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Abstract

Background: Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among
individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined
analysis of genome-wide association (GWA) results from three trials of statin efficacy.

Methods and Principal Findings: Bayesian and standard frequentist association analyses were performed on untreated and
statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects
using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/
Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8
weeks). Genotype imputation was used to maximize genomic coverage and to combine information across studies.
Phenotypes were normalized within each study to account for systematic differences among studies, and fixed-effects
combined analysis of the combined sample were performed to detect consistent effects across studies. Two SNP
associations were assessed as having posterior probability greater than 50%, indicating that they were more likely than not
to be genuinely associated with statin-mediated lipid response. SNP rs8014194, located within the CLMN gene on
chromosome 14, was strongly associated with statin-mediated change in total cholesterol with an 84% probability by
Bayesian analysis, and a p-value exceeding conventional levels of genome-wide significance by frequentist analysis
(P = 1.861028). This SNP was less significantly associated with change in LDL-cholesterol (posterior probability = 0.16,
P = 4.061026). Bayesian analysis also assigned a 51% probability that rs4420638, located in APOC1 and near APOE, was
associated with change in LDL-cholesterol.

Conclusions and Significance: Using combined GWA analysis from three clinical trials involving nearly 4,000 individuals
treated with simvastatin, pravastatin, or atorvastatin, we have identified SNPs that may be associated with variation in the
magnitude of statin-mediated reduction in total and LDL-cholesterol, including one in the CLMN gene for which statistical
evidence for association exceeds conventional levels of genome-wide significance.
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Introduction

Statins are the most widely prescribed drug class for the

prevention of cardiovascular disease (CVD) and act primarily by

lowering plasma LDL-cholesterol (LDLC) [1,2,3]. Statin-induced

reductions of LDLC vary among individuals and this may reflect

genetic differences [4,5]. Variation in LDLC response has been

associated with several loci involved in cholesterol and lipoprotein

metabolism including APOE, HMGCR, PCSK9, LDLR and APOB,

but these account for only a small portion of the variance in LDLC

response [4,6,7]. Recently, a common nonsynonymous SNP in the

gene encoding the cellular motor protein KIF6 was found to be

associated with both increased CVD risk and greater statin-related

CVD risk reduction but not with lipid or lipoprotein response to

statins [8].

Genome-wide association (GWA) studies provide a more

comprehensive approach for identifying genetic loci associated

with statin response. GWA studies have identified many loci

associated with plasma lipid and lipoprotein traits, including

several not previously known to be related to lipoprotein

metabolism [9,10,11,12]. However, there is to date only one

report of GWA of lipid response to statin treatment [13]. This

involved ,2,000 participants in the Treating to New Targets

study who were treated with atorvastatin 10 mg/day for eight

weeks. However, no SNPs were identified from this analysis that

were convincingly associated with atorvastatin-mediated lipid

changes (P.161027 for all associations) [13].

The power of GWA studies to identify and convincingly

document associations of SNPs with complex traits has been

greatly enhanced by generating large data sets from combined

studies [9,10,14,15,16]. Motivated by this, we performed a

combined analysis of the three statin GWA studies currently

available to us: TNT and two previously-unpublished trials. To

deal with the fact that different studies typed different SNPs, we

used imputation methods [17,18] to infer genotypes for approx-

imately 2.5 million HapMap SNPs in all three studies [17,18,19].

To allow for systematic differences among the three statin trials,

we normalized phenotype measurements for each individual

relative to other individuals within the same study before

performing a fixed-effects combined-analysis. In addition we used

a novel Bayesian statistical approach, with a bivariate phenotype

derived from pre-statin and post-statin phenotype levels, to

simultaneously identify both statin-independent and statin-

dependent SNP associations.

Methods

Study populations
The 3,936 Caucasian individuals in these analyses had

participated in one of three statin trials, all of which have been

described previously [5,20,21].The Cholesterol and Pharmacoge-

netics (CAP) trial involved 944 healthy volunteers, 609 of whom

were Caucasian, treated for six weeks with simvastatin 40 mg/day

at two study sites (University of California, Los Angeles and San

Francisco General Hospital) [5]. Blood samples were collected for

lipid and lipoprotein analysis twice prior to treatment (screen and

entry visits) and twice while on treatment (4 and 6 weeks). There

were no significant differences between the two pretreatment

measurements or the two post-treatment measurements, and

therefore these values were averaged to obtain pre-treatment and

post-treatment values, respectively.

The Pravastatin Inflammation/CRP Evaluation (PRINCE)

study enrolled 1702 individuals with no history of prior heart

disease and LDLC .135 mg/dL, and 1182 individuals with

known cardiovascular disease (CVD)–defined as previous myo-

cardial infarction, stroke, or coronary revascularization from 1143

clinical sites across the United States (#4 participants/site).

Participants were treated with 40 mg/day pravastatin for twelve

weeks [20]. Individuals with no history of prior heart disease were

treated as part of a randomized controlled double blind study and

those with CVD history were provided with open label

pravastatin. Our analyses were not stratified by treatment group

assignment. Laboratory analyses were performed on blood

samples collected once prior to treatment, and once following

twelve weeks of treatment. 1056 participants also provided a blood

sample following twenty-four weeks of treatment. For those

individuals who provided two post-treatment samples, these values

were averaged to obtain a single post-treatment value. DNA

samples were collected from 1536 PRINCE participants including

1362 that were self-identified as Caucasian [22].

The Treating to New Targets (TNT) study followed 10,001

patients with clinically evident CHD and with LDLC 130 to

250 mg/dL at screen and #130 mg/dL following 4 weeks on

treatment [21]. CHD was defined by previous myocardial

infarction, previous or current angina with objective evidence of

atherosclerosis, or history of coronary revascularization. Lipids

were analyzed using blood samples collected once prior to

treatment and once following eight weeks of treatment. Individuals

with evidence of poor compliance, assessed on the basis of LDLC

.130 mg/dL following treatment for 4 weeks, were excluded

from analysis. 2,092 patients of European ancestry were selected

for inclusion in whole genome genotyping and these included 523

individuals who had coronary events during the trial (‘‘cases’’) and

1,569 selected ‘‘control’’ individuals who did not. Controls were

matched 3:1 to cases by ancestry, age, gender, smoking, diabetes,

hypertension, baseline glucose, and screening LDLC [13]. Of the

selected individuals, genotyping data was successfully obtained on

1,976 (call rate $80%).

