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Pharmacometric Modeling of Liver Metastases’ Diameter,
Volume, and Density and Their Relation to Clinical
Outcome in Imatinib-Treated Patients With
Gastrointestinal Stromal Tumors

E Schindler1, SM Krishnan1, RHJ Mathijssen2, A Ruggiero3, G Schiavon2,4 and LE Friberg1*

Three-dimensional and density-based tumor metrics have been suggested to better discriminate tumor response to treatment
than unidimensional metrics, particularly for tumors exhibiting nonuniform size changes. In the developed pharmacometric
modeling framework based on data from 77 imatinib-treated gastrointestinal patients, the time-courses of liver metastases’
maximum transaxial diameters, software-calculated actual volumes (Vactual) and calculated ellipsoidal volumes were
characterized by logistic growth models, in which imatinib induced a linear dose-dependent size reduction. An indirect
response model best described the reduction in density. Substantial interindividual variability in the drug effect of all
response assessments and additional interlesion variability in the drug effect on density were identified. The predictive ability
of longitudinal tumor unidimensional and three-dimensional size and density on overall survival (OS) and progression-free
survival (PFS) were compared using parametric time-to-event models. Death hazard increased with increasing Vactual. This
framework may guide early clinical interventions based on three-dimensional tumor responses to enhance benefits for
patients with gastrointestinal stromal tumors (GIST).
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 449–457; doi:10.1002/psp4.12195; published online 5 April 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Conventional unidimensional size measurements may

not adequately detect treatment response for tumors

with nonspherical shapes or nonuniform size changes,

such as liver metastases from imatinib-treated GIST.

Instead, 3D measurements and structural density

assessments may better reflect treatment effect.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Pharmacometric models characterized the unidimen-

sional, 3D, and density responses of imatinib-treated

GIST liver metastases, and compared the predictive

ability of each metrics on OS and PFS.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Three-dimensional may be more sensitive than unidi-

mensional measurements at detecting tumor response

to imatinib. Three-dimensional changes predicted OS
slightly better than unidimensional changes, whereas
density changes had no predictive value.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� These results improve our understanding of the rela-
tionships among imatinib exposure, conventional and
alternative tumor measurements, and long-term out-
comes. They may guide early clinical decisions for
patients with GIST, and encourage the incorporation of
3D measurements in prospective clinical trials to test
their ability and value vs. unidimensional measurements
in predicting outcomes.

Efficacy assessment in cancer clinical trials and clinical prac-

tice to evaluate tumor shrinkage or vice versa development of

disease progression has been standardized through the imple-

mentation of criteria for morphological imaging measurements.

Identification of responders and nonresponders early after ther-

apy initiation is crucial to trigger treatment modification when-

ever needed. Highly sensitive methods for tumor response

quantification that correlate with clinical outcome are, therefore,

required. The most recent and widely-adopted Response

Evaluation Criteria in Solid Tumors (RECIST) are based on uni-

dimensional (1D) changes in the sum of longest diameters of

target tumor lesions, assessed by magnetic resonance imaging

or computed tomography.1,2 One question raised by the

RECIST Working Group when updating the guidelines was

whether and when functional or volumetric assessment could

supplement or potentially replace RECIST.2,3

Choi et al.4,5 proposed novel criteria combining tumor
size and density changes that reflect morphological and
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structural changes, respectively, to assess response of gas-
trointestinal stromal tumors (GIST) to imatinib, a multitar-
geted tyrosine kinase inhibitor.4,5 In imatinib-treated GIST,
the Choi criteria correlated with time-to-tumor progression
and disease-specific survival.6 Contrasting results have
been reported for different cancer types regarding the pre-
dictive value of Choi criteria on clinical outcome, such as
overall survival (OS) or progression-free survival (PFS).7–12

As tumors are three-dimensional (3D) structures, using a
single dimension might not accurately reflect tumor burden and
may underestimate shrinkage or overestimate growth, espe-
cially for lesions that are nonspherical and/or display nonuni-
form size changes during treatment, such as primary tumors13

and liver metastasis14,15 from GIST or in tumors whose main
changes occur in a plan other than axial. At the time of the
RECISTupdate in 2009 (RECIST 1.1), the lack of rigorous clin-
ical validation and of widespread access to these newer imag-
ing approaches prevented their implementation and adoption.
However, in recent years, a number of publications have dem-
onstrated the high reproducibility and interobserver reliability of
volume measurements using semiautomated tumor segmenta-
tion technique implemented in commercially available15–18 or
in-house software.19 The estimated ellipsoidal volume has
been suggested as an approximation for software-calculated
actual volume to overcome limitations related to software avail-
ability and has shown good correlation to actual volume.15,18

