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Abstract: The search for different life forms elsewhere in the universe is a fascinating area of research
in astrophysics and astrobiology. Currently, according to the NASA Exoplanet Archive database,
3876 exoplanets have been discovered. The Earth Similarity Index (ESI) is defined as the geometric
mean of radius, density, escape velocity, and surface temperature and ranges from 0 (dissimilar to
Earth) to 1 (similar to Earth). The ESI was created to index exoplanets on the basis of their similarity
to Earth. In this paper, we examined rocky exoplanets whose physical conditions are potentially
suitable for the survival of rock-dependent extremophiles, such as the cyanobacteria Chroococcidiopsis
and the lichen Acarospora. The Rock Similarity Index (RSI) is first introduced and then applied
to 1659 rocky exoplanets. The RSI represents a measure for Earth-like planets on which physical
conditions are potentially suitable for rocky extremophiles that can survive in Earth-like extreme
habitats (i.e., hot deserts and cold, frozen lands).
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1. Introduction

In recent years, extraterrestrial research has become the ‘holy grail’ of astrobiology. Space
missions like CoRoT (Convection, Rotation and planetary Transits) and Kepler have provided a huge
amount of data from exoplanetary observations which are catalogued in the Planetary Habitability
Laboratory, (PHL-EC, University of Puerto Rico (UPR), Arecibo, 2017, http://phl.upr.edu/projects/
habitable-exoplanets-catalogue/data/database) [1]. The PHL-EC data (as of 2018) for different planetary
objects, such as radius, density, escape velocity, and surface temperature, have been used to create
a metric index called the Earth Similarity Index (ESI) that ranges from 0 (dissimilar to Earth) to 1
(identical to Earth) [2]. The ESI allows Earth-like and potentially habitable planets (PHPs) to be
identified on the basis of the observed physical parameters of extra-solar objects.

Exoplanets can be divided into rocky planets of different sizes and gas giants. The masses of
rocky planets range from 0.1 to 10 Earth masses, while the radii range from 0.5 to 2 Earth radii [3].
Recently, Kashyap et al. [4] introduced a new technique to estimate the surface temperature of different
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exoplanets and formulated the Mars Similarity Index (MSI) for the search for extremophilic life forms
which are capable of survival in Mars-like conditions.

In 2018, Kashyap et al. [5] introduced two additional indexes: the Active Tardigrade Index
(ATI) and the Cryptobiotic Tardigrade Index (CTI). Both the ATI and CTI were designed to catalogue
exoplanets according to the potential survivability of extremophilic invertebrates (e.g., Tardigrada
(water bears)) on their surfaces. The ATI and CTI are defined as the geometric mean of radius, density,
escape velocity, surface temperature, surface pressure, and revolution, in a range from 0 to 1. This
paper focuses on rocky exoplanets with Earth-like conditions and surface temperatures varying within
a range potentially suitable for growth and reproduction of extremophilic microorganisms.

Extremophiles are organisms which are able to survive extreme physical or geochemical conditions
that are lethal, or at least harmful, to most organisms on Earth [6]. These organisms can be found in all
kingdoms of life, but most of them belong to Bacteria and Archaea. In addition, such organisms can
also be found among animals, fungi, and plants. The organisms considered to be the most tolerant
include fungi, lichens, algae, tardigrades, rotifers, nematodes, and some insects and crustaceans [7–14].
This paper focuses on two extremophiles growing on rocks: the cyanobacteria Chroococcidiopsis and the
lichen Acarospora [15,16].

Chroococcidiopsis is a photosynthetic primitive cyanobacteria growing on and below rocks
and characterized by a high potential to colonization and recolonization of extreme habitats [17].
Chroococcidiopsis is known for its tolerance of harsh conditions, including high and low temperatures,
ionising radiation, and high salinity [18]. Verseux et al. [19] proposed that Chroococcidiopsis is
an organism capable of living on Mars and potentially capable of terraforming the red planet.
Additionally, Chroococcidiopsis was used in tests involving low Earth orbit, impact events, planetary
ejection, atmospheric re-entry, and simulated Martian conditions [20–23].

Acarospora species are crustose lichens inhabiting xerothermic habitats that grow on dry rocks [24]
and tolerate harsh conditions such as low and high temperatures, high radiation, or lack of water [15,25].
Research has shown that two Acarospora species are capable of survival in a simulated Martian
environment [26].

This paper introduces the Rock Similarity Index (RSI) and calculates RSI for 1659 rocky-iron
exoplanets. The RSI is similar to the ATI and CTI (as calculated in [5]), yet differs in
that the surface temperature parameter is modified to reflect the potential survivability of
rock-dependent extremophiles.

Weight exponent calculation of Mars where the threshold value is:

V =

[
1−

∣∣∣∣∣ x− x0

x + x0

∣∣∣∣∣]wx

where wx is the weight exponent required, X0 is defined as the reference value. and Xa < X0 < Xb
(a and b are the upper and lower limits)
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lnV
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wb =
ln0.80

ln
[
1−

∣∣∣ 395−288
395+288

∣∣∣]wb = 1.3096

wx =
√

waxwb

wx =
√

3.9485x1.3096

wx = 2.26

2. Results

The RSI is designed to index Earth-like planets with physical conditions which, though harsh,
are at least potentially suitable for rock-dependent extremophiles such as Chroococcidiopsis and
Acarospora. According to Mckay [27], generally speaking, the temperature range in which extremophilic
microorganisms are able to reproduce and grow is between 258 K and 395 K. With regard to the
calculation of the RSI, the corresponding weight exponent for surface temperature was calculated to be
2.26. We calculated the RSI average weight exponents for rocky exoplanets, as shown in Table 1.

Table 1. Parameters used to calculate the weight exponents for the Rock Similarity Index (RSI) scale.

Planetary Property Reference Values for RSI Weight Exponents for RSI

Mean radius 1 EU 0.57
Bulk density 1 EU 1.07

Escape velocity 1 EU 0.70
Surface temperature 288 K 2.26

Surface pressure 1 EU 0.022
Revolution 1 Earth year 0.7

The weight exponents for the upper and lower limits appeared similar to the tardigrade indexes
of Kashyap et al. [5], with the exception of surface temperature. In order to calculate the surface
temperature of the studied exoplanets, the albedo 0.3 (similar to that on Earth) was applied as a proxy
(e.g., as seen in Table 2, for Proxima Cen b the effective temperature was 229.3 K, and the surface
temperature was 263.9 K). In order to calculate the weight exponent, the following ranges were used
for the upper and lower limits of each parameter: mean radius = 0.5–1.9 EU; bulk density = 0.7–1.5 EU;
escape velocity = 0.4–1.4 EU; surface temperature T = 258–395 K; and revolution = 0.61–1.88 EU. The
weight exponents were calculated by applying these limits in the weight exponent equation previously
proposed [5].

Table 2. RSI analysis for Mars and various sample exoplanets compared to Earth where R = radius, ρ =

density, T = surface temperature, Ve = escape velocity, P = pressure, Rev = revolution, RSII = Interior
Rock Similarity Index, RSIS = Surface Rock Similarity Index, RSI = Global Rock Similarity Index.

Planet R (EU) ρ (EU) T (K) Ve (EU) P (EU) Rev (Days) RSII RSIS RSI

Earth 1.00 1.00 288 1.00 1.00 1.00 1.00 1.00 1.00
Mars 0.532 0.713 218 0.45 0.99 0.97 0.81 0.83 0.82

Proxima
Cen.-b 1.12 0.9 263.9 0.97 0.99 0.14 0.95 0.59 0.75

GJ 667Cc 1.4 0.99 286.4 1.39 2.7 0.24 0.92 0.66 0.78
Kepler-296e 1.48 1.03 306.6 1.07 1.1 0.27 0.93 0.68 0.79

The RSI for rock-dependent extremophiles is defined as the geometrical mean of radius, density,
escape velocity, and surface temperature of exoplanets, in a range from 0 to 1, where 0 indicates
non-survival, and 1 represents survival.
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Mathematically,

RSI =
(
RSIR ×RSIρ ×RSIve ×RSITs ×RSIrev ×RSIp

) 1
6

where RSIR, RSIρ, RSITs, RSIVe, RSIrev, and RSIp represent the RSI values of radius, density, surface
temperature, escape velocity, revolution (Earth years), and pressure, respectively. The RSI of each
physical parameter is defined similarly to the ESI and is given by:

RSIx =

[
1−

∣∣∣∣∣ x− x0

x + x0

∣∣∣∣∣]wx

where x represents a physical parameter of the exoplanet (radius R, bulk density ρ, escape velocity Ve,
surface temperature Ts, pressure p, or revolution rev), x0 denotes the reference value for Earth, and wx

is the weight exponent, as seen in Table 1. Most parameters are expressed in EU (Earth units), while
the surface temperature is given in Kelvin (K).

