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ABSTRACT: Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are
an emerging class of fluorescent quantum dots (QDs) for next-generation
optoelectronics. A great hurdle hindering practical applications, however, is their
high lead content, where most attempts addressing the challenge in the literature
compromised the material’s optical performance or colloidal stability. Here, we
present a postsynthetic approach that stabilizes the lead-reduced MHP NCs
through high-entropy alloying. Upon doping the NCs with multiple elements in
considerably high concentrations, the resulting high-entropy perovskite (HEP)
NCs remain to possess excellent colloidal stability and narrowband emission, with
even higher photoluminescence (PL) quantum yields, ηPL, and shorter
fluorescence lifetimes, τPL. The formation of multiple phases containing mixed
interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice
expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately
reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of
perovskite NCs.

■ INTRODUCTION

Metal halide perovskites (MHPs), with the general formula of
ABX3, where A is a monovalent organic/inorganic cation, B is a
divalent metal cation, and X is a halide anion, have generated
considerable research efforts aimed at demonstrating their
outstanding optical properties.1−3 The most studied com-
pounds of this family are based on lead, with the general
formula APbX3, because of their defect tolerance that
originated from the shallowly populated defect states near
the band edges. This unique property enables the APbX3
nanocrystals to possess very high photoluminescence (PL)
quantum yields, ηPL, and narrowband emission, which give rise
to high-efficiency optoelectronic devices, including photo-
voltaics (PVs),4,5 photodetectors,6 and light-emitting diodes
(LEDs).7−10

The actual implementation of APbX3 NCs in photonic
devices toward commercialization, however, has faced a
number of challenges. Inarguably, the greatest one is about
the toxicity of lead.11 Following the development of lead-free
MHP PVs, divalent cations with similar ionic radii, such as
Sn2+ or Eu2+, were examined.12,13 However, most lead-free
perovskite NCs either compromised their optical properties or
colloidal stability.14−16 Accordingly, lead-reduced MHPs,17−19

in which the B-site lead ions are partially replaced, have
become increasingly attractive.20,21 Lead-reduced MHP NCs
have been synthesized using the hot-injection (HI) meth-
od,17,22−30 where a complex reaction setup is required, as well

as the postsynthetic approaches by doping with Mg2+, Mn2+,
Sn2+, Cd2+, and Zn2+.19,31−33 It is noted that the latter
approach had rather limited success as compared to the
postsynthetic A- and X-site mixing owing to the structural
rigidity of PbX6

4− octahedron.34 For example, it has been
shown that one can only add a relatively small amount of
secondary elements in the CsPb1−xMxBr3 perovskite NCs (M =
Sn2+, Cd2+, or Zn2+; 0 < x ≤ 0.1).32 To our knowledge, it is not
yet possible to significantly increase the content of secondary
B-site ions without compromising the production yield and
optical performance.
From a fundamental point of view, the partial replacement of

lead ions in perovskite lattices is analogous to alloying, which
has long been used to alter material properties. Traditional
alloying usually refers to the addition of relatively small
amounts of secondary elements to a primary element.
Intriguingly, recent advance in high-entropy alloys (HEAs)
suggests that the combination of multiple principal elements in
high concentrations could increase the configurational entropy
of mixing that overcomes the enthalpies of compound
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formation, thereby stabilizing the HEAs.35−37 Very recently, A-
site doping of lead halide perovskite (LHP) NCs has shown to
improve the optical properties and chemical stability due to the
entropy of mixing.38,39 Back to the 2010s, high-entropy
perovskite materials, including high-entropy perovskite oxides
(HEPOs) and high-entropy perovskite fluorides (HEPFs) had
emerged.40−43 These high-entropy perovskite compounds have
demonstrated outstanding catalytic properties, serving as
efficient electrocatalysts in the oxygen evolution reaction.43,44

The preparation of HEPOs, however, demands a process
temperature of greater than 1000 °C.40−42,45 Clearly, it is
desirable to develop less energy-consuming approaches for the
synthesis of high-entropy perovskite materials.
Inspired by the underlying principle of high-entropy

alloying, we hypothesized that the entropy of mixing could
favor the stabilization of lead-reduced perovskite NCs by
mixing with multiple secondary B-site elements, termed the
high-entropy perovskites (HEPs). In this report, we synthe-
sized the HEP NCs for the first time and investigated their
optical, crystallographic, and compositional characteristics.

■ RESULTS AND DISCUSSION
The HEP NCs were synthesized using a modified protocol
developed by our group to overcome the solubility difference
between precursors, namely, the ligand-assisted solid-phase
synthesis (LASPS).46 First, the parent colloidal MAPbBr3 NCs
were prepared and dispersed in toluene (MA+ = CH3NH3

+).
The NC solution was then stirred with an excess solid powder
mixture of metal bromides, MBr2 (M = Mg2+, Zn2+, and Cd2+),
and a small amount of long-chain organic surfactants, such as
oleic acid and oleylamine, forming dynamic binding on the NC
surface.47 The surfactants assist gradual dissolution of MBr2
solid powders by forming inverse micelles that increase the
chemical potentials of secondary metal elements in solution,
thereby slowly replacing lead in NCs. Metal bromide salts were
chosen to prevent undesirable halide exchange.48 Each reaction
was performed under magnetic stirring in nitrogen at room
temperature for several hours to reach saturation of solid
solubility, followed by removing excess surfactants and MBr2
by a number of polar solvents, such as methyl acetate,
acetonitrile, and ethanol.
The protocol presented here allows us easy access to the

compositional space without taking into account the solubility
limit of metal precursors in antisolvents, which is cumbersome
in many HI and postsynthetic approaches, particularly suitable
for studying the HEPs and their synthesis (Figure 1a). We
noticed that the protocol developed here highly preserved the
solution optical density, which is demonstrated by the
photographs of the synthesized colloidal solutions under UV
excitation, in which we label each sample with the B-site
elements, for example, PbZnCd for MA(PbZnCd)Br3 HEP
NCs, all yielding strong fluorescence (Figure 1b).
As compared to parent MAPbBr3, the synthesized single-

doped perovskite NCs and the HEP NCs exhibit different
degrees of blueshift in their PL and absorption spectra (Figure
2a and Supplementary Figure S1), with the emission
bandwidth remaining nearly unchanged. A possible explanation
for the observed blueshift is the lattice contraction of the
perovskite unit cell upon alloying.32 Surprisingly, upon
alloying, the ηPL value increases from ∼75% to up to ∼95%
(Figure 2b), together with a decrease in the average PL lifetime
value, τavg, from 27.3 ns to as low as 4.6 ns (Figure 2c). More
notably, there seemed a stepwise trend that the fluorescence

Figure 1. Synthesis of HEP NCs. (a) Schematic diagram showing a
possible reaction that occurs when three additional elements are
doped in the perovskite lattice upon mixing with a metal halide
powder blend. (b) Representative photographs of synthesized
colloidal solutions under UV excitation. Each sample is labeled with
the B-site elements, for example, PbZnCd for MA(PbZnCd)Br3 HEP
NCs.

Figure 2. Emission characteristics of HEP NCs. (a) PL spectra, (b)
ηPL, and (c) PL lifetime for bare MAPbBr3 NCs, single-doped
perovskite NCs, and HEP NCs, showing emission blueshift together
with an enhanced PL quantum yield and reduced lifetime upon high-
entropy alloying.
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lifetime becomes shorter when more secondary elements are
involved, with the exception of MA(PbMgZnCd)Br3 HEP
NCs. These results are of practical interest because
fluorophores with high ηPL and low τavg are desirable for
most photonic applications. In general, our results suggest that
high-entropy alloying does not compromise the NC optical
performance, but rather enhