyze using Free Maestro
11.9. Pymol software 2.3 was applied for model visualization and MOE software 2019 was used for
drawing the 2D depictions [34].

3. Results

3.1. DMGs in “EGFR Wild Type/Low PD-L1 Expression” NSCLC

To identify differential methylation in “EGFR Wild Type/Low PD-L1 expression” NSCLC,
DNA methylation data from 115 tumor samples and 75 corresponding non-tumor tissues was extracted
for comparative analysis. This analysis focused on the transcription start sites TSS200, TSS1500, and the
gene body, and identified 3250 DMRs (FDR < 0.01, |delta β-values| > 0.2) that were annotated to
1586 genes (Figure 1A–C). The DMRs were then divided into 593 hypermethylated DMRs and 339
hypomethylated DMRs in the TSS200 region, 747 hypermethylated DMRs and 618 hypomethylated
DMRs in the TSS1500 region, and 651 hypermethylated DMRs and 302 hypomethylated DMRs in gene
body (Figure 1D or Figure 1F). Altogether, there were significantly more hypermethylated DMRs than
hypomethylated ones. Of the 3 gene regions, TSS1500 was associated with the majority of DMGs
(Figure 1E). Of the 1586 DMGs harboring DMRs, 53 genes were present in all 3 regions, 236 genes
were present in at least 2 regions, and 1297 were present in one region (Figure 1E). To assess DMGs
function, we performed GO functional enrichment and KEGG pathway analyses. The DMGs fell into
20 KEGG pathways (top-10 are shown on Figure 1G), while 185 were annotated to GO biological process
(BP) (Figure 1H), 36 to GO term cellular component (CC) (Figure 1I), and 39 to GO term molecular
functions (MF) (Figure 1J). Together, this showed that the DMGs are involved in important pathways,
biological processes and cellular component, including ECM (extracellular matrix)-receptor interaction,
extracellular matrix, receptor complex, transcriptional activator activity, and RNA polymerase II
transcription regulatory region sequence-specific DNA binding (Figure 1G–J).

Cancers 2020, 12, x 5 of 25 

 

2.11. Molecular Docking 

The 3D structures of all candidate drug compounds were drawn by ChemBioDraw Ultra 17.0 
and then subjected to energy optimization by the MMFF94 force field. The 3D structure of XDH (PDB 
ID: 2e1q), ATIC (PDB ID: 1pl0), CA9 (PDB ID: 5fl6), GAPDH (PDB ID: 3gpd) were downloaded from 
the PDB (http://www.rcsb.org/pdb/home/home.do), and 3D structure of SLC7A11 was obtained from 
homologous modeling. Before docking analysis, all protein and molecular files were converted into 
PDBQT format using AutodockTools 1.5.6. Molecular docking analysis were carried out by Autodock 
Vina 1.1.2. The docking parameter ‘exhaustiveness’ was set to ‘20’, and other parameters were set to 
default. The conformation with the highest score was selected to further analyze using Free Maestro 
11.9. Pymol software 2.3 was applied for model visualization and MOE software 2019 was used for 
drawing the 2D depictions [34]. 

3. Results 

3.1. DMGs in “EGFR Wild Type/Low PD-L1 Expression” NSCLC 

To identify differential methylation in “EGFR Wild Type/Low PD-L1 expression” NSCLC, DNA 
methylation data from 115 tumor samples and 75 corresponding non-tumor tissues was extracted for 
comparative analysis. This analysis focused on the transcription start sites TSS200, TSS1500, and the 
gene body, and identified 3250 DMRs (FDR < 0.01, |delta β-values| > 0.2) that were annotated to 1586 
genes (Figure 1A–C). The DMRs were then divided into 593 hypermethylated DMRs and 339 
hypomethylated DMRs in the TSS200 region, 747 hypermethylated DMRs and 618 hypomethylated 
DMRs in the TSS1500 region, and 651 hypermethylated DMRs and 302 hypomethylated DMRs in 
gene body (Figure 1D or Figure 1F). Altogether, there were significantly more hypermethylated 
DMRs than hypomethylated ones. Of the 3 gene regions, TSS1500 was associated with the majority 
of DMGs (Figure 1E). Of the 1586 DMGs harboring DMRs, 53 genes were present in all 3 regions, 236 
genes were present in at least 2 regions, and 1297 were present in one region (Figure 1E). To assess 
DMGs function, we performed GO functional enrichment and KEGG pathway analyses. The DMGs 
fell into 20 KEGG pathways (top-10 are shown on Figure 1G), while 185 were annotated to GO 
biological process (BP) (Figure 1H), 36 to GO term cellular component (CC) (Figure 1I), and 39 to GO 
term molecular functions (MF) (Figure 1J). Together, this showed that the DMGs are involved in 
important pathways, biological processes and cellular component, including ECM (extracellular 
matrix)-receptor interaction, extracellular matrix, receptor complex, transcriptional activator activity, 
and RNA polymerase II transcription regulatory region sequence-specific DNA binding (Figure 1G–
J). 

 
Figure 1. Cont. Figure 1. Cont.

http://www.rcsb.org/pdb/home/home.do


Cancers 2020, 12, 2496 6 of 25
Cancers 2020, 12, x 6 of 25 

 

 

Figure 1. Differentially methylated genes (DMGs) in “Epidermal growth factor receptor (EGFR) Wild 
Type/Low PD-L1 expression” non-small cell lung cancer (NSCLC). (A–C) Volcano plots showing the 
distribution of DMGs in TSS200, TSS1500 and gene body regions, respectively. (D) Histogram 
showing the amount of DMGs in gene body (n = 573), TSS1500 (n = 825) and TSS200 (n = 530) regions. 
(E) Venn map of DMGs in three different regions. (F) Histogram showing the percentage of 
hypermethylated and hypomethylated DMGs in three different regions. (G) Top 10 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment pathways of DMGs in three regions. (H) 
Top 10 Gene Ontology (GO) Biological Process (BP) terms of DMGs in three regions. (I) GO cellular 
component (CC) terms of DMGs in three regions. (J) GO molecular functions (MF) terms of DMGs in 
three regions. The size of the dots represents the number of genes enriched in the pathway, and the 
colors correspond to different false discovery rate (FDR) values. 

  

Figure 1. Differentially methylated genes (DMGs) in “Epidermal growth factor receptor (EGFR) Wild
Type/Low PD-L1 expression” non-small cell lung cancer (NSCLC). (A–C) Volcano plots showing the
distribution of DMGs in TSS200, TSS1500 and gene body regions, respectively. (D) Histogram showing
the amount of DMGs in gene body (n = 573), TSS1500 (n = 825) and TSS200 (n = 530) regions. (E) Venn
map of DMGs in three different regions. (F) Histogram showing the percentage of hypermethylated
and hypomethylated DMGs in three different regions. (G) Top 10 Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment pathways of DMGs in three regions. (H) Top 10 Gene Ontology (GO)
Biological Process (BP) terms of DMGs in three regions. (I) GO cellular component (CC) terms of DMGs
in three regions. (J) GO molecular functions (MF) terms of DMGs in three regions. The size of the dots
represents the number of genes enriched in the pathway, and the colors correspond to different false
discovery rate (FDR) values.
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3.2. Immune Profile Analysis

To characterize the immune cell profile of EGFR wild type lung cancer samples with low PD-L1
expression, we analyzed the expression of 6 immune cells: B cell, CD4+ T cell, CD8+ T cell, neutrophils,
macrophage and dendritic cells, using TIMER and found all immune cell types to be significantly lower
in “low PD-L1 expression” NSCLC relative to controls (Figure 2A), suggesting immunosuppression in
double-negative NSCLC. Validation of immune status using ESTIMATE revealed that ImmuneScore,
StromalScore, and ESTIMATEScore were significantly lower in “low PD-L1 expression” NSCLC samples
relative to controls (Figure 2B). Assessment of immune checkpoint gene expression showed that most
checkpoint genes are significantly downmodulated in “EGFR Wild Type/Low PD-L1 expression”
NSCLC (Figure 2C), including CD274 (CD274 molecule; also known as PD-L1), HAVCR2 (Hepatitis A
Virus Cellular Receptor 2; also known as TIM3), PDCD1 (Programmed Cell Death 1; also known as
PD1), and PDCD1LG2 (Programmed Cell Death 1 Ligand 2). CTLA4 (p = 0.077) and LAG3 (p = 0.066)
showed a borderline significance.

3.3. Differentially Expressed Genes (DEGs) in “EGFR Wild Type/Low PD-L1 Expression” NSCLC

To identify DEGs in “EGFR Wild Type/Low PD-L1 expression” NSCLC, gene expression data
from 133 “EGFR Wild Type/Low PD-L1 expression” NSCLC samples and 108 normal samples were
extracted and comparative analysis done using limma package on R. This analysis uncovered 3178
DEGs (FDR < 0.01, |log2FC| > 1). Of these, 1037 were upregulated and 2141 downregulated in “EGFR
Wild Type/Low PD-L1 expression” NSCLCs (Figure 3A). Next, unsupervised hierarchical clustering
analysis of the DEGs clearly distinguished “EGFR Wild Type/Low PD-L1 expression” NSCLCs samples
from controls (Figure 3B). Enrichment functional analysis of DEGs using the R package ClusterProfiler
revealed upregulated DEGs to be enriched in 6 functional pathways involved in NSCLC-related
biological processes, including cell cycle, biosynthesis of amino acids, carbon metabolism, P53 signaling
pathway, Fanconi anemia pathway, and DNA replication (Figure 3C). Downregulated DEGs were
enriched in 86 pathways, mainly Th1 and Th2 cell differentiation and other pathways that are closely
related to tumor development (Figure 3D).

3.4. Differentially Methylated and Expressed Genes (DMEGs) in “EGFR Wild Type/Low PD-L1
Expression” NSCLC

To characterize the relationship between gene methylation and expression, we analyzed DMGs
and DEGs intersection in TSS200, TSS1500, and gene body regions (Figure 4A–C). This analysis
identified 249 differentially methylated and expressed genes (DMEGs) that fell into 4 classes: HypoUp
(delta β-value < −0.2 and log2FC > 1), Hypodown (delta β-value > 0.2 and log2FC > 1), HyperUp (delta
β-value > 0.2 and log2FC > 1) and HyperDown (delta β-value > 0.2 and log2FC < −1) (Figure 4D–F,
Tables S2–S4). Of these, 209 DMEGs occurred in 1 region, 32 in 2 regions, and 8 in all 3 regions
(Figure S1). The HyperDown group was most common, occupying 57.58%, 42.24% and 43.48% of the
3 regions, respectively (Figure 4D–F), followed by the HypoDown group that occupied most positions
of TSS1500 and gene body regions.
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Figure 2. Immune signature scores in “EGFR Wild Type/Low PD-L1 expression” NSCLC. (A) The
expression scores of immune-associated cells included in the TIMER algorithm. (B) The expression
scores of genes included in the ESTIMATE algorithm for determination of stromal and immune gene
signatures. (C) Differential expression of immune checkpoint molecules. Asterisks indicate significant
differences (Wilcox test). * p < 0.05, *** p < 0.001, **** p < 0.0001, ns means no significant.
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Figure 3. Differentially expressed genes (DEGs) in “EGFR Wild Type/Low PD-L1 expression” NSCLC.
(A) Volcano plot showing the distribution of DEGs. (B) Heat map and hierarchical clustering
analysis of DEG. (C) Significantly enriched KEGG categories show differentially up-regulated genes.
(D) Significantly enriched KEGG categories show differentially down-regulated genes. The size of the
dots represents the number of genes enriched in the pathway, and the colors correspond to different
FDR values. The lines represent the intersection of genes between pathways.

3.5. DMEGs Analysis

Our coupled analysis identified 249 DMEGs containing 297 DMSs distributed across TSS200,
TSS500 and the gene body. The 297 DMSs occur throughout the genome except the sex chromosomes.
To evaluate DNA methylation and gene expression differences between “EGFR Wild Type/Low PD-L1
expression” NSCLC samples and non-tumor samples, we constructed 249-DMEGs and 297-DMSs-based
random forest classifiers, followed by PCA and ROC analyses. This analysis confirmed that all samples
were correctly classified (Figure 5A,B). The ROC curve revealed that the 249-DMEGs classifier had an
AUC value of 0.989 (p = < 0.0001, Figure 5C), while the 297-DMSs classifier had an AUC value of 0.968
(p = < 0.0001, Figure 5D). Confirming the existence of differential methylation and expression in “EGFR
Wild Type/Low PD-L1 expression” NSCLC samples relative to controls. To explore the potential role of
DMEGs in the occurrence and development of “EGFR Wild Type/Low PD-L1 expression” NSCLC,
we divided the identified DMEGs into upregulated (78 DMEGs) and downregulated (171 DMEGs)
groups. Metascape, the free gene annotation web tool, was employed to conduct pathway enrichment
analysis. It was showed that upregulated DMEGs were mainly enriched in development-related
signaling pathways such as skin development, morphogenesis of an epithelium, embryonic skeletal
system morphogenesis, structural molecule activity, and dorsal/ventral axis specification (Figure 6A).
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Similarly, downregulated DMEGs were also enriched in several development-related pathways,
such as blood vessel morphogenesis, embryonic morphogenesis, endothelium development, regulation
of erythrocyte differentiation, and mesenchyme development (Figure 6B). It was worth noting
that downregulated DMEGs were also highly enriched in immune-related pathways, including
leukocyte activation involved in immune response, granulocyte migration, T cell mediated immunity,
graft-versus-host disease, suggesting that downregulated DMEGs were involved in regulating immune
responses of “EGFR Wild Type/Low PD-L1 expression” NSCLC, and even the formation of tumor
immune microenvironment (Figure 6B). Collectively, the identified DMEGs are involved in the biological
processes of the development and progression of “EGFR Wild Type/Low PD-L1 expression” NSCLC.
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TSS200, TSS1500, and gene body regions. (D–F) Histogram showing the number of four regulation
patterns between methylation and expression of “EGFR Wild Type/Low PD-L1 expression” NSCLC in
three regions.
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Figure 5. Prediction of “EGFR Wild Type/Low PD-L1 expression” NSCLC by DNA methylation
and gene expression pattern. (A,B) Principal component analysis (PCA) analysis for “EGFR Wild
Type/Low PD-L1 expression” NSCLC and normal samples by the 249-DMEGs and 297-DMSs predictors,
respectively. (C,D) Receiver operating characteristics (ROC) displaying the classification accuracy of
249-DMEGs predictor and 297-DMSs predictors, respectively.

3.6. Construction and Evaluation of DMEGs-Based Prognostic Signature

To evaluate the prognostic power of the DMEGs in “EGFR Wild Type/Low PD-L1 expression”
NSCLC, we constructed a DMEG-based prognostic model using LASSO regression. In this analysis of
gene expression and survival data of 249 DMEGs, 200 rounds of random sampling, 80% of samples
being taken each time, were performed. Next, results of each sampling were subjected to LASSO
regression analysis, triple cross-validation to summarize dimensionality reduction results of each
round, and counting of the number of occurrences of each probe in 100 rounds. Finally, 4 candidate
DMEGs (PLCXD3, BAIAP2L2, NPR3 and SNX10), with frequencies ≥10 rounds, were selected and
used to develop the prognostic model (Figure 7A,B). KM analysis revealed that all 3 genes (BAIAP2L2,
NPR3, SNX10), except PLCXD3, accurately split the training set into 2 groups—high- and low-risk
(Figure 7B, Table 2). The RiskScore formula used was as follows:
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RiskScore4 = 0.022 × expBAIAP2L2 + 0.011 × expNPR3
− 0.102 × expPLCXD3 + 0.017 × expSNX10

Table 2. 4-DMEGs based signature.

Symbol Coef HR p Value Low 95% CI High 95% CI

BAIAP2L2 0.022 1.023 0.000 1.011 1.035
NPR3 0.011 1.011 0.042 1.000 1.023

PLCXD3 −0.102 0.903 0.222 0.768 1.063
SNX10 0.017 1.017 0.013 1.004 1.031
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of genes in each gene set. The proportion of shared genes between genomes is indicated by the line
thickness between nodes.
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RiskScore distribution, survival status, and expression profile of the 4 prognostic DMEGs signatures
in the training cohort are shown on Figure 8A. This analysis revealed that samples with a high RiskScore
have significantly lower OS relative to those with a low RiskScore. Elevated levels of BAIAP2L2,
NPR3, and SNX10, were associated with high risk, highlighting them as risk factors. While elevated
PLCXD3 levels correlated with low risk, suggesting it is a protective factor. ROC analysis of RiskScore
for prognostic classification, using the R package timeROC, revealed that our prognostic model has a
high area under the AUC line, with the AUCs for predicting 1-, 3-, and 5-year OS being 0.67, 0.66, 0.68,
respectively (Figure 8B). Finally, Zscore analysis of RiskScore was used to categorize samples with
scores > 0 into the high-risk group and those with < 0 into the low-risk group. Then, 56 samples were
classified into high-risk group and 77 samples into low-risk group. KM analysis revealed significant
survival differences in the 2 groups (log rank p = 0.0017, HR = 1.78) (Figure 8C).

To assess the predictive value of this 4-DMEG-based signature, the RiskScore formula was applied
to external validation set (GSE31210) and analysis was performed as in the training set. SNX10 was
identified as risk factor and PLCXD3 as a protective factor (Figure S2A). AUCs for predicting 1-, 3-,
and 5-year OS in the validation cohort were 0.51, 0.65, and 0.67, respectively (Figure S2B). 101 samples
were classified as high-risk and 125 samples as low-risk. KM analysis revealed significant survival
differences between high- and low-risk groups (log rank p = 0.037, HR = 1.48) (Figure S2C).
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3.7. Multiple DMEGs Are Potential Druggable Targets

To explore whether there are any available drugs targeting DMEGs, NetworkAnalyst 3.0 was
employed for protein–drug interaction analysis of up-regulated DMEGs using data from DrugBank.
Protein products of 9 DMEGs were identified as drug interacting (Table 3). The majority of
these, including XDH (Xanthine Dehydrogenase) [35,36], ATIC (5-Aminoimidazole-4-Carboxamide
Ribonucleotide Formyltransferase/IMP Cyclohydrolase) [37], CA9 (Carbonic Anhydrase 9) [38],
SLC7A11 (Solute Carrier Family 7 Member 11) [39], and GAPDH (Glyceraldehyde-3-Phosphate
Dehydrogenase) [40] are implicated in tumorigenesis. XDH, which encodes for xanthine dehydrogenase,
has been reported to be highly expressed in a lung adenocarcinoma (LUAD) subtype associated with
poor survival [36]. In our analysis, XDH was hypomethylated in TSS200 and gene body, and was
associated with up-regulated gene expression. We identified 9 candidate drugs targeting XDH.
XDH inhibitors may be purine analogs e.g., allopurinol and oxypurinol, or non-purine agents,
e.g., topiroxostat. The antitumor effects of allopurinol in NSCLC cell lines have been recently described,
as well as a 6-gene signature for allopurinol-sensitive and allopurinol-resistant NSCLC cell lines [36].
Eniluracil, an orally active dihydropyrimidine dehydrogenase (DPD) inhibitor that enhances activity
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of chemotaxic agents, also emerged as a drug for XDH. Eniluracil has been shown to improve
5-fluorouracil (5-FU) efficacy by minimizing its side effects and/or making it orally available [41].
ATIC encodes a bifunctional protein that catalyzes the final 2 steps of de novo purine biosynthesis
and has been reported to interact with ALK [37]. In this study, ATIC was hypomethylated in
gene body and was associated with up-regulated gene expression. Of the 7 drugs found to target
ATIC, pemetrexed is commonly used in NSCLC chemotherapy [42]. CA9 specifies a zinc-containing
glycoprotein and has been implicated in tumorigenesis [38]. In the present study, it was identified to
be hypermethylated in gene body but was related with up-regulated gene expression. Of the 6 drugs
targeting CA9, benzthiazide [43], hydroflumethiazide [44], WX-G250 [45], and ellagic acid [46] have
shown antitumor properties. SLC7A11 encodes the light chain subunit of cystine/glutamate antiporter
system xc—and is involved in glutamine metabolism. This gene has been shown to modulate glucose
and glutamine dependency in cancer cells [47]. In this analysis, SLC7A11 was hypomethylated in
gene body and was related with up-regulated gene expression. Of the 5 drugs targeting SLC7A11,
riluzole, a noncompetitive metabotropic glutamate receptor 1 (mGluR1) antagonist, and sulfasalazine,
a cystine/glutamate antiporter system xc-inhibitor used to treat inflammatory bowel disease and
arthritis, have antitumor properties [48–50]. Most recently, GAPDH has been identified as a potential
prognostic biomarker or drug target of LUAD in a comprehensive proteomics analysis conducted by
Jun-Yu Xu et al. [40]. In our study, GAPDH was hypomethylated in gene body and was associated
with up-regulated gene expression, and also found as a drug interacting target. Of the 4 drugs
targeting GAPDH, thionicotinamide-adenine-dinucleotide [51] have shown potent cytotoxicity against
cancer cells.

Table 3. Nine DMEGs targeted by available drugs.

RefGene Region Relation to Island Pattern Drugs Drug Example

XDH TSS200 OpenSea HypoUp 9 Allopurinol, Eniluracil

Body OpenSea HypoUp 9 Allopurinol, Eniluracil

ATIC Body S_Shore HypoUp 7 Pemetrexed

CA9 Body Island HyperUp 6 Benzthiazide, Hydroflumethiazide,
Ellagic Acid

SLC7A11 Body OpenSea HypoUp 5 Riluzole, Sulfasalazine

GAPDH Body S_Shore HypoUp 4 Thionicotinamide-Adenine-Dinucleotide

PPIF Body S_Shore HypoUp 4 Cyclosporine, L-Proline

AKR1B10 Body OpenSea HypoUp 3 Tolrestat

MMP11 Body S_Shore HypoUp 2 Marimastat

GMDS Body Island HyperUp 2 Guanosine-5′-Diphosphate-Rhamnose,
Guanosine-5′-Diphosphate

3.8. Validation of Affinity of the Candidate Drugs by Molecular Docking Analysis

To elucidate the binding mode of the candidate drugs for their targets, molecular docking analysis
was performed. First, 3D model of SLC7A11 protein structure was predicted by the template-based
homology modeling approach with SWISS-MODEL server. Consequently, large neutral amino acids
transporter small subunit 1 (PDB ID: 6irt.1.B) was identified as ideal template for modeling as it
indicated high sequence similarity (48.63%) (Figure 9A) [52]. Ramachandran plot analysis showed
that 92.26% of the residues were present in the allowed area, demonstrating the accuracy of the
predicted SLC7A11 structure (Figure 9B). The quality of the protein structure was further refined using
molecular dynamics simulations method, and the stability of the protein model was estimated by
root-mean-square deviation (RMSD) method. As shown in Figure 9C, the RMSD profile displayed the
result of molecular dynamics of SLC7A11 model, identifying the final structure of SLC7A11 tended to
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be stable. The binding modes of targets and their drug candidates were analyzed by Autodock Vina
v.1.1.2, and the binding energy for each target-drug interaction was generated (Figure 10 and Figure S3,
Table 4). Results demonstrated that each drug candidate bound to its protein target primarily through
strong electrostatic and hydrogen-bonding interactions. Furthermore, the active site of each target was
occupied successfully by the candidate drugs. The binding energy for ATIC-Pemetrexed complex is
−9.1 kcal/mol, and for GAPDH-Thionicotinamide-Adenine-Dinucleotide complex is −9.6 kcal/mol,
indicating highly stable binding (Table 4).

Table 4. Binding Energy for targets with their drugs.

Target Drug Binding Energy (kcal/mol)

XDH Allopurinol −6.0
XDH Eniluracil −5.8
CA9 Benzthiazide −7.0
CA9 Ellagic-Acid −7.1
CA9 Hydroflumethiazide −6.2
ATIC Pemetrexed −9.1

GAPDH Thionicotinamide-Adenine-Dinucleotide −9.6
SLC7A11 Sulfasalazine −9.8
SLC7A11 Riluzole −7.2
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of 100 ns.



Cancers 2020, 12, 2496 17 of 25
Cancers 2020, 12, x 17 of 25 

 

 

Figure 10. Binding mode of screened drugs to their targets by molecular docking. (A) Binding mode 
of XDH-Allopurinol complex. (B) Binding mode of ATIC-Pemetrexed complex. (C) Binding mode of 
CA9-Benzthiazide complex. (D) Binding mode of SLC7A11-Riluzole complex. (E) Binding mode of 
GAPDH-(Thionicotinamide-Adenine-Dinucleotide) complex. (i), Cartoon representation, overlay of 
the crystal structures of small molecule compounds and their targets were illustrated by Molecule of 
the Month feature. (ii), 2D interactions of compounds and their targets. (iii) 3D structures of binding 
interface were showed by PyMOL software. 

Figure 10. Binding mode of screened drugs to their targets by molecular docking. (A) Binding mode
of XDH-Allopurinol complex. (B) Binding mode of ATIC-Pemetrexed complex. (C) Binding mode of
CA9-Benzthiazide complex. (D) Binding mode of SLC7A11-Riluzole complex. (E) Binding mode of
GAPDH-(Thionicotinamide-Adenine-Dinucleotide) complex. (i), Cartoon representation, overlay of
the crystal structures of small molecule compounds and their targets were illustrated by Molecule of
the Month feature. (ii), 2D interactions of compounds and their targets. (iii) 3D structures of binding
interface were showed by PyMOL software.
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4. Discussion

Patients with “EGFR Wild Type/Low PD-L1 expression” lung cancer lack a first-line single drug
therapy as they hardly respond to TKIs and immune checkpoint inhibitors. Although response can
be improved by combining anti PD-1 antibody therapy with conventional therapies, limitation of
available drugs made it still a significant challenge for clinical practice to establish a fine balance
between toxicity and therapeutic benefit [53]. Thus, novel therapies with less harmful side effects and
better efficacy in combination are needed.

In this study, we performed an epigenome-genes association study of 133 patients from TCGA,
which was validated in independent cohorts of patients with “EGFR Wild Type/Low PD-L1 expression”
NSCLC from GEO. Compared with normal controls, “EGFR Wild Type/Low PD-L1 expression” NSCLC
patients showed poor lymphocyte infiltration and downregulation of immune checkpoint proteins,
meeting the criteria for classification as “cold” tumors [54,55]. Previous evidence has been found that
DNA hypermethylation is related to immunity and immune response to ICIs [25,56]. Notably, the gene
enrichment analysis for downregulated DMEGs involved in negatively regulating immune system
process and T cell mediated immunity pathway, indicating DNA methylation also may act as a key
role in maintaining the “cold” immune microenvironment.

Epigenetic changes have been associated with various cancers and DNA hypermethylation in CpG
islands of tumor suppressor genes has been shown to inactivate them, thereby promoting cancer [57,58].
Similarly, we found that hypermethylated DMRs in 3 regions (TSS200, TSS1500, and gene body) are
significantly higher than hypomethylated ones. Furthermore, 15 tumor suppressor genes belonging
to the HyperDown group were identified, of which CDO1 (Cysteine Dioxygenase Type 1) [59,60],
IRF8 (Interferon Regulatory Factor 8) [61], STAT5A (Signal Transducer And Activator Of Transcription
5A) [62], CFTR (CF Transmembrane Conductance Regulator) [63], ADAMTS8 (ADAM Metallopeptidase
With Thrombospondin Type 1 Motif 8) [64], WIF1 (WNT Inhibitory Factor 1) [65], GATA5 (GATA Binding
Protein 5) [66], FOXA2 (FOXA2) [67], SHISA3 (Shisa Family Member 3) [68], AXIN2 (Axin 2) [69],
DIRAS3 (DIRAS family GTPase 3) [70], IRX1 (Iroquois Homeobox 1) [71], and ITGA5 (Integrin Subunit
Alpha 5) [72] are confirmed by previous studies to be silenced via hypermethylation in lung cancer
(Tables S1–S3). Although the tumor suppressor CAMK2N1 (Calcium/Calmodulin Dependent Protein
Kinase II Inhibitor 1) has not been associated with lung cancer yet, its hypermethylation has been
shown to promote tumorigenesis in other cancers [73]. These indicated that relative to other lung cancer
types, “EGFR Wild Type/Low PD-L1 expression” NSCLC experiences more diversified epigenetic
silencing of tumor suppressors, which made its carcinogenic mechanisms more complicated.

To evaluate the influence of genomic epigenetic changes on prognosis, we evaluated the prognostic
power of DMEGs in “EGFR Wild Type/Low PD-L1 expression” NSCLC and a 4 DMEGs-based (PLCXD3,
BAIAP2L2, NPR3, SNX10) prognostic model were identified using a LASSO regression analysis model.
The biological roles of these four genes in “EGFR Wild Type/Low PD-L1 expression” NSCLCs have
not been thoroughly investigated. PLCXD3 encodes a phospholipase that hydrolyzes phospholipids
into fatty acids [74]. Its function in lung cancer is not clear yet. In our study, expression of PLCXD3
was negatively correlated with risk, indicating it can be identified as a protective factor. BAIAP2L2
(BAI1-associated protein 2-like 2) belongs to an I-BAR family and plays an important role in regulating
membrane protrusions. Lei Xu et al. found BAIAP2L2 was upregulated in lung adenocarcinoma
and acted as an oncogene in the development of lung cancer [75]. In line with their findings,
expression of BAIAP2L2 was identified positively correlated with risk and negatively associated
with OS. NPR3 (natriuretic peptide receptor 3) has been reported as one of the prognostic markers
for colorectal cancer (CRC), for which upregulation signified poor survival [76]. In the present
study, expression of NPR3 was positively correlated with risk and negatively associated with OS.
SNX10 (sorting nexin 10) belongs to SNX family and contains a PX-domain. Several studies have
revealed that SNX10 functioned as a tumor suppressor gene in progression of CRC [77,78]. Surprisingly,
in our study, expression of SNX10 was positively correlated with risk and negatively associated with
OS. This prognostic model effectively categorized training set samples into high- and low-risk classes
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and high area under the AUC effectively predicts 1-, 3-, and 5-year OS. KM analysis also revealed
significant OS differences between the high- and low-risk. Taken together, these observations indicate
that aberrant methylation significantly influences the pathogenesis of “EGFR Wild Type/Low PD-L1
expression” NSCLC, which was reflected in clinical prognosis.