The global RSI is divided into interior (RSII) and surface (RSIS), which are expressed as:

RSII =
(
RSIR ×RSIρ

) 1
2

RSIS =
(
RSIve ×RSITs ×RSIrev ×RSIp

) 1
4

Therefore, the global RSI is defined as

RSI = (RSII ×RSIS)
1
2

The RSI values are computed from Equations 2–5 using data from [4] for the radius, density, escape
velocity, surface temperature, revolution, and pressure, together with the surface temperature weight
exponent value of 2.26. A representative sample is shown in Table 2; the entire table is catalogued and
made available online (see [28]).

A graphical representation of rocky planets characterized according to the RSI is presented in
Figure 1.
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value for potentially habitable planets.
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The threshold (a limit for potential microorganisms survival) for rocky exoplanets that are
considered to be potentially habitable by extremophiles such as Chroococcidiopsis and Acarospora is
defined by considering Mars (on which this forms of life are able to survive [20,26]) that has an RSI of
~0.82 (for details see also calculations above).

3. Discussion and Conclusions

The search for extraterrestrial life forms has given rise to numerous space missions that
have enabled researchers to collect data, test different species of extremophiles (e.g., black fungi,
cyanobacteria, bryophytes, invertebrates) in space conditions, analyse their physiology [29] in extreme
conditions, and finally find potentially habitable exoplanets for Earth-like organisms. Space missions
which previously studied extremophiles include EXPOSE-E, EXPOSE-R2, BIOMEX, and CoRoT [30].

Up to now, Earth is the only known rocky planet which both has a developed biosphere and is
shielded by a magnetic field that protects it against harmful cosmic radiation [31]. In this analysis,
we focused on rocky exoplanets which have physical conditions similar to those of Earth or Mars.
We chose two microorganisms, Chroococcidiopsis and Acarospora, that are able to survive, grow, and
reproduce in very harsh conditions and in the absence of a planet’s magnetic field. Chroococcidiopsiswas
previously selected for colonizing tests on Mars (Russian Expose Mission) because it can grow on rocks,
produces oxygen, and tolerates high energy cosmic radiation [32]. Similarly, Acarospora was tested by
the EXPOSE-E mission for one and a half years and managed to survive in Mars-like conditions [24].

According to Kashyap et al. [4], Mars, with an ESI value of 0.73, was defined as the limit for
planets which could have physical conditions suitable for complex life forms. Based on this criterion,
approximately 44 planets have been identified as PHPs. Considering the RSI for 1659 rocky exoplanets
with a threshold of 0.82, 21 exoplanets have been found to be PHPs, where physical conditions are
suitable for extremophiles such as Chroococcidiopsis and Acarospora.

A very important factor in our analysis is the calculation of the weight exponent for surface
temperature. The weight exponents used for each physical factor allow an accurate calculation of
the ESI and RSI, so it is crucial to have the correct weight exponent. For the calculation of the RSI, a
temperature limit range from 273K to 373K was used [27], and the corresponding weight exponent for
surface temperature was calculated to be 2.26. This value corresponds to the conditions which are
potentially suitable for rock-dwelling extremophiles to survive. Subsequent space missions, such as
the James Webb Space Telescope, will provide deeper insights into potentially habitable planets and
their environments. Once the data from these missions have been combined with detailed knowledge
on environmental conditions where extremophiles are potentially able to survive, it will be possible
to identify potential physical and chemical parameters which should be present on exoplanets or
exomoons to be suitable for Earth-like organisms. The RSI proposed by us is a tool which indexes
planets that have physical conditions potentially suitable for certain Earth microorganisms. While it
is obvious that our index does not provide definitive answers, it does enable us to identify the best
candidate exoplanets or exomoons to be chosen for both further research and searches for extraterrestrial
life signatures.
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