Approvals for each study were obtained from the Institutional

Review Boards at participating institutions for that study and each

participant signed a statement of informed consent that provided

permission for samples to be used in future genomic studies. All

three studies measured LDLC, total cholesterol (TC), HDL-

cholesterol (HDLC) and triglycerides (Tg) in laboratories certified

by the Centers for Disease Control and Prevention (Atlanta,

Georgia).

Genotyping and Genotype Imputation
Whole-genome genotypes for CAP and PRINCE participants

were measured in two stages (henceforth referred to as Stage I and

Stage II). In Stage I, 304 CAP and 675 PRINCE participants were

genotyped for 314,621 single nucleotide polymorphisms (SNPs)

selected to tag common genomic variation in Caucasians

(HumanHap300 bead chip, Illumina, San Diego, CA). These

SNPs were derived from Phase I+II of the International HapMap

Project (www.hapmap.org) to tag common genomic variation

across individuals of European decent. This platform provides

genomic coverage in Caucasians of all Phase I+II loci of 91% for

an r2 threshold $0.5 and 80% for an r2 threshold $0.8 [23]. Our

analysis of genotyping quality, using ,18,000 SNPs contained on

the HumanHap300 bead chip, and a separate Human-1 (109,000

sites) bead chip showed a genotyping concordance rate of 99.97%.

In Stage II, 290 CAP and 687 PRINCE samples were

genotyped. This included 280 CAP and 652 PRINCE samples

(N = 932) that were genotyped at 620,901 sites using the

HumanQuad610 bead chip (Illumina), which is also designed to

tag common variation within individuals of European ancestry,

and a partially-overlapping set of 292 CAP and 634 PRINCE
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samples that were genotyped at 12,959 sites using a custom-made

iSelect chip (N = 926). The average call rate for stage II

genotyping was 99.8%. Four samples were excluded from further

analysis based on gender discrepancies. Concordance between

SNPs on the HumanQuad610 bead chip and the custom-made

iSelect chip exceeded 99.5%.

Genotyping in TNT participants was performed as described

previously [9,13]. Genotypes were assessed for 322,185 SNPs

using the Perlegen platform (Perlegen, Mountain View, CA).

Homozygous sites and SNPs with call rate ,80% were eliminated

from analysis, leaving 291,988 SNPs. Of the 2092 participants

selected for analysis based on clinical characteristics, genotyping

was performed on the 1984 with sufficient quantity and quality

DNA. Of these, genotyping on eight individuals was omitted from

analysis due to sample mishandling. For the 1976 remaining

samples, sample call rates were all .91% and the average SNP

call rate was 97.9%.

We used the genotype imputation software BIMBAM [18,19] to

infer genotypes for each individual at the approximately 2.5

million SNPs typed in the HapMap (phase II) CEU parents [23].

Imputation procedures rely on the patterns of correlation among

typed and untyped SNPs inferred from HapMap individuals to

estimate genotypes at the untyped SNPs in each individual.

Imputation has the benefits of both maximizing genomic coverage

and facilitating combined analyses of studies involving different

genotyping platforms. All analyses were limited to Caucasians.

Statistical Analysis
We analyzed data from each of four phenotypes (LDLC, TC,

Tg and HDLC) separately. For each individual there are two

measures of each normalized phenotype: one reflecting levels pre-

statin exposure (baseline, X), and one reflecting levels post-

exposure (on study, Y). The values of X and Y are derived from

extensive normalization procedures designed to eliminate the

potential for false positive associations due to systematic differences

among studies (see below). However, it may aid interpretation of

methods and results to note that in practice X is approximately the

log of the pre-statin measure and Y is approximately the log of the

post-statin measure (both centered to have mean 0).

In brief, our analyses aim to identify SNPs that are associated

with the bivariate outcome (X,Y), and to distinguish between SNPs

that affect both X and Y in the same way (which we term ‘‘statin-

independent associations’’) and SNPs that affect X and Y

differently (‘‘statin-response associations’’). (Although this defini-

tion of statin-response associations may seem natural, there are

some issues with this definition that deserve attention, as we return

to in the discussion.) To do this it is convenient to reparameterize

(X,Y) in terms of the derived ‘‘sum’’ (S) and ‘‘difference’’ (D)

phenotypes, S = Y+X and D = Y2X. Because of the 1-1

correspondence between (X,Y) and (S,D), SNPs will be associated

with (X,Y) if and only if they are associated with (S,D). But the

(S,D) parameterization is convenient because i) statin-response

associations are exactly those SNPs that are associated with D, and

ii) S and D are uncorrelated.

For each SNP and phenotype, we assessed the fit of four

different models: H0, the null model that the SNP is associated

with neither S nor D; HS, the SNP is associated with S only; HD,

the SNP is associated with D only; HS+D, the SNP is associated

with both S and D. Note that HD and HS+D correspond to statin-

response associations, whereas HS corresponds to statin-indepen-

dent associations. One might expect many previously-reported

associations between genetic variants and lipid phenotypes to fall

into this last category, providing a helpful check of the consistency

of our results with previous lipid studies not involving statin

exposure. Our overall analytic strategy is to use the fits of these

models to identify SNPs with strong evidence for association with

the bivariate outcome (S,D) (i.e. against the null H0), and then

among these most associated SNPs to assess the evidence for a

statin-response association (HD and HS+D) vs. a statin-independent

association (HS).

This bivariate approach is motivated by the expectation that

many genetic variants associated with D will also be associated

with S (since to be associated with D but not S a variant would

have to have exactly opposite effects on Y and X). For these variants,

the support for HS+D should generally be greater than the support

for HD or HS alone, and so consideration of S and D

simultaneously should improve power to detect these kinds of

associations. Note that, in particular, this includes SNPs that are

associated with post-statin phenotype (Y) but not pre-statin

phenotype (X), since these SNPs will be associated with both S

and D; similarly for SNPs associated with X but not Y. In principle

it would be possible, and probably beneficial, to consider these two

particular scenarios explicitly, rather than simply including them

in a general search for associations with S and D as we do here.

However, the correlation between X and Y complicates this

analysis, and so we do not pursue it here.

To assess the relative support for the models H0, HS, HD, and

HS+D, we used Bayesian methods [18,24,25], which have

advantages over standard frequentist approaches in this context

(reviewed in [24]). For example, from a p-value alone it is difficult

to quantify how confident one should be that a given SNP is truly

associated with phenotype (e.g. is an association with a p-value of

1028 more likely to be real or a false positive?). In contrast

Bayesian methods allow one to assess this confidence directly by

providing a posterior probability of association for each SNP. In

addition, Bayesian methods can be used to formalize ideas that

may be used informally in interpreting the results of frequentist

analyses: for example, here we use them to formalize the idea that

we may be less skeptical about an observed association with D if it

is also accompanied by an association with S.

Our Bayesian analysis involves two steps: first compute a Bayes

Factor (BF) for each of the models H0, HS, HD, and HS+D, and

then combine these BFs with prior probabilities on the models to

compute the posterior probability on each model. We now

describe each of these steps in more detail.

The BF for each model is given by the ratio of the probability of

the observed association data under that model to its probability

under H0, and provides a natural measure of the strength of the

support in the data for that model. For example, a BF of 100

indicates that the association data are 100 times more likely under

that model than under the null model. The BF for H0 is, by

definition, 1. We computed the remaining BFs as follows. Let BFS

denote the BF for association with the univariate outcome S,

computed using the method from Servin and Stephens [18], and

BFD denote the BF for association with the univariate phenotype

D. Then the BFs for models H0, HS, HD and HS+D are 1, BFS,

BFD and BFD x BFS, assuming independence of S and D.

Intuitively this approach highlights not only SNPs with strong

associations with S (large BFS) or with D (large BFD), but also

SNPs with moderate associations with both S and D (large BFS x

BFD); this is the main difference between our analysis and a more

standard univariate analysis.

To compute the univariate Bayes Factors BFS and BFD we used

the prior D2 from Servin and Stephens [18]. This prior allows for

both an additive effect (a), and a dominance effect (d) at each SNP,

with the expected size of these two effects being controlled by

hyperparameters sa and sd respectively. To put the majority of

weight on near-additive models, while still allowing for dominant/

Genomics of Statin Response

PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9763



recessive effects, we used sd =sa/4. To deal with the fact that BFs

can be sensitive to choice of sa we averaged results over multiple

values for sa, as suggested in Servin and Stephens [18] and

Stephens and Balding [24]. Specifically we used sa = 0.05, 0.075,

0.1, 0.125, 0.15, 0.2, 0.4 (with equal weight on each). We

computed BFD and BFS using the genotype and phenotype data

from all individuals combined, and the software BIMBAM and its

ability to compute combined BFs from summary data on each

study, with posterior mean genotypes at imputed genotypes [19].

This corresponds to assuming that each SNP has the same effect in

all studies, and thus to performing a ‘‘fixed-effects’’ combined

analysis.

The posterior probabilities on each of the models H0, HS, HD,

and HS+D is then computed by combining the BFs with a prior

probability distribution on models. Specifically, the posterior

probability for each model is computed by multiplying the BF for

each model by the model’s prior probability, and then normalizing

the four resulting products to sum to 1, so that the posterior

probabilities on the 4 models sum to 1. In symbols, the posterior

probability for model i is given by posteriori = BFi 6 priori/

Sj BFj 6 priorj. We used the prior probability distribution:

Pr(H0) = 121024, Pr(HS) = 0.961024, Pr(HD) = 0.0161024,

Pr(HS+D) = 0.0961024. These prior probabilities were chosen to

i) place overall prior 1024 on any kind of association for each SNP

with a given phenotype, in line with previous suggestions

[24,26,27]; ii) be substantially more skeptical about associations

with D than with S (overall prior on being associated with

D = 1025, compared with approximately 1024 on S), and iii) be

less skeptical about an association with D if it is also accompanied

by an association with S. Posterior probabilities can be sensitive to

this choice of prior, particularly posterior probabilities that are not

very close to 0 or 1; see Discussion for more on sensitivity. The

posterior probabilities on models summarize the overall support

for each model, taking account of both the association data and

prior beliefs regarding the relative plausibility of the four models.

Using these posterior probabilities it is straightforward to assess the

overall evidence against the null hypothesis H0 (using the sum of

the posterior probabilities on HS, HD and HS+D), and furthermore

to partition this overall evidence into evidence for statin-

independent associations (posterior probability on HS) vs. statin-

response associations (sum of the posterior probabilities on HD and

HS+D).

To allow our results to be more easily compared with standard

frequentist analyses, we also used linear regression with S (and

respectively D) as the response variable, assuming an additive

genetic model at each SNP, to compute p-values for each SNP

against the null hypothesis that the SNP is unassociated with S

(and respectively D). We report p-values without adjustment for

multiple comparisons.

To deal with systematic differences in study population and

protocols, we normalized phenotype measurements within each

study. Normalized phenotypes for LDLC, TC, Tg and HDLC

were derived from raw pre-statin and post-statin measurements

following a four-step procedure. First, to limit the influence of

outliers, pre-statin and post-statin measurements were rank

transformed to a standard normal distribution within each data

set (CAP-Stage I, CAP-Stage II, PRINCE-Stage I; PRINCE-Stage

II; TNT). Second, derived sum and difference phenotypes (S and

D above) were computed from these rank-transformed values.

Next, values of S and D were corrected for covariates (log(BMI),

age, sex, and smoking status) within each dataset using ordinary

least squares regression. Finally, covariate-corrected values of S

and D were again rank transformed to normal distributions within

each dataset (note that any induced non-zero correlation between

the transformed S and D was always negligibly small). We note

that within each study the logs of each of the raw lipid measures

(both pre- and post- statin) are approximately normally distribut-

ed, and so the end result of this extensive normalization is similar

to (but not identical to) what would have been obtained by the

simpler approach of working with the log-transformed phenotype

values, and not performing the rank transformations to normal

distributions. We used the rank (rather than log) transformations

both to limit the effects of any deviations from normality (e.g.

outliers) in the log-transformed phenotypes, and, more important-

ly, to ensure that there are no distributional differences in tested

response variables among studies, so that any differences in allele

frequencies among the study samples will not cause spurious

associations.