Drug repurposing is a strategy for identifying new uses for approved or investigational drugs,
which can significantly reduce the cost and time to bring a new treatment to patients [79,80]. We used
DMEGs protein–drug interaction data to identify potential therapeutic candidates from DrugBank
database. Remarkably, our analysis identified the drug target GAPDH, which has just been identified
as a potential prognostic biomarker or drug target of LUAD in a comprehensive proteomics analysis
on LUAD patients [40]. Besides, we identified pemetrexed, the only drug currently approved by
the FDA for first-line use in combination with anti-PD1 antibodies against lung cancer regardless of
PD-L1 expression [7–9], which indicated that our finding drugs may enrich the library of candidates
for combination strategies based on immune checkpoint inhibitors. Riluzole, an SLC7A11 inhibitor
used to manage ALS (Amyotrophic lateral sclerosis), and sulfasalazine, which is used to treat IBD
(inflammatory bowel disease) and arthritis were also identified as potential candidates. Although not
clinically used against cancer, both have been reported to have anticancer properties. Benzthiazide
and hydroflumethiazide are used as diuretics in clinical practice and ellagic acid is also present in
fruits, including strawberries and blueberries. Importantly, these candidates are known to be low
toxicity. In this study, the binding modes of candidate drugs with the targets were further elucidated
through docking analysis, offering a rational molecular explanation. Besides, the other treatment target
rely on epigenetic signature elucidated which can be erasable by epigenetic drugs to enhance cold
tumor response to immunotherapy [25]. Such drugs, including DNA demethylating agents [81,82] and
deacetylase inhibitors, are in clinical use against some leukemias and lymphomas. Clinical trials of this
class of drugs in combination with immune checkpoint inhibitors in lung cancer treatment are also
ongoing [83].

5. Conclusions

In summary, the present study uncovered the distinct methylation-transcription characteristics
of “EGFR Wild Type/Low PD-L1 expression” NSCLC, and provided an adaptable way to identify
potential therapeutic targets, which may enrich the library of candidates for combination strategies
based on immune checkpoint inhibitors against this intractable lung cancer subtype.
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Abbreviations

ICIs: Immune checkpoint inhibitors;
NSCLC: Non-small cell lung cancer;
EGFR: Epidermal growth factor receptor;
PD-L1: programmed death-ligand 1;
DMRs: differentially methylated regions;
PLCXD3: Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3;
BAIAP2L2: BAR/IMD Domain Containing Adaptor Protein 2 Like 2;
NPR3: Natriuretic Peptide Receptor 3;
SNX10: Sorting Nexin 10;
XDH: Xanthine Dehydrogenase;
ATIC: 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase;
CA9: Carbonic Anhydrase 9;
SLC7A11: Solute Carrier Family 7 Member 11;
GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase;
TKI: Tyrosine kinase inhibitors;
PD1: Programmed death 1;
ALK: ALK receptor tyrosine kinase;
OS: Overall survival;
IDO: Indoleamine 2,3-dioxygenase;
VEGF: Vascular endothelial growth factor;
CTLA-4: Cytotoxic T-lymphocyte-associated protein 4;
LAG-3: Lymphocyte-activation gene 3;
Tim-3: T-cell immunoglobulin mucin 3;
TCGA: The Cancer Genome Atlas;
DMEGs: differentially methylated and expressed genes;
GEO: Gene Expression Omnibus;
DMSs: Differentially methylated CpG sites;
DMRs: Differentially methylated regions;
DMGs: Differentially methylated genes;
FDR: False discovery rate;
BH: Benjamini and Hochberg;
DEGs: Differentially expressed genes;
GO: Gene Ontology;
KEGG: Kyoto Encyclopedia of Genes and Genomes;
BP: Biological process;
CC: Cellular component;
MF: Molecular functions;
PCA: Principal Component Analysis;
LOOCV: Leave-one-out cross-validation;
ROC: Receiver operating characteristic;
AUC: Area under the curve;
LASSO: Least Absolute Shrinkage and Selection Operator;
TIMER: Tumor immune estimation resource;
ESTIMATE: Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data;
RMSD: Root-mean-square deviation;
TSS Transcription start sites
CD274: CD274 molecule, also known as PD-L1;
HAVCR2: Hepatitis A Virus Cellular Receptor 2, also known as TIM3;
PDCD1: Programmed Cell Death 1, also known as PD1;
PDCD1LG2: Programmed Cell Death 1 Ligand 2;



Cancers 2020, 12, 2496 21 of 25

CDO1: Cysteine Dioxygenase Type 1;
IRF8: Interferon Regulatory Factor 8;
STAT5A: Signal Transducer and Activator of Transcription 5A;
CFTR: CF Transmembrane Conductance Regulator;
ADAMTS8: ADAM Metallopeptidase with Thrombospondin Type 1 Motif 8;
WIF1: WNT Inhibitory Factor 1;
GATA5: GATA Binding Protein 5;
FOXA2: FOXA2;
SHISA3: Shisa Family Member 3;
AXIN2: Axin 2;
DIRAS3: DIRAS family GTPase 3;
IRX1: Iroquois Homeobox 1;
ITGA5: Integrin Subunit Alpha 5;
CAMK2N1: Calcium/Calmodulin Dependent Protein Kinase II Inhibitor 1;
CRC: Colorectal cancer;
SNX10: Sorting nexin 10;
ALS: Amyotrophic lateral sclerosis;
IBD: Inflammatory bowel disease
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