Moreover, for a number of cancers 3D assessments enable to
capture finer changes in tumor size,17,18 and better correlates
to long-term clinical outcome, such as OS,2,18,21 compared to
1D measurements. Such results were supported by Schiavon
et al.,15 showing that ellipsoidal volume provides a satisfactory
approximation for the actual volume of liver metastases in
imatinib-treated GIST. The 3D changes could be detected
more frequently than 1D changes after 3 months of treatment.
Moreover, volume-based criteria tended to be better associ-
ated to OS than RECIST. Noteworthy, longitudinal analysis of
tumor volume on a continuous scale are only rarely reported21;
most published results are based on landmark analyses, in
which the correlation between the often-categorized change in
tumor burden after a fixed treatment duration and clinical out-
come is investigated, resulting in a loss of information.

Pharmacometric models have proved their value in leverag-
ing data collected during clinical trials and clinical prac-
tice.22–24 They allow for characterization of the tumor
response time-course as a function of drug exposure, quantifi-
cation of interindividual variability (IIV), interlesional variability
(ILV),25 and residual variability in the response, and investiga-
tion of the relationships between longitudinal tumor size and
time-to-event outcome. In the present study, we developed a
pharmacometric modeling framework to (i) characterize the
time-course and quantify the IIV and ILV of tumor 1D, 3D, and
density response of liver metastases in imatinib-treated
patients with GIST and (ii) investigate the predictive ability of
these size and density metrics on OS and PFS.

METHODS
Study population and data
The tumor data were available from 77 patients with GIST
treated with first-line imatinib and involved in two

retrospective, noninterventional studies based on historical

data published previously.15,26 Imatinib was administered

orally at a starting dose of 400 mg (N 5 74) or 800 mg

(N 5 3) daily until unacceptable toxicity or disease progres-

sion (assessed as progressive disease by RECIST). Any

dose escalation or reduction was based on safety and effi-

cacy and recorded at routine clinical assessments. Informa-

tion on subsequent systemic therapy (e.g., sunitinib and

regorafenib) was also available. One or two liver metastases

(target lesions) per patient were retrospectively selected to

be followed on computed tomography scans performed from

initiation of imatinib treatment (baseline) and at least once

during treatment (at �3, 6, and 12 months), with a median

time for tumor follow-up of 360 days (range, 82–495 days).

Tumor 1D measurements of target lesion(s) consisted of the

maximum transaxial diameter (MTD), as per RECIST version

1.1 definition. Tumor 3D measurements of the same lesions

included the segmented volume (Vactual), calculated using

the semi-automated segmentation by “syngo computed

tomography Oncology” software version 2009E (Siemens

Medical Solutions), and the calculated ellipsoidal volume

(Vellipsoid 5 p
6 �MTD � d2 � d3, where MTD, d2, and d3 are three

orthogonal diameters).26 For plotting purposes, the spherical

volume (Vspherical 5
p
6 �MTD3) was calculated assuming that

lesions are perfect spheres. Tumor density (in Hounsfield

units [HUs]) was recorded for each lesion by measuring the

computed tomography attenuation coefficient (see Schiavon

et al.26 for details on the computation of these measure-

ments). OS and PFS data were collected for a median of 4.5

years (range, 0.79–13 years) and 3.4 years (range, 0.25–13

years), respectively, after treatment initiation. PFS was

defined as the time from first imatinib dose to discontinuation

of treatment for any reason, including disease progression

(assessed by RECIST), drug-related toxicities, or death.

Censoring was defined as loss to follow-up or nonoccurrence

of death or progression at the end of the follow-up period, for

OS and PFS, respectively. In the analysis presented here,

OS and PFS data collection was updated and closed on Feb-

ruary 17, 2015. Table 1 provides a summary of patients’

characteristics and available data. Ethical standards were fol-

lowed and approvals were obtained as described earlier.26

Tumor models
MTD, Vactual, ellipsoidal volume (Vellipsoid), and density mod-

els were developed separately before being combined into a

joint model to explore correlations and to simplify the model

structure where appropriate. Exponential IIV and ILV were

explored in all non-negative model parameters (Eq. 1).25

hi5
h � exp gi1ji1ð Þ if lesion 1

h � exp gi1ji2ð Þ if lesion 2

(
(1)

hi represents the parameter for the ith individual and h the

typical parameter value in the population. gi is the term

describing IIV, common to all lesions but specific to each

individual (gi � N 0;x2
� �

). ji1 and ji2 are the ILV terms for

lesion 1 and lesion 2, respectively, assumed to be normally

distributed with mean 0 and a common variance p2.
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Residual unexplained variability was described by additive

models on a logarithmic scale.

Maximum transaxial diameter, actual volumes, and

ellipsoidal volume models
Tumor models in which imatinib-induced tumor size reductions

were developed describe log-transformed MTD, Vactual, and

Vellipsoid data. Various tumor growth models were explored,

including exponential, zero-order, Gompertz, and logistic func-

tions.27,28 Linear, power, and maximum effect functions of

imatinib daily dose were compared to describe the dose-

response relationship. A time-dependent mono-exponential

decay in drug effect was evaluated to explain tumor regrowth

following initial shrinkage. Addition of an effect compartment

was also tested. Semiparametric distributions29 and mixture

models were investigated to describe the observed bimodal

distribution in baseline MTD, Vactual, and Vellipsoid.

Tumor density model
Indirect response models30 in which imatinib inhibits the

input or stimulates the output of density response were

investigated to describe log-transformed tumor density data,

which tended to decrease during therapy. Linear and nonlin-

ear (power, maximum effect) drug effect functions driven by

imatinib daily dose were tested. A potential delay in affecting

density changes was evaluated through the addition of an

effect compartment. A potential drug-independent increase

in density over time was assessed using time-dependent lin-

ear or nonlinear (that plateaus over time, as apparent from

some observed lesion profiles) disease progression func-

tions applied on the production rate.

Overall survival and progression-free survival models
Parametric time-to-event (TTE) models were developed to

investigate the effect of potential predictors of OS and PFS

hazards (h(t)). The baseline hazard (h0(t)) was explored

using exponential, Weibull, Gompertz, log-normal, and log-

logistic models.31 A sequential analysis similar to the popu-

lation pharmacokinetic parameters and data32 approach

was initially considered but led to model instability, prevent-

ing likelihood ratio testing. Therefore, an approach similar

to the individual pharmacokinetic parameter approach was

used,32 in which individual empirical Bayes estimates from

the final joint tumor model were used to predict individual

tumor size or density time-courses, which were then

investigated as predictors in the TTE models. Baseline pre-

dictors included patient characteristics (age and gender) and

model-predicted (log-transformed) baseline MTD, Vactual, Vel-

lipsoid, and tumor density. Time-varying predictors tested on

OS consisted of (log-transformed) model-predicted tumor

time-courses (S(t)), and absolute (dS(t)) and relative (Srel(t))

change from baseline over time, where S is MTD, Vactual, or

Vellipsoid. Additionally, relative change in size and density up

until 1.5, 3, 6, and 12 months for OS and 1.5 and 3 months

for PFS were evaluated. As the PFS definition is partly based

on MTD changes, only early size-related predictors (1.5 or 3

months) were considered in the PFS analysis to minimize

potential confounding between the predictor and the out-

come. When patients presented with two lesions, MTD, Vac-

tual, and Vellipsoid were summed across lesions, whereas

density was averaged over lesions. Predictors were evalu-

ated alone (univariate analysis) and in combination (multivari-

ate analysis). Predictors related to different size metrics were

not tested in combination, but size-related predictors could

be combined with density-related predictors. For each end-

point, a competing TTE model described censoring.

Model development and evaluation
Models were developed using the nonlinear mixed-effects

modeling software (NONMEM version 7.3).33 The first-order

conditional estimation method with interaction was used for

parameter estimation. R (version 3.1) was used for data

management and graphical analysis. Model development

and evaluation was aided by Perl-speaks-NONMEM (PsN)

toolkit (version 4.5), the R-based package Xpose (version 4),

and Pirana (version 2.9.2).34

Model performance was evaluated based on objective

function value (OFV; 22�log-likelihood) and graphical diag-

nostics. Upon addition of one parameter (1 degree of free-

dom (df)), an OFV decrease of at least 6.63 (P< 0.01) for

tumor models (repeated measures within subjects), and an

OFV of at least 3.84 (P< 0.05) for TTE models (sparser

data – single event per individual), was considered as sta-

tistically significant. Relative standard errors (RSEs) of

parameter estimates were obtained from the NONMEM

Sandwich matrix for continuous data and from the R matrix

for TTE models. The predictive performance of continuous

models was evaluated by visual predictive checks (VPCs), in

which 95% confidence intervals (CIs) of the 10th, 50th, and

90th percentiles from 1,000 simulated datasets were com-

pared to the corresponding percentiles from the observed

data. TTE models’ predictive performance was assessed by

Kaplan–Meier VPCs, in which the 95% confidence interval

based on 200 simulated datasets was compared to the

observed Kaplan–Meier curve.

RESULTS
Data
Tumor data consisted of 502 observations for each size

metrics and 496 density observations, collected from 136

liver lesions in 77 patients (maximum 2 per patient).

Lesions were numbered so that lesion 1 has the largest

MTD at baseline.

Table 1 Summary of patients’ characteristics and available data

No. of patients, total/with 2 lesions 77/60

Gender, male/female, no. (%) 47/30 (61/39)

Age at start of imatinib, years, median (range) 62 (34–83)

Imatinib starting dose, mg (n) 400/800 (74/3)

Second line of therapy and beyond (yes/no), no. (%) 35/42 (45/55)

Patients with dose escalationa, no. (%) 30 (39)

Escalated dose, mg, median (range) 800 (600–1200)

Patients with dose reductionsa, no. (%) 8 (10)

Reduced dose, mg, median (range) 300 (200–300)

Events for overall survival (censored/death), no. (%) 34/43 (45/55)

Events for progression-free survival

(censored/progression), no. (%)

27/50 (35/65)

aTaking into account first dose alteration only.
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Joint tumor model for maximum transaxial diameter,
actual volumes, ellipsoidal volume, and density
A tumor model with a logistic growth function in which ima-
tinib induces tumor size reduction (Eq. 2) best character-
ized the individual lesion data from all three tumor sized
metrics. Logistic growth fitted the data better than exponen-
tial growth (objective function value difference [dOFV];
210.3, 213.4, and 210.2 for MTD, Vactual, and Vellipsoid,
respectively). A linear effect with slope Kdrug,S driven by
imatinib daily dose, normalized by the median dose
(400 mg), best described the dose-response relationship.
Moreover, a time-dependent mono-exponential function with
rate constant k described a drug effect washout. Addition of
an effect compartment did not improve model fit.

dS
dt

5KG � S tð Þ � 12
S tð Þ
Smax

� �
2Kdrug;S �

Dose
400
�e2k�t � S tð Þ (2)

S(t) represents the lesion size (MTD, Vactual, or Vellipsoid) at
time t. KG is the tumor growth rate constant and Smax the
maximal size above which the lesion cannot grow (i.e., carry-
ing capacity). A mixture model with two subpopulations of
patients described the bimodal distribution of baseline lesion
size (S0), with subpopulation 1 (estimated probability of
0.348) having lesions with larger baseline Vactual, Vellipsoid,
and MTD than subpopulation 2. Of note, 22% of patients with
one target lesion were assigned to subpopulation 1 vs. 39%
for patients with two target lesions. For a typical patient with
two lesions, the estimated total S0 was 3.4, 41, and 42 times
larger in subpopulation 1 than in subpopulation 2, for MTD,
Vactual, and Vellipsoid, respectively. For each mixture and size
metrics, S0 was associated with an ILV term that was specific
to each lesion but shared a common variance for the two
lesions. The typical total Smax estimate for an individual with
two lesions was 296 mm for MTD, 1,730 mL for Vactual, and
1,818 mL for Vellipsoid. For Vactual and Vellipsoid, an alternative

parameterization for Smax was considered, in which the carry-
ing capacity for the total volume of lesion 1 and 2 (Smax;tot )
was estimated together with the fraction of Smax;tot for lesion
1; however, this resulted in model instability and large param-
eter uncertainty and was not retained. All Vactual and Vellipsoid

estimates were similar, with Vellipsoid estimates within 100–
116% of Vactual estimates (Table 2). Kdrug,S estimates were
fourfold to fivefold larger in Vactual and Vellipsoid models com-
pared to the MTD model; IIV but no ILV was identified in KG

and Kdrug,S.
An indirect response model in which imatinib stimulates

the output of response through a linear drug effect with
slope Kdrug,D driven by imatinib daily dose, normalized by
the median dose (400 mg), best described tumor density
time-course (D(t)) (Eq. 3). Addition of an effect compart-
ment did not improve model fit (dOFV 5 21.14). Account-
ing for disease progression using an increase in the
production rate that levels off over time statistically signifi-
cantly improved the OFV (dOFV 5 213.3); however,
because of that the OFV decrease was highly dependent
on two individuals, model instability and negligible
improvement in VPCs, disease progression was not
retained. A Box-Cox transformation with an estimated
shape parameter of 21.06 was applied to baseline density
(D0) sum of g and j to account for the skewed random
effects distribution. The IIV magnitude of Kdrug,D was
larger than the ILV magnitude (120 vs. 53% CV). No IIV or
ILV was identified in the rate constant for loss of response
(kout).

dD
dt

5Rin2kout � 11Kdrug;D �
Dose
400

� �
� D tð Þ (3)

The rate constant for production of response was param-
eterized as Rin5kout � D0. The derived mean turnover time
(MRT 51=kout ) was 75 days. Estimated correlations

Table 2 Parameter estimates and their uncertainty in the final tumor models for maximum transaxial diameter, actual volumes, and ellipsoidal volume

Parameter (unit)

MTD Vactual Vellipsoid

Typical

value (RSE%)

IIV, CV%

(RSE%)

Typical

value (RSE%)

IIV, CV%

(RSE%)

Typical

value (RSE%)

IIV, CV%

(RSE%)

S0, pop 1, mm or mLa Lesion 1 76.6 (12) 47 (11)b 161 (34) 140 (12)b 187 (35) 140 (12)b

Lesion 2 41.9 (15) 47 (11)b 29.7 (46) 140 (12)b 33.4 (46) 140 (12)b

S0, pop 2, mm or mLa Lesion 1 20.9 (6.3) 29 (13)c 3.45 (16) 76 (13)c 3.93 (17) 78 (12)c

Lesion 2 14.2 (6.7) 29 (13)b 1.21 (18) 76 (13)b 1.27 (19) 78 (12)b

Smax, mm or mLa Lesion 1 171 (8.4) - 1190 (43) - 1230 (57)d -

Lesion 2 125 (3.7) - 540 (12) - 588 (18) -

KG (week21) 0.00176 (47) 170 (18) 0.00861 (38) 135 (20) 0.00882 (43) 140 (27)

k (week21) 0.0475 (35) - 0.0469 (28) - 0.0508 (37) -

Kdrug,S (week21) 0.0124 (36) 77 (20) 0.0547 (21) 56 (29) 0.0610 (24) 42 (36)

Ppop 1 0.348 (18)c - 0.348 (18)c - 0.348 (18)c -

RUV (%) 14.0 (6.6) - 36.8 (8.0) - 43.3 (7.5) -

CV, coefficient of variation; k, resistance development rate constant; IIV, interindividual variability; Kdrug,S, slope of the linear drug effect; KG, tumor growth rate

constant; MTD, mean transaxial diameter; Ppop 1, probability of belonging to mixture subpopulation 1; RSE, relative standard error; RUV, residual unexplained

variability Smax, carrying capacity; S0, pop n, baseline size in mixture subpopulation n; Vactual, actual volume; Vellipsoid, ellipsoidal volume.

Lesions were numbered such that lesion 1 corresponds to the one with the largest MTD at baseline.
aMillimeters for MTD, mL for Vactual and Vellipsoid.
bIIV term variance shared between lesions, within each subpopulation and model.
cCommon parameter to MTD, Vactual, and Vellipsoid models.
dNinety-five percent confidence intervals obtained from log-likelihood profiling was (685;3260).
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between density model parameters and MTD, Vactual, or

Vellipsoid model parameters were <20%.
VPCs indicated appropriate predictive performance of the

joint model (Figure 1 and Supplementary Figures S1–S4).

Tables 2 and 3 present the joint tumor model parameter esti-

mates and their uncertainty. Parameter uncertainty was

within acceptable range (�47% RSE), except for Smax,lesion 1

in the Vellipsoid model (56% RSE), for which 95% confidence

interval from log-likelihood profiling35 was 685–3,260 mL.

Overall survival and progression-free survival models
A lognormal distribution with estimated mean lOS and lPFS

and SD rOS and rPFS , for OS and PFS respectively, best

described the baseline hazard (h0(t)).
In the univariate OS analysis, the most statistically significant

predictor was log-transformed Vactual(t) (dOFV 5 28.09). Vac-

tual(t) (dOFV 5 27.09) and dVactual(t) (dOFV 5 24.26) were

also significant but to a lower degree. Other statistically

significant predictors identified in the univariate analysis are

summarized in Supplementary Material Table S1. None of

the density-related variables or patient demographics predicted

OS. In the multivariate OS analysis, no other predictor improved

the fit further when log-transformed Vactual(t) had been added.

This model was concluded in the final OS model (Eq. 4).

h tð Þ5
1

t �rOS �
ffiffiffiffi
2p
p � e

21
2�

log tð Þ2lOS
rOS

� �2

12U log tð Þ2lOS
rOS

� � � ehVactual
�log Vactual tð Þð Þ (4)

U �ð Þ is the standard normal cumulative distribution function.

The coefficient for the effect of log(Vactual(t)) on the hazard,

hVactual
, was estimated to 0.190, denoting an increased

death hazard with increasing Vactual. Figure 2 (left panel)

illustrates the hazard ratio (HR) over the range of observed

Vactual, using the typical total S0 (2 lesions, subpopulation

1) as reference. For instance, the HR is estimated to 1.52

Figure 1 Visual predictive checks of the joint tumor model for actual volume (Vactual), ellipsoidal volume (Vellipsoid), maximum transaxial
diameter (MTD), and density models. Median (solid line), 10th and 90th percentiles (dashed lines) of the observed data are compared
to the 95% confidence intervals (shaded areas) for the median (blue), 10th and 90th percentiles (gray) of the simulated data, based on
1,000 simulations.
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at the typical total Vactual Smax (1,730 mL) in subpopulation

1, and to 0.494 at the typical total Vactual S0 value

(4.66 mL) in subpopulation 2.
Noteworthy, in the OS multivariate analysis, a lower OFV

was achieved by combining log-transformed baseline and

relative change from baseline up to 3 months in Vactual

(dOFV 5 213.7) or Vellipsoid (dOFV 5 213.3), whereas for

MTD the corresponding combination resulted in a smaller

improvement in the model fit (dOFV 5 29.31); however,

these multivariate models requested one extra model

parameter compared to the final model.
In the univariate PFS analysis, the most statistically sig-

nificant predictor was Vactual relative change from baseline

up to 3 months (Vactual,rel,3m, dOFV 5 213.9). All other

investigated size-related predictors were also significant,

with Vactual and Vellipsoid predictors always being better than

corresponding MTD predictors. None of the density-related

variables could predict PFS. The model fit improved further

when log-transformed Vactual baseline (log[Vactual,0],

dOFV 5 212.0) was added (Eq. 5).

h tð Þ5
1

t �rPFS �
ffiffiffiffi
2p
p � e

21
2�

log tð Þ2lPFS
rPFS

� �2

12U log tð Þ2lPFS
rPFS

� � � ehVactual ;rel;3m
�Vactual ;rel ;3m1hVactual ;0

�log Vactual ;0ð Þ

(5)

The estimated coefficients for Vactual,rel,3m (hVactual ;rel ;3m
) and

log(Vactual,0) (hVactual ;0
) effects indicate that hazard increases

with increasing Vactual and larger baseline (Table 4). The

estimated HR was 0.920 (95% confidence interval 5 0.892–

0.948) for every 10% decrease in Vactual.
Kaplan–Meier VPCs (Figure 3) show satisfactory pre-

dictive performance of the OS and PFS models, even

though the PFS model tended to underpredict the survival

rate toward the end of the study period. Parameter esti-

mates and their uncertainty for both models are reported

in Table 4.

DISCUSSION

In this pharmacometric modeling analysis of patients with

GIST, we characterized the time-course of liver metastases

response to first-line imatinib treatment, including three size

metrics – the unidimensional MTD, the software-calculated
volume Vactual, and the estimated ellipsoidal volume Vellipsoid

– as well as tumor density, which informs on the tumor
structural status. Log-transformed Vactual time-course best

predicted OS. Interestingly, log(Vactual(t)) provided a better

fit than Vactual(t), denoting a nonlinear relationship between
the HR and Vactual (Figure 2 (left panel)). The Vactual rela-

tive change from baseline up to 3 months together with log-
transformed Vactual baseline best predicted PFS.

The same structural tumor model could be applied to all

three sized metrics. The binomial distribution of the observed
baseline was accounted for by a mixture model, in which the

probability of belonging to a subpopulation with typically
larger tumors than in the other subpopulation was estimated

to 34.8%. The assignment to one or the other subpopulation

was not related to any of the available demographic variables
(age, gender, or clinical center). A logistic growth model, in

which the tumor growth rate decreases as the tumor size
approaches the carrying capacity, described the data better

than an exponential growth (as expected, presumably due to
the dependency of the tumor growth from a limited vascular

supply). The typical total carrying capacity (both lesions
accounted for) was estimated to 1,730 and 1,818 mL for

Vactual and Vellipsoid, respectively; these values are similar to

literature values of liver volume in living donors (c.a.
1,500 mL)36 and to the baseline liver volume in a similar

GIST patient population14 (median 5 1,755; range 5 1,112–
3,354 mL), of which some of the patients reported in this

study were part, and, therefore, clinically plausible. When
tumor size is very small compared to the carrying capacity,

logistic growth can be approximated by an exponential

growth with rate constant KG. The KG estimate for MTD cor-
responds to a typical doubling time of small tumors of 7.4

years, vs. 1.5 years for Vactual and Vellipsoid. The latter is com-
parable with the value of 1.0 year reported for untreated

GIST before surgical resection.37 The slope of the drug effect
was estimated to be lower for MTD than for Vactual and Vellip-

soid; 3D measurements may, therefore, be more sensitive to
detect imatinib-induced changes compared with 1D meas-

urements. This is illustrated in Figure 2 (middle panel), in

which the predicted typical ratio to baseline decreases less
for MTD than for 3D measurements. Large IIV (range, 165–

Table 3 Parameter estimates and their uncertainty in the final tumor density

model.

Parameter (unit)

Typical

value (RSE%)

IIV – CV%

(RSE%)

ILV – CV%

(RSE%)

D0 (HU) 59.0 (5.7) 30 (10) 18 (19)

Box-Cox D0 21.06 (47)a - -

kout (week21) 0.0935 (32) - -

Kdrug,D 0.154 (29) 120 (17) 53 (38)

RUV (%) 20.6 (6.8) -

CV, coefficient of variation; D0, baseline tumor density; HU, Hounsfield unit;

IIV, interindividual variability; ILV, interlesion variability; Kdrug, density reduc-

tion constant; kout, rate constant for loss of tumor density; RSE, relative

standard error; RUV, residual variability.
aThe 95% confidence intervals obtained from log-likelihood profiling was

(-2.01;-0.397) for Box-Cox D0.

Table 4 Parameter estimates and their uncertainty in the final overall sur-

vival and progression-free survival models.

OS model PFS model

Parameter Estimate (% RSE) Parameter Estimate (% RSE)

mOS 1.42 (15) mPFS 1.19 (12)

rOS 8.46 (5.0) rPFS 7.79 (3.4)

hVactual 0.190 (36) hVactual,rel,3m 0.836 (19)

hVactual,0 0.239 (28)

OS, overall survival; PFS, progression-free survival; RSE, relative standard

error; mOS, mPFS, mean of the log-normal hazard model for OS and PFS,

respectively; rOS, rPFS, SD of the log-normal hazard model for OS and PFS;

hVactual, coefficient of the effect of log-transformed actual volume time-course

on the hazard of OS; hVactual,rel,3m, coefficient of the effect of actual volume

relative change from baseline up to 3 month on the hazard of PFS; hVactual,0,

coefficient of the effect of log-transformed actual volume baseline on the

hazard of PFS.
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170% CV) was quantified on the growth rate constant of all
size metrics, and moderate to large IIV on the slope of the
imatinib dose effect (42–120% CV). Part of the latter variabil-
ity may have been explained by differences in pharmacoki-
netics, if available. ILV was not found to be statistically
significant in any of the model parameters, except baseline.
Accounting for ILV would enable to test individual lesion
response on survival, and could result in more accurate pre-
dictions of tumor dynamics, which may be of particular
importance when extrapolating the prediction beyond the
tumor assessment period.25

Tumor density time-course was described by an indirect
response model with stimulation of the response output.