Results

The characteristics of the three study populations are described

in Table 1. Although there are clear differences in clinical

characteristics across these populations, our normalization steps

should have ensured that systematic differences will not cause false

positive associations. However, cryptic population stratification

within studies could still cause spurious associations [28]. To assess

this, we compared the overall distribution of p-values for each

Table 1. Description of Study Populations.

PARC Populations

CAP PRINCE TNT

N 592 1360 1976

Gender, N males 313 (52.7%) 1044 (76.9%) 1622
(82.1%)

Age 54.4612.7 64.7613.0 62.468.3

BMI 27.765.5 29.065.3 29.064.6

Primary CVD (# subjects) 0 (0%) 843 (61.9%) 486 (24.6%)

Smoking (# subjects) 81 (13.6%) 183 (13.4%) 367 (18.6%)

Systolic BP 123.1616.8 133.4617.3 132.3617.3

Diastolic BP 70.769.8 79.0610.1 77.969.6

Total Cholesterol

Untreated 212.2635.1 215.3638.6 245.2629.1

Treated 153.4627.1 173.5636.2 174.2622.5

Change 258.861.0 241.860.8 271.160.5

LDLC

Untreated 133.0631.7 131.6629.1 161.8622.8

Treated 76.8622.5 97.7626.6 97.4616.0

Change 256.260.9 233.860.6 264.460.4

Triglyceride

Untreated 127.7666.9 200.36131.9 208.7697.1

Treated 104.4665.1 165.16116.6 156.4671.5

Change 223.761.8 235.362.6 252.461.4

HDLC

Untreated 53.8616.3 36.7610.3 46.8610.4

Treated 56.0617.0 38.5610.6 45.7610.0

Change 2.360.2 1.860.2 21.160.1

Abbreviations: CAP, Cholesterol and Pharmacogenetics trial; PRINCE, Pravastatin
Inflammation/CRP Evaluation trial; TNT, Treating to New Targets trial.
doi:10.1371/journal.pone.0009763.t001
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tested response (sum, S, and difference, D, for LDLC, TC, Tg and

HDLC) with a uniform distribution. QQ plots (Figure S1) showed

generally good agreement except in the tail where deviations are

expected due to genuine associations. Genomic control inflation

factors ranged from 0.99 to 1.03 [29]. In addition, preliminary

analyses of the CAP and PRINCE studies that used Principal

Components Analysis (PCA) to correct for latent population

structure [30] produced similar results to analyses without PCA

correction (results not shown). Thus cryptic population stratifica-

tion does not appear to have a substantive impact on association

results in this case.

Table 2 shows regions harboring SNPs that were most strongly

associated with sum and/or difference phenotypes from our

analysis. This table includes all regions that contained a SNP with

.50% posterior probability of being genuinely associated with a

phenotype (i.e. ,50% posterior probability assigned to H0), and

associations are presented for the SNP within each region that

demonstrated the strongest evidence for association. More

comprehensive results are provided in Tables S1, S2, S3, S4,

and S5.

The majority of these putative associations appear to be

independent of statin treatment: 8 of the 11 have #4% probability

of being associated with the difference phenotype D (with or

without an accompanying association with the phenotype sum, S).

Of these 8 loci, five involve previously-reported associations that

have been robustly replicated: HDLC associations with SNPs in or

near the genes encoding cholesteryl ester transfer protein (CETP),

hepatic lipase (LIPC), and lipoprotein lipase (LPL); triglyceride

associations within the region containing apolipoprotein A5,

APOA5; and an LDLC association with SNPs located in the

CELSR2/PSRC1/SORT1 region of chromosome 1 [11,16,31]. Of

the other 3 statin-independent associations, the association of

triglyceride with rs9644568, located near LPL, and rs1883025,

located in ABCA1, seem the most likely to be genuine, based on the

known functions of these genes [32,33].

Our analyses also identified associations with the statin-

mediated difference trait. The strongest signal for such an

association was between statin-induced change in TC and SNPs

within introns 1–2 of the gene encoding calmin (CLMN). This

region of chromosome 14 has not been previously related to lipid

or lipoprotein traits. Multiple SNPs in this region showed

association with this trait in both Bayesian and Frequentist

analyses (Figure 1). The most strongly-associated SNP was

rs8014194. Our Bayesian method assessed this SNP to have an

84% posterior probability of being genuinely associated with

statin-mediated change in TC (77% probability of association with

both D and S; 7% probability of association with D alone).

Consistent with this high posterior probability, the frequentist test

Table 2. Top variants associated with difference or sum traits for LDLC, total cholesterol, triglyceride, or HDLC.

SNP Posterior Probability P-value MAF* Chr Nearest Genes

H0 HS HD H(S+D) Sum Diff Gene Symbols (Distance from variant, kb)

Total Cholesterol

rs8014194 0.16 ,0.01 0.07 0.77 0.06 1.961028 0.24
0.24/0.24/0.25

14 CLMN (0) FLJ45244 (74) DICER1 (97)

LDLC

rs4420638 0.30 0.36 ,0.01 0.34 6.361027 4.261023 0.19
0.19/0.20/0.20

19 APOCI (0) APOE (10) TOMM40 (16)

rs646776 0.04 0.92 ,0.01 0.04 3.761028 0.20 0.19
0.18/0.20/0.20

1 CELSR2 (0) PSRC1 (4) SORT1 (34)

rs7633531 0.13 0.84 ,0.01 0.03 1.461027 0.37 0.18
0.19/0.17/0.19

3 C3orf53 (211) ZCWPW2 (262) LOC131572 (300)

Triglyceride

rs1260326 ,0.01 0.83 ,0.01 0.17 5.0610215 2.661022 0.45
0.46/0.44/0.45

2 GCKR (0) LOC729823 (11) FNDC4 (13)

rs964184 ,0.01 0.99 ,0.01 0.03 1.9610214 0.46 0.14
0.14/0.14/0.14

11 ZNF259 (0) BUD13 (5) APOA5 (11)

rs9644568 0.06 0.90 ,0.01 0.04 4.561028 0.47 0.11
0.11/0.10/0.11

8 SLC18A1 (74) LPL (104) ATP6V1B2 (126)

rs1883025 0.35 0.63 ,0.01 0.02 6.461027 0.35 0.24
0.23/0.24/0.24

9 ABCA1 (0) NIPSNAP3B (128) NIPSNAP3A (142)

HDLC

rs247616 ,0.01 0.98 ,0.01 0.02 2.5610232 0.45 0.32
0.32/0.32/0.33

16 CETP (6) HERPUD1 (12) SLC12A3 (42)

rs4775041 0.01 0.96 ,0.01 0.03 1.061028 0.86 0.25
0.26/0.24/0.26

15 LIPC (49) LOC441726 (181) AQP9 (197)

rs1011685 0.02 0.95 ,0.01 0.03 2.161028 0.58 0.12
0.12/0.12/0.13

8 LPL (6) INTS10 (121) SLC18A1 (172)

Table includes all regions with strong evidence for association with traits (posterior probability ,0.5 for no association). For each region, the SNP with the strongest
evidence for association is displayed. H0: null model; HS: sum model; HD: difference model; H(S+D): sum and difference model. SNPs associated with difference traits (HD

or H(S+D)) are in bold. P-values are uncorrected for multiple testing. Abbreviations: SNP, single nucleotide polymorphism; Diff., different trait; MAF, minor allele
frequency; Chr., chromosome.
*MAF listed for total population and then for each individual study (TNT/PRINCE/CAP).
doi:10.1371/journal.pone.0009763.t002
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for the null hypothesis of no association between this SNP and the

difference phenotype D yielded a p-value of 1.961028. This SNP

was less strongly associated with change in LDLC (posterior

probability of association = 0.16; P = 3.961026). Examining this

SNP’s association with the TC difference trait separately within

each of the three studies, we observed the strongest association

signal in TNT (TNT P = 1.261026; PRINCE P = 4.861023; CAP

P = 0.16, Table S2). On average across studies, carriers with two

copies of the minor allele of rs8014194 had 3.0% smaller

reductions in total cholesterol than did noncarriers, and variation

at rs8014194 explained 1% of the variance in statin-induced

changes in total cholesterol.

In addition, the Bayesian analysis yielded two other SNPs

showing moderate evidence for being associated with statin-

induced phenotype changes. The SNP rs4420638, located in the

APOC1 gene and near APOE, was assigned a 34% posterior

probability of association with statin-induced change in LDLC.

Variation at the APOE locus has been associated with statin-

mediated lipid response in several studies [4,13]. In addition

rs1260326 located in GCKR, was assigned a 17% probability of

being associated with statin-induced change in triglyceride. These

two putative SNP associations with response phenotypes were

highlighted much more strongly in the Bayesian analysis than in

the frequentist analysis. The p-values for associations with

difference traits of these 2 SNPs were 0.0042 and 0.026

respectively, which puts them well down the list of the top

associations. This difference in results between the two methods

occurred because both of these SNPs showed an appreciable

association with the sum trait, S. In this situation, the Bayesian

approach upweights such SNPs because it reinforces the idea that,

for a SNP associated with S, a modest association with D is more

likely to be genuine than it would be for a SNP that is unassociated

with S.

Besides the strongest associations reported here, there were

many more variants that showed non-trivial, although far from

conclusive, evidence for association with statin response. Two

variants were assigned between 10% and 50% probability of being

associated with statin-mediated changes in LDLC (Table S1B):

rs1431005 located on chromosome 4 (Posterior probability

= 0.13, P = 1.861027) and rs13390159 located on chromosome 2

(Posterior probability = 0.17, P = 2.161027). Both of these

variants were less strongly associated with total cholesterol change

(Table S1A) and both are located in genomic regions that contain

putative genes of unknown function. In addition, two SNPs were

assigned 10–50% probability of being associated with statin-

mediated change in triglyceride (Table S1C). The SNP rs7584099

was assigned a 22% posterior probability of association with statin-

induced change in triglyceride (p = 5.461027). This SNP is located

124 Kb from the ACVR2A gene (activin A receptor, type IIA),

which is a serine/threonine kinase receptor that binds activin and

appears to play a role in cellular differentiation and proliferation

[34]. The SNP rs174583 was assigned a 10% posterior probability

of association with statin-induced change in triglyceride (p = 0.01).

This SNP, located in the fatty acid desaturase (FADS) gene cluster

on chromosome 11 has been identified as strongly associated with

baseline triglycerides and HDLC in many studies and was

associated with HDLC within this study with a posterior

probability of 17% (P = 6.861026, Table S1D) [12,31].

Finally, we identified some variants with less strong associations

that are near biologically plausible genes. For example, one of the

most significant associations with total cholesterol response was a

variant located on chromosome 2 near the gene encoding insulin

induced gene 2 (INSIG2). INSIG2 is involved in sterol-dependent

SREBP-mediated regulation of cholesterol metabolism and

INSIG2 has previously been identified within mouse models as a

susceptibility gene for total cholesterol [35,36]. Within this

genomic region, the strongest evidence was for association of

rs11673900, located 9 kb downstream of INSIG2 (Table S2A).

This SNP was assigned a 5% posterior probability of association

with statin-mediated change in total cholesterol (P = 5.561026).

Discussion

The genetic contribution to variation in lipid-lowering response

to statin treatment appears to be influenced by multiple loci with

small individual contributions that are compounded when jointly

inherited. Although several loci have been identified in association

with statin efficacy using the candidate gene approach, the

combined contribution of these genotypes explains a relatively

small proportion of the variation in statin LDLC-lowering efficacy

[4,6]. GWA analysis of lipid-lowering response to statin treatment

has previously failed to identify novel loci [13] but the statistical

power to detect associations was limited by sample size. To address

this issue, we have performed a combined analysis on the three

statin GWA studies that are currently available. Because each of

the three trials tested a different statin, this analysis was specifically

designed to identify genetic variation that is associated with statin

class effects.

Among the associations identified by our analysis, the most

intriguing is the association of rs8014194 with changes in total

cholesterol in response to statin treatment. When we examined the

association between rs8014194 and change in total cholesterol

separately for each trial (TNT, PRINCE, CAP), we observed the

strongest association within TNT. While differential ability to

detect this association may reflect differences in statistical power

across these three studies based on sample size, it may also reflect

differences in pharmacological properties (e.g., dose response or

statin) or differences in biological mechanism (e.g., lipoprotein

homeostasis). This SNP was also less strongly associated with LDL-

Figure 1. Posterior probability of association with statin-
mediated difference trait for total cholesterol at chromosome
14 region. Gene structure indicated below graph. rs8014194, located
in CLMN intron 1, was the most significantly associated variant.
doi:10.1371/journal.pone.0009763.g001
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cholesterol reduction. SNP rs8014194 is located on chromosome

14 within intron 1 of the gene encoding calmin, CLMN. The

function of calmin is unknown but the protein sequence contains a

calponin-like binding domain that is expected to have actin-

binding activity [37]. Calmin is highly expressed in several tissues

including liver and adipose tissue [38]. Full-length calmin contains

a putative transmembrane domain and appears to be localized to

the endoplasmic reticulum [37]. Several CLMN alternative splice

variants encode isoforms that lack the transmembrane domain and

appear to be localized to the cytosol [37].

Calmin has not previously been implicated in cholesterol or

lipoprotein metabolism nor has CLMN variation been associated

with any metabolic traits. As a result it is natural to question

whether the observed association is likely to be genuine. Our

Bayesian analysis assessed the posterior probability of this

association being genuine to be 84%. This figure is sensitive to

prior assumptions about how likely each individual SNP is to be

associated with each statin response trait. Our analysis assumed

this to be 1 in 105, corresponding to an a priori assumption that

approximately 25 SNPs out of the 2.5 million tested would be

genuinely associated with statin response for each phenotype. The

data seem broadly consistent with this prior assumption, in that

the posterior expected number of such associations ranged from 19

(for HDLC) to 26 (for Tg). However, the data may also be

consistent with more conservative assumptions. If one were to

select a more conservative prior assumption of 1 in 56105

(implying approximately 5 genuinely associated SNPs) then the

posterior probability for rs8014194 being genuinely associated

with total cholesterol response decreases to approximately 50%.

Conversely, if one is less skeptical and increases the prior by a

factor of 4 (i.e. 100 genuinely-associated SNPs), the posterior

increases to over 95%. In a frequentist analysis, degree of

skepticism is reflected (implicitly or explicitly) in choice of

threshold for ‘‘genome-wide significance’’ [24,39]. In this case

the p-value for association, P = 1.961028 meets conventional

levels for genome-wide significance – for example, it is nominally

significant at the 0.05 level after a Bonferroni correction for 2.5

million tests, and exceeds the 561027 threshold used by WTCCC

in reporting ‘‘strongly associated’’ variants [26]. Thus, there is

strong evidence to support the conclusion that rs8014194 is the

first novel SNP found through GWAS to be associated with statin

response, although definitive confirmation will depend on results

from additional statin pharmacogenomic trials. In addition, we

identified several SNPs with less strong evidence for association

with lipid response to statin treatment including 2 SNPs associated

with change in LDLC (posterior probabilities 13% and 17%)

located in genomic regions containing putative genes not known to

influence lipid metabolism, and 2 SNPs associated with change in

Tg including one near ACVR2A (posterior probability 22%) and

one within the FADS locus (posterior probability 10%).

One important issue facing any study of this nature is how to

define a ‘‘drug-response association’’. Naturally, any SNP that is

associated with only post-statin levels of the phenotype, and not

pre-statin levels, would be considered a drug-response association.

However, here we have broadened this definition to include any

SNP that has a different effect on average pre- and post- statin

phenotype levels. Note that this broader definition depends on the

scale on which phenotypes are considered. For example, if we had

used the raw scale for pre- and post-statin measures, then a SNP

that decreased pre-statin levels by 2 (units) on average and

decreased post-statin levels by the same average amount would not

count as a statin-response SNP. But if we had used the log-scale for

the measures, then the same SNP would become a response

association (effectively because 2 units is a different percentage of

the average post-statin than of the average pre-statin measures).

Our rank-based transformation procedures, which were used to

provide strong safeguards against spurious associations due to

potential differences in allele frequencies among studies, could

potentially complicate interpretation. However, since these rank-

based transformations produce phenotypes that are somewhat

similar to a log-transformation, we think of our definition of statin-

response associations as roughly encompassing SNPs that have a

different relative percentage reduction in pre- and post- statin lipid

levels. It is also important to note that these definitional subtleties

apply only to SNPs that affect both pre- and post- statin levels:

SNPs that affect one but not the other would satisfy the definition

of statin-response associations whatever scale is used. Nonetheless

it remains an open question to what extent SNPs that satisfy our

broader definition of statin-response associations have a molecular

interaction with the statins themselves, or the genetic pathways

they target – but this would be true of any definition, and the fact

that most previously-identified loci associated with untreated lipid

levels do not show a strong signal for statin-response associations

suggests that our definition is a reasonable starting point.

Another issue is whether there might be other, more effective,

statistical approaches to identifying statin response associations. It

has long been recognized that simply testing groups for association

with the change (Y2X) often has low power, because this change

generally has a high variance. Our analyses attempt to mediate

this problem by instead considering the bivariate outcome (X,Y),

or equivalently (Y2X,X+Y), to identify SNPs that are strongly

associated with pre- and/or post-statin lipid levels, and then,

among these SNPs, attempt to identify the subset of SNPs that

appear to have a different effect on Y than X. Intuitively this

bivariate approach should help when compared with simply

testing (Y2X) alone, because most SNPs that are genuinely

associated with (Y2X) are expected to be associated also with

Y+X. (e.g. SNPs associated with Y alone would fall into this

category). This bivariate approach is particularly helpful to

highlight SNPs for which there is complementary evidence for

association with both untreated and response traits, as illustrated

by the relatively high posterior probabilities assigned to SNPs near

APOE and GCKR in Table 2 for association with statin-related

change of LDLC and Tg, respectively. Another source of

information that one might incorporate into these analyses to

help improve power is the increasing amount of data from other

genetic association studies identifying SNPs associated with

untreated lipid levels [9,10,12,15,16,31]. Within our Bayesian

analysis this could be easily achieved by placing a much lower

prior probability on the null hypothesis H0 for these SNPs with

prior evidence for association. However, one could also incorpo-

rate this information into a frequentist analysis: to give just a

simple example, in a standard frequentist genome scan testing

SNPs for association with (Y2X), one could use a less stringent

significance threshold for those SNPs already known from other

studies to affect untreated lipid phenotype levels. Of course, choice

of appropriate threshold is a tricky problem, and one possible

reason to prefer the Bayesian approach.

The statistical approach we have taken here differs from that

taken in previous analysis of the TNT data [13], which tested for

association between genetic variants (G) and post-statin phenotype

measures (Y), controlling for pre-statin phenotype measures (X).

While this type of analysis, sometimes referred to as ANCOVA, is

standard for identifying group treatment effects in a randomized

controlled trial, it must be applied with caution in the setting of

genetic association studies. This is because this ANCOVA test is

aimed at rejecting the null hypothesis that Y is conditionally

independent of G given X, and rejecting this hypothesis in a
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genetic association study does not necessarily imply that G is

associated with statin response. For example, if a genetic variant G

affects average pre- and post- statin lipid levels in the same way,

then by our definition it would not be a statin-response association,

but the ANCOVA test would tend to give a significant result. This

claim is easily verified by simulation (Figure S2 and File S1). Note

that the situation here is fundamentally different from a

randomized controlled trial, because the randomization is usually

designed to ensure that baseline measures (X) are unassociated

with the groups G being tested, in which case G will be associated

with the response (Y2X) if and only if it is associated with Y

controlling for X, and the ANCOVA test is preferred due to its

greater power [40]. This said, since one plausible type of statin-

response association is a SNP that is associated with Y and not X,

it would seem fruitful to take this into account in the analysis, and

with additional work this could be incorporated into our Bayesian

framework as an explicit additional hypothesis.

Finally regarding statistical methodology, we chose here to

perform a ‘‘fixed effects’’ combined analysis that assumes the effect

sizes are the same across studies, despite the fact that the studies

are clearly highly heterogeneous. We did this because we judged

that, due to limited sample size within each study, power would be

limited to detect any effects that did not appear consistent across

studies. Further, separate analyses of each study failed to yield

convincing evidence for loci with strong, but possibly different,

signals in more than one study. We note that although

heterogeneity across studies clearly results in model mis-specifica-

tion (and hence potential loss of power) under the alternative, the

null model remains unaffected by this heterogeneity (after our

normalization procedures ensuring that the phenotypes have the

same distribution in each study) and so, under the null,

heterogeneity should not cause false positive associations to be

detected by our analysis.

There were several limitations of this study. Because different

statins were tested in each of the three trials used for this combined

analysis, the results cannot be extrapolated to individual statins.

This may explain why no associations were observed with genes

involved in pharmacokinetic handling of statins. Separate analyses

of each study yielded no SNPs with high probability of being

associated with statin response phenotypes, presumably due to

limits in statistical power. There were also several major

differences in study populations across these trials, the major one

being the inclusion in PRINCE and TNT, but not CAP, of

individuals with documented CHD or CVD events. In addition,

untreated LDLC concentrations were higher in TNT than in CAP

or PRINCE, and this variation across study populations in

underlying CVD risk may influence genetic contribution to statin

response. Moreover, as noted above, to exclude individuals with

poor drug compliance, inclusion in TNT was limited to those who

achieved LDLC#130 mg/dL with atorvastatin treatment (4

weeks, 10 mg/day), and this likely led to underrepresentation of

genotypes associated with attenuated statin response. Although we

used imputation methods to maximize genomic coverage for these

analyses, this method is ultimately limited by the genomic

coverage of the underlying genotype panels. In particular,

variation at genomic regions with poor coverage, such as the

APOE locus, cannot be completely described through imputation.

Thus, the relatively modest posterior probability assigned to SNPs

near the APOE locus in this case may reflect the relatively small

number of individuals for whom genotypes were measured. In

addition, the SNPs at the HMG-CoA reductase (HMGCR) locus

that were identified in the PRINCE and CAP populations to be

associated with statin- mediated LDLC response [7,22] were not

genotyped in HapMap and, therefore, were not represented in this

analysis. Furthermore, rarer SNPs or haplotypes that may have

large effect sizes could not be assessed. Finally a major limitation is

the exclusion of individuals not of European ancestry. Although

we have incorporated all available published pharmacogenomic

studies of statin efficacy into our combined analysis, this study is

probably still underpowered and identification of variants with

statistically meaningful association to statin efficacy will require

analyses in expanded populations once GWA data from additional

trials becomes available. Despite this, results from this and other

studies suggest that no single SNP will describe more than ,3% of

the variance observed in lipid-lowering response to statin

treatment.

In summary, using Bayesian imputation-based analysis on a

combined population derived from the three currently available

statin GWA trials, we have identified a new candidate gene,

calmin, that may modulate statin-mediated changes in total

cholesterol and LDLC. This is the first report of a variant

associated with statin efficacy that was identified by GWAS and its

validation awaits functional analyses and replication in additional

statin trials.

Supporting Information

Figure S1 Q-Q plots for sum traits (A, total cholesterol; B, LDL-

cholesterol; C, HDL-cholesterol; D, triglyceride) and for difference

traits (E, total cholesterol; F, LDL-cholesterol; G, HDL-cholesterol;

H, triglyceride).

Found at: doi:10.1371/journal.pone.0009763.s001 (9.78 MB TIF)

Figure S2 Simulated illustration of behavior of the ANCOVA

test when applied to SNPs that have the same effect on both pre-

and post- exposure measurements. (A) histogram of p values from

the ANCOVA test. (B) histogram of p values from tests of the

difference Y-X against genotype (shown for comparison only, not

to advocate this test). The R code used to produce this Figure is

given in File S1 (Supplementary Methods). The non-uniform p

values in the top plot indicate that the ANCOVA test can tend to

give significant results for SNPs that affect both pre- and post-

exposure measures in the same way. As a result, a significant

ANCOVA test does not necessarily indicate a statin-dependent

association.

Found at: doi:10.1371/journal.pone.0009763.s002 (9.41 MB TIF)

File S1 Supplementary Methods: R code to do simulations to

illustrate that ANCOVA test can produce non-uniform p values

when a SNP has the same effect on both pre- and post- exposure

measurements as shown in Figure S2.

Found at: doi:10.1371/journal.pone.0009763.s003 (0.02 MB

DOC)

Table S1 Extended GWAS associations. For each trait (A, total

cholesterol; B, LDL-Cholsterol; C, HDL-Cholesterol; D, triglyc-

eride) the regions with moderate evidence for association (posterior

probability of 0.5 to 0.89 for the null hypothesis, H0) are

represented by the SNP within that region that showed the

strongest evidence for association. Associations with difference

traits are displayed in bold. H0: null model; HS: sum model; HD:

difference model; H(S+D): sum and difference model. Abbrevia-

tions: SNP, single nucleotide polymorphism; Diff., different trait;

MAF, minor allele frequency; Chr., chromosome.

Found at: doi:10.1371/journal.pone.0009763.s004 (0.11 MB

DOC)

Table S2 Single nucleotide polymorphisms (SNPs) associated

with difference or sum traits for total cholesterol with a posterior

probability greater than 1%. SNPs are listed by reference SNP

accession ID (rs#) and are ordered by chromosome number and
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location on each chromosome. Posterior probabilities calculated

by Bayesian analysis are listed for H0, HS, HD, HS+D followed by

p-values and effect sizes as calculated by frequentist statistics for

the sum and difference traits. Major and minor alleles are listed.

Abbreviations: MAF, minor allele frequency; chr, chromosome;

GENE1-3, genes closest to variant; dist1-3, distance of gene1-3 to

variant; log10BF, log(base 10) transformed bayes factor for: S, sum

trait in total population; S-TNT, sum trait in TNT population; S-

PRINCE, sum trait in PRINCE population; S-CAP, sum trait in

CAP population; D, difference trait in total population; D-TNT,

difference trait in TNT population; D-PRINCE, difference trait in

PRINCE population; D-CAP, difference trait in CAP population;

P-values from individual populations are also listed for each SNP.

A complete results list for all ,2.5 million sites is available online

at http://stephenslab.uchicago.edu/publications.html.

Found at: doi:10.1371/journal.pone.0009763.s005 (0.68 MB

XLS)

Table S3 Single nucleotide polymorphisms (SNPs) associated

with difference or sum traits for LDL-cholesterol with a posterior

probability greater than 1%. SNPs are listed by reference SNP

accession ID (rs#) and are ordered by chromosome number and

location on each chromosome. Posterior probabilities calculated

by Bayesian analysis are listed for H0, HS, HD, HS+D followed by

p-values and effect sizes as calculated by frequentist statistics for

the sum and difference traits. Major and minor alleles are listed.

Abbreviations: MAF, minor allele frequency; chr, chromosome;

GENE1-3, genes closest to variant; dist1-3, distance of gene1-3 to

variant; log10BF, log(base 10) transformed bayes factor for: S, sum

trait in total population; S-TNT, sum trait in TNT population; S-

PRINCE, sum trait in PRINCE population; S-CAP, sum trait in

CAP population; D, difference trait in total population; D-TNT,

difference trait in TNT population; D-PRINCE, difference trait in

PRINCE population; D-CAP, difference trait in CAP population;

P-values from individual populations are also listed for each SNP.

A complete results list for all ,2.5 million sites is available online

at http://stephenslab.uchicago.edu/publications.html.

Found at: doi:10.1371/journal.pone.0009763.s006 (0.67 MB

XLS)

Table S4 Single nucleotide polymorphisms (SNPs) associated

with difference or sum traits for HDL-cholesterol with a posterior

probability greater than 1%. SNPs are listed by reference SNP

accession ID (rs#) and are ordered by chromosome number and

location on each chromosome. Posterior probabilities calculated

by Bayesian analysis are listed for H0, HS, HD, HS+D followed by

p-values and effect sizes as calculated by frequentist statistics for

the sum and difference traits. Major and minor alleles are listed.

Abbreviations: MAF, minor allele frequency; chr, chromosome;

GENE1-3, genes closest to variant; dist1-3, distance of gene1-3 to

variant; log10BF, log(base 10) transformed bayes factor for: S, sum

trait in total population; S-TNT, sum trait in TNT population; S-

PRINCE, sum trait in PRINCE population; S-CAP, sum trait in

CAP population; D, difference trait in total population; D-TNT,

difference trait in TNT population; D-PRINCE, difference trait in

PRINCE population; D-CAP, difference trait in CAP population;

P-values from individual populations are also listed for each SNP.

A complete results list for all ,2.5 million sites is available online

at http://stephenslab.uchicago.edu/publications.html.

Found at: doi:10.1371/journal.pone.0009763.s007 (0.71 MB

XLS)

Table S5 Single nucleotide polymorphisms (SNPs) associated

with difference or sum traits for triglyceride with a posterior

probability greater than 1%. SNPs are listed by reference SNP

accession ID (rs#) and are ordered by chromosome number and

location on each chromosome. Posterior probabilities calculated

by Bayesian analysis are listed for H0, HS, HD, HS+D followed by

p-values and effect sizes as calculated by frequentist statistics for

the sum and difference traits. Major and minor alleles are listed.

Abbreviations: MAF, minor allele frequency; chr, chromosome;

GENE1-3, genes closest to variant; dist1-3, distance of gene1-3 to

variant; log10BF, log(base 10) transformed bayes factor for: S, sum

trait in total population; S-TNT, sum trait in TNT population; S-

PRINCE, sum trait in PRINCE population; S-CAP, sum trait in

CAP population; D, difference trait in total population; D-TNT,

difference trait in TNT population; D-PRINCE, difference trait in

PRINCE population; D-CAP, difference trait in CAP population;

P-values from individual populations are also listed for each SNP.

A complete results list for all ,2.5 million sites is available online

at http://stephenslab.uchicago.edu/publications.html.

Found at: doi:10.1371/journal.pone.0009763.s008 (0.92 MB

XLS)
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