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Abstract

Nonalcoholic fatty liver disease (NAFLD) and its pathologically more severe form, nonalcoholic

steatohepatitis (NASH), have become prevalent worldwide and carry an increased risk of devel-

oping hepatocellular carcinoma and other metabolic diseases. Diverse animal models have been

proposed to replicate particular characteristics of NAFLD and NASH and have provided signif-

icant clues to the critical molecular targets of NASH treatment. In this review, we summarize

the histopathology, pathogenesis, and molecular basis of NAFLD progression and discuss the

benchmark animal models of NAFLD/NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD)

represents a progressive liver disorder rang-

ing from simple liver steatosis to nonalco-

holic steatohepatitis (NASH), fibrosis,

cirrhosis, and ultimately hepatocellular car-

cinoma, in the absence of excessive alcohol

intake.1,2 NAFLD is becoming one of the

most alarming chronic liver diseases

because it is one of the fastest growing indi-

cators for adult liver transplantation and a

major cause of hepatocellular carcinoma.3–6

Development of NAFLD has a strong asso-

ciation with metabolic abnormalities such

as obesity, insulin resistance (IR), and

type 2 diabetes, and NAFLD itself is a

risk factor for cardiovascular disease.

Patients with NAFLD are at high risk of

dying from cardiovascular disease and

other metabolic diseases.7–9 NASH is

the pathologically more severe form of

NAFLD and is characterized by hepatocel-

lular ballooning, active hepatocellular

necrosis, and liver inflammation with the

presence of steatosis; moreover, it is associ-

ated with more rapid progression of fibrosis

and cirrhosis.10,11 Given the rapid growth

in NAFLD prevalence, further research on

the exact pathogenic mechanisms and

potential drug treatments for NASH is

imperative. Established animal models

have vividly highlighted the important

aspects of each stage of NAFLD and

provide significant clues to the critical

molecular events during NAFLD develop-

ment, which opens up new opportunities

for treatment of NAFLD in humans. This

review will summarize the pathogenesis

and molecular basis of NAFLD and

discuss the benchmark animal models

that recapitulate the histopathology

and pathophysiology associated with

human NAFLD.

Histopathology of NAFLD

and NASH

Intracytoplasmic lipid accumulation in the

form of triglycerides is an iconic feature of

NAFLD. Liver biopsy followed by histo-

logical analysis is the gold standard for con-

firming the presence and activity of

NAFLD, which is histologically diagnosed

when hepatic triglyceride accumulation

occurs in more than 5% of hepatocytes.12

Grading and staging systems for NAFLD

consider a wide spectrum of histopathology

features. In particular, semiquantitative

scoring assesses 4 major histological fea-

tures: steatosis (0–3), hepatocellular bal-

looning (0–2), inflammation (0–3), and

fibrosis (0–4).13,14 The size of fat droplets

can differ; macrovesicular steatosis is the

predominant pattern seen in NAFLD and

is characterized by large vacuoles that

occupy the whole cytoplasm and push the

nucleus to one side of the cell. Some

NAFLD patients, however, present with

multiple small lipid vacuoles in the

cytoplasm and the nucleus remains

unmoved, which is termed “microvesicular

steatosis.”15 Hepatocellular ballooning,

which refers to cells with swollen and rare-

fied cytoplasm, is a distinguishing feature of

progression to NASH.16 Hepatocellular

ballooning is often associated with

Mallory-Denk bodies, which result from

the clumping of cytokeratins and subse-

quent ubiquitination.17 Inflammation is

another remarkable feature of NASH

development. Lobular inflammation and

portal inflammation can both present in

NASH. Lobular inflammation, which is

characterized by the presence of small clus-

ters of inflammatory cells near ballooned

hepatocytes, reflects the dysregulation of

cytokine and chemokine expression in the

fatty liver.10,14,18 Portal inflammation is
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common and usually mild in NASH
patients. Increased portal inflammation is
associated with many clinical and patholog-
ic features of progressive NASH and may
be considered a marker of aggravation and
advanced disease.19 NASH patients often
develop a typical “chicken-wire” fibrosis
surrounding individual or groups of hepa-
tocytes that is termed “pericellular fibrosis.”
This finding reflects progression of NASH
and it can further spread to the portal areas
and subsequently lead to septal fibrosis and
even cirrhosis.20 Representative haematox-
ylin and eosin (H&E)-stained sections of
human NASH and murine steatohepatitis
are shown in Figure 1.

Pathogenesis and molecular basis
of NAFLD and NASH

The pathogenesis of NAFLD and the fac-
tors that promote progression from simple

steatosis to NASH are complex. Lipid accu-
mulation in hepatocytes and its interplay
with inflammatory responses, cellular
stress, and cell death are believed to be the
major factors contributing to NAFLD
development.21–24 Genetic factors and
intestinal dysbiosis are also crucial.25

Steatosis occurs whenever the rate of
import or synthesis of lipid by hepatocytes
exceeds the rate of export or degrada-
tion.26,27 Triglyceride is the most conspicu-
ous type of lipid in the livers of NAFLD
patients, so steatosis can be graded accord-
ing to the extent of triglyceride accumula-
tion. However, the triglycerides are not
hepatotoxic compared with the other types
of lipids that accumulate in the fat liver
(including fatty acids, diacylglycerol, oxy-
sterols, cholesterol, and phospholipids), so
steatosis grade or severity does not predict
hepatic injury, inflammation, or fibro-
sis.28,29 Overnutrition and particularly IR

Figure 1. Histopathological features of human and murine nonalcoholic fatty liver disease (NAFLD) and
nonalcoholic steatohepatitis (NASH) as determined by haematoxylin and eosin (H&E) staining. (a) Healthy
human liver; (b) simple liver steatosis in human; (c) human NASH with hepatocellular ballooning and
inflammation; (d) healthy murine liver (C57BL/6 mice fed a normal diet); (e) liver of obese ob/ob mice fed a
normal diet that spontaneously developed liver steatosis; and (f) liver of C57BL/6 mice fed a methionine- and
choline-deficient (MCD) diet for 4 weeks; mice developed steatosis with notable inflammation. Scale bars,
20 mm
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are closely associated with the etiology of
steatosis and provide the initiating and
propagating damage for liver injury and
resultant inflammation.30,31 Fatty acid
accumulation, in turn, exacerbates IR and
hyperinsulinemia, leading to further steato-
sis and inflammation.32–34 Overnutrition
increases free acid influx from diets and
consequent uptake by the liver, resulting
in increases in de novo lipogenesis in the
liver. Overnutrition also induces chronic
inflammation and promotes IR.35,36 IR is
tightly associated with lipid accumulation
in the liver and subsequent steatosis. IR
promotes increased efflux of free fatty
acids (FFA) from adipose tissues and over-
whelms FFA uptake by the liver because
insulin cannot suppress adipose tissue lipol-
ysis via hormone-sensitive lipase when IR
occurs.36 IR promotes lipid accumulation
in the liver primary by mediating uptake
of FFA via the scavenger receptor CD36
and uptake of free cholesterol (FC) via
CD36 and oxidised low-density lipoprotein
(ox-LDL).37 IR-associated hyperinsulinae-
mia and hyperglycaemia promote hepatic
de novo lipogenesis by upregulating the
key lipid synthesis regulator sterol regulato-
ry element-binding protein isoform 1c
(SREBP-1c) and the glucose metabolism
regulator carbohydrate response element-
binding protein (ChREBP), respectively.38

In addition, hyperinsulinaemia can directly
suppress b-oxidation of FFA.39 More
importantly, IR-associated hyperinsulinae-
mia is implicated in driving the accumula-
tion of cytotoxic lipid species such as FC
in the liver and activating the c-Jun
N-terminal kinase (JNK) signaling path-
way, resulting in mitochondrial damage
and hepatocyte injury in a process called
“lipotoxicity.”25,40 Molecules released
from damaged hepatocytes further promote
changes in signaling pathways that regulate
cellular stress (such as oxidative stress and
endoplasmic reticulum stress) and inflam-
matory responses, thus perpetuating

hepatocellular injury and subsequent cell
death and promoting NAFLD develop-
ment.41–43

An increase in the production of pro-
inflammatory cytokines, such as tumor
necrosis factor (TNF)-a and interleukin
(IL)-6, and activation of toll-like receptors
(TLR) and the NLRP3 inflammasome are
critically involved in pathophysiology of
various aspects of NASH.44,45 TLR4 links
to the activation of nuclear factor (NF)-ŒB
and macrophage recruitment in steatohepa-
titis.46 The NLRP3 inflammasome, which is
highly expressed in liver, is associated with
IL-1b release.47 These elements and their
interaction perpetuate liver damage, inflam-
mation, and fibrosis, resulting in progres-
sion of NASH (Figure 2).

Dietary and genetic animal
models of NAFLD and NASH

High-fat diet

The high-fat diet (HFD) model is a good
simulation of the modern Western diet.
The main calorie intake (energy) of HFD
is derived from fat (45% to 75%).
Animals fed with HFD can replicate the
major histopathology and pathogenesis
seen in human NAFLD. With long-term
HFD feeding, animals develop obesity,
IR, and hepatic damage.

The classic HFD model was established
in male rats and involved feeding a diet with
71% fat, 11% carbohydrates, and 18% pro-
tein for 3 weeks. A standard diet containing
35% fat, 47% carbohydrates, and 18% pro-
tein was used as the control; this diet has
the same fat content as the average US diet.
Rats fed HFD developed steatosis, IR,
mitochondrial dysfunction, and mononu-
clear inflammation, accompanied by
increased hepatic TNF-a and cytochrome
P4502E1 (CYP2E1) induction.48 Another
frequently used HFD animal model was
established in mice. Male mice (C57BL/6
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strain) that received the same HFD for up

to 16 weeks became obese and showed stea-

tosis, hepatocyte ballooning, increased

serum glucose, and decreased adiponectin,

indicating hyperglycaemia and IR.49

Similarly, our group found that male

C57BL/6 mice fed a HFD (60% fat, 20%

carbohydrates, and 20% protein) for

12 weeks developed steatosis (Figure 3a

and 3b).
HFD diets can replicate the hallmark

features of altered metabolic parameters

seen in human NAFLD but the degree of

hepatic pathology is not as severe.

Increasingly, studies use additional ele-

ments in the HFD to more closely mimic

human NAFLD, such as diets supple-

mented with fructose, cholesterol,

or both.50,51

High-fat, high-fructose diet

A significantly increased consumption of

calories from fructose-rich foods has been

confirmed to be closely associated with

development of human NAFLD and sever-
ity of fibrosis.52,53

Male mice (C57BL/6 strain) that were
fed a high-fat, high-fructose (HFHF)
diet—that is, a HFD (58 kcal% fat) supple-
mented with 42 g/L of carbohydrates
(mixed at a ratio of 55% fructose and
45% sucrose by weight) in drinking
water—for 16 weeks developed more
severe hepatic oxidative stress, increased
hepatic macrophage aggregation, and exac-
erbated liver fibrosis compared with mice
fed HFD without carbohydrate supplemen-
tation. However, both groups showed gains
in body weight and body fat mass and
increased steatosis, fasting glucose, and
IR, indicating that fructose consumption
is required for NAFLD progression.54

Fructose can promote de novo lipogene-
sis in liver, inhibits b-oxidation, and induces
hepatic insulin, which result in rapid devel-
opment of intrahepatic lipid accumulation.
Excessive consumption of fructose also pro-
motes intestinal bacterial overgrowth and
leads to hepatocellular damage, thus trig-
gering NAFLD progression.55

Figure 2. Major processes in pathogenesis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic
steatohepatitis (NASH). NAFLD is mainly associated with increased hepatic de novo lipogenesis, increased
adipose tissue lipolysis, increased efflux of dietary free fatty acids (FFAs) impaired b-oxidation and impaired
synthesis or export of very-low-density lipoprotein (vLDL). NASH is mainly associated with increased
oxidative stress, activated inflammatory responses, and increased hepatic fibrosis. IR¼ insulin resistance;
ChREBP¼ carbohydrate response element-binding protein; SREBP-1c¼ sterol regulatory element-binding
protein isoform 1c; FC¼ free cholesterol; ox-LDL¼oxidised low-density lipoprotein; CD36¼ cluster of
differentiation 36; ER¼ endoplasmic reticulum; MU¼macrophage; ROS¼ reactive oxygen species;
HSC¼ hepatic stellate cells
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High-fat, high-cholesterol diet

High cholesterol intake can induce dyslipi-
demia and IR, and it has been recognized as
a critical factor associated with hepatic
inflammation and NAFLD progression in
both animal models and humans.56–58

Male mice (C57BL/6 strain) fed a high-
fat, high-cholesterol (HFHC) diet (15% fat
and 1% cholesterol) for 30 weeks became
obese and developed more profound hepat-

ic steatosis and inflammation, as well as
typical perisinusoidal fibrosis compared
with mice fed a single HFD or high-
cholesterol diet, both of which resulted in
increased hepatic steatosis with little inflam-
mation and no signs of fibrosis. Mice fed
with HFHC diets also showed hypercholes-

terolaemia and a significant reduction in
serum adiponectin levels.57 Obese foz/foz
mice (deficient in the Alms1 gene) fed a
HFD containing different percentages
of cholesterol (0.0%, 0.2%, or 2.0%) for
24 weeks showed different outcomes. Mice
fed with 2.0% cholesterol had higher

hepatic cholesterol content and much

higher alanine aminotransferase (ALT)

levels than other groups, suggesting that

increased accumulation of free cholesterol

is associated with NAFLD progression.59

Cholesterol increases hepatic oxidative

stress and promotes hepatic apoptosis, mac-

rophage recruitment, and fibrogenesis, thus

triggering NAFLD progression.

Methionine- and choline-deficient diet

Feeding animals a methionine- and choline-

deficient (MCD) diet is a commonly used

nutritional model for NASH. MCD diets

are usually highly enriched in sucrose

(40%) and moderately enriched with fat

(10%) but deficient in methionine and cho-

line, which are essential for hepatic

b-oxidation and production of very-

low-density lipoprotein (vLDL).60

Depriving animals of methionine and cho-

line causes notable steatosis, inflammation,

hepatic ballooning, reactive oxygen species

Figure 3. Histopathological features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in
different murine models as determined by haematoxylin and eosin (H&E) and Oil-red O staining.
Haematoxylin and eosin (H&E) (a) and Oil-red O (b) stained sections of C57BL/6 mice fed a control diet or
high-fat diet (HFD) for 12 weeks; (c) H&E stained sections of C57BL/6 mice fed methionine- and choline-
deficient (MCD) diets for 4 weeks showed steatosis and inflammation compared with those fed a control
diet; (d) ob/ob mice fed a control diet spontaneously developed liver steatosis, and those fed MCD diets for 4
weeks developed steatosis with inflammation. Scale bars, 20 mm
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(ROS)-mediated liver damage, and
fibrosis.2

Hepatic steatosis can be seen within 1 to
2 weeks of MCD induction.60,61 Moreover,
mice fed with MCD diets developed exten-
sive necro-inflammation as early as 2 weeks,
and the typical chicken-wire fibrosis can be
seen as early as 6 weeks after MCD induc-
tion, similar to the presentation in human
NASH.62,63 MCD feeding also increases
serum ALT levels and induces ballooning
degeneration of hepatocytes in mice.64

Similarly, our group found that male
C57BL/6 mice fed with MCD diets devel-
oped steatosis and inflammation at 4 weeks
(Figure 3c). The severity of steatohepatitis
in MCD-fed mice is associated with
impaired hepatic adiponectin action and
adipogenic transformation of hepato-
cytes.64 The responsiveness that develops
in mice fed the MCD diet depends on sex
and strain. For example, C57BL/6 mice
exhibited more pronounced release of trans-
aminases than did DBA/2J mice, whereas
long-term MCD induction caused more
severe liver injury, even hepatocarcinogene-
sis, in DBA/2J mice, but did not result in
carcinogenesis in C57BL/6 mice.61,65 The
notable inflammation observed in MCD-
induced steatohepatitis is associated with
increased macrophage infiltration in the
liver, activation of the NF-ŒB signaling
pathway, and concomitant increases in
downstream pro-inflammatory cytokines,
such as TNF-a, monocyte chemoattractant
protein (MCP)-1, transforming growth
factor (TGF)-b, and IL-6.66–68 MCD diets
also promote induction of adhesion mole-
cules, such as intercellular adhesion mole-
cule (ICAM)-1 and vascular cell adhesion
molecule (VCAM)-1, which are essential
for polymorph recruitment.68–70

Animal models using MCD diets can
replicate the hallmark pathological features
of severe human NASH more closely than
other dietary-based animal models. The
steatosis, inflammation, and fibrosis

induced by MCD diets develop more quick-
ly than with HFD and other Western diet
models. Cellular stress, such as endoplasmic
reticulum (ER) stress, oxidative stress, and
auto-phagocytic stress, is more pronounced
in the MCD model than in other dietary-
based NAFLD models.71

However, the MCD diet model has obvi-
ous disadvantages. Mice fed MCD diets
always exhibit significant loss of body
weight and the liver decreases proportion-
ally in size, which go against effects seen in
overweight and obese individuals with
NAFLD.2,72 In addition, the metabolic pro-
file in the MCD model is opposite to that
seen in NAFLD patients: serum levels of
triglyceride, insulin, leptin, and fasting glu-
cose are dampened, whereas serum adipo-
nectin is not decreased.72 Therefore, db/db
(deficient in leptin receptor activity) or
ob/ob (deficient in leptin) mice are often
used in the MCD model to better imitate
human NASH. Findings suggest that
db/db mice fed with MCD diet for 4 weeks
show remarkable hepatic inflammation
and fibrosis.73

ob/ob and db/db mice

Leptin-deficient (ob/ob) mice, which carry
an autosomal recessive mutation in the
leptin gene, develop spontaneous liver stea-
tosis under normal chow feeding. ob/ob
mice are grossly overweight and show the
altered metabolic parameters seen in human
NAFLD, such as hyperinsulinaemia, hyper-
glycaemia, and IR.60,74,75 However, ob/ob
mice are resistant to hepatic fibrosis, given
that leptin is essential for the hepatic fibro-
genic response to liver injury.76 In addition,
the ob/ob mouse model is limited to spon-
taneous steatohepatitis unless secondary
insults are added (such as a HFD or
MCD diet or administration of small
doses of lipopolysaccharide endotoxin).77

Our group found that male ob/ob mice
(C57BL/6 strain) fed MCD diets developed
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steatosis and inflammation at 4 weeks
(Figure 3d).db/db mice are homozygous
for the autosomal recessive diabetic gene
(db), which encodes a point mutation in
the leptin receptor and leads to defective
leptin signaling.63 db/db mice are obese
and diabetic and develop macrovesicular
hepatic steatosis accompanied by hypergly-
caemia and hyperinsulinaemia.74,75 Unlike
ob/ob mice, db/db mice exhibit normal or
elevated levels of leptin but are resistant to
its effects. Similarly, db/db mice do not
spontaneously develop inflammation or
show features of NASH without further
insult.The ob/ob and db/db mice are good
genetic models of NAFLD because they
develop pronounced hepatic steatosis and
show the significant altered metabolic char-
acteristics seen in human NAFLD. db/db
mice can also be used to study the progres-
sion of steatosis to NASH in the presence of
secondary insults such as a MCD diet.
However, congenital leptin deficiency or
leptin resistance caused by gene mutations
is not prevalent in obese humans or NASH
patients, so the ob/ob and db/db mice
models are limited in their ability to reflect
the genesis of human obesity or NASH.63,78

foz/foz mice

Obese foz/foz mice, which carry a mutated
Alms1 gene, spontaneously develop hepatic
steatosis, obesity, diabetes, and IR, and
show significant upregulation of cholesterol
levels. HFD feeding can accentuate transi-
tion of simple steatosis to steatohepatitis by
aggravating metabolic abnormalities,
resulting in severe hepatocyte ballooning,
inflammation, and fibrosis, accompanied
by significant decreases in adiponectin
levels and increases in cholesterol levels.
However, despite upregulation of hepatic
triglyceride content, serum triglyceride
levels remain unchanged in foz/foz mice,
even those fed with HFD.79,80 All foz/foz
mice are obese but the severity of NASH

is strain dependent. Serum ALT levels and
NAFLD activity score were higher (worse)
in foz/foz C57BL6/J mice than in foz/foz
BALB/c mice fed with HFD. Moreover,
HFD-induced fibrosis was severe in foz/foz
C57BL6/J mice but absent in foz/foz
BALB/c mice.81

To date, diverse animal models have
been proposed to mimic particular charac-
teristics of human NAFLD, such as the
American lifestyle–induced obesity syn-
drome (ALIOS) model, the diet-induced
animal model of nonalcoholic fatty liver
disease (DIAMOND) model, and the
ldlr�/� mice model.82–84 Recently, a
murine NASH model was proposed that
showed rapid progression of extensive
fibrosis and hepatocellular carcinoma. The
model used a Western diet, which contained
high fat, high fructose, and high cholesterol,
combined with a low weekly dose of intra-
peritoneal carbon tetrachloride (CCl4). This
model captures the progressive stages of
human fatty liver disease, from simple stea-
tosis to inflammation, fibrosis, and
cancer.85 It is important to choose the
appropriate animal model to meet the
research purpose (Table 1).

Conclusion

NAFLD is becoming a worldwide issue
because of changes in lifestyle and resultant
overnutrition. Lipid accumulation in the
liver and its interplay with inflammation,
oxidative stress, cell death, and autophagy
is considered a major process of NAFLD
progression. However, the exact mecha-
nisms of NAFLD progression remain large-
ly unknown. The use of animal models to
replicate the important aspects of NAFLD
progression provides significant clues to the
critical molecular events that occur during
NAFLD development and suggests a
number of therapeutic targets for future
treatment of NAFLD. Nevertheless,
none of established animal models are
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perfect and it is important to choose the

appropriate animal model to meet the

research purpose.
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