Tumor density decrease reflects structural changes second-
ary to treatment (such as inflammation, tumor necrosis,
and reduced vascularization) that can induce paradoxical
size increase, which may precede size reduction. The weak
correlations between density and size-related parameters
indicate that structural changes may occur independently of
size changes and that both measurements may provide dis-
tinct information on tumor response. Substantial ILV (53%
CV) was identified on the dose effect parameter in the den-
sity model, indicating differences in tumor sensitivity to ima-
tinib and inter-tumor heterogeneity (e.g., due to secondary
mutations or different degree of necrosis post-treatment
impacting tumor density).38
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In the joint tumor model, exploratory analysis showed, as

expected, that large correlations (up to 99%) existed

between individual model parameters in the MTD, Vactual,

and Vellipsoid models. However, as the aim of our analysis

was to evaluate the predictive ability of each size metrics

for OS and PFS independently, no further model simplifica-

tion was taken in order to retain flexibility in tumor size

predictions.
Semi-automated measurements of Vactual require soft-

ware for postprocessing of images, and staff to verify and

possibly adjust tumor delineation. In clinical settings, this

may be impractical due to software cost and restricted

availability, and lack of user experience and time resources.

In the future, with the introduction in the clinical arena of

deep learning-based software, this challenge can be easily

overcome. For well-defined tumors (whose borders can be

easily identified), Vellipsoid may be easily and more efficiently

obtained than Vactual and offer an alternative to account for

nonspherical shapes or nonuniform changes in size. The

small differences between Vactual and Vellipsoid model param-

eter estimates are consistent with earlier findings in which

Vellipsoid was highly correlated to Vactual and only overesti-

mated by 9% on average.15 Figure 2 (right panel) further

illustrates the similarity between model-predicted Vactual and

Vellipsoid time-courses. Moreover, consistent with previous

findings, this figure highlights the fact that assuming a

spherical volume (Vspherical) calculated based on MTD

would tend to overestimate the actual volume. Figure 2

(middle panel) also shows that the models predict that the

typical tumor size nadir occurs �80 days earlier for the vol-

ume measurements compared to MTD-based tumor sizes,

which could be clinically relevant.
To the authors’ knowledge, this is the first time that the pre-

dictive ability of longitudinal tumor 1D and 3D size and den-

sity on clinical outcome has been compared. Despite the

differences in goodness-of-fit criteria or predictive ability

were marginal, the 3D measurements resulted in a better fit

to the OS and PFS data than the 1D measurements. This is

in line with the results from the standard statistical analysis

by Schiavon et al.,26 which showed that 3D criteria (based on

a categorization of tumor response) seemed to overall better

correlate to OS than 1D criteria when assessed after �6 or

12 months of treatment. Contrasting results have been

reported regarding the predictive ability of Choi’s criteria, a

combination of size and density responses, on clinical out-

come.5,8–12 Here, none of the density-related metrics could

predict OS or PFS when tested alone or in addition to size-

related predictors. An alternative to the final OS model, which

includes log(Vactual(t)) as predictor, is to use a combination of

Vactual baseline and its relative change from baseline over

time up to 3 months. This could help predicting long-term

clinical outcome (in this study, up to 13 years of treatment)

using early tumor assessments; however, these results

should be interpreted with caution as the study population

(77 patients) was small and OS modeling did not account for

subsequent therapies and tumor heterogeneity, which may

potentially confound the estimated changes in size. Finally, a

maximum of two liver metastases were available in this anal-

ysis and clinical outcome may be affected by other (or new)

tumor lesions in the liver or other organs (as per RECIST ver-

sion 1.1).
In summary, the developed models adequately described

the longitudinal 1D, 3D, and density data of liver metasta-

ses in imatinib-treated patients with GIST. All tumor

responses were associated with large IIV. The ILV was

identified in imatinib effect on density but not size metrics.

This analysis provides an insight into the value of 3D and

density measurements in response evaluation of GIST to

imatinib therapy. The 3D measurements showed promising

predictive value of OS, although the results should be vali-

dated in a larger independent study population. The present

results encourage the incorporation of 3D measurements in

prospective clinical trials to evaluate their ability and value

vs. unidimensional measurements (RECIST) in predicting

clinical outcomes. The developed volume and density mod-

els may be used to leverage data from other cancer types

and drug therapies, especially where changes in size are

believed to be nonuniform. The developed modeling frame-

work provides better understanding of the relationship

among drug exposure, short-term tumor response, and long-

term clinical outcome, and may guide early clinical decisions

and interventions to enhance benefits for patients with GIST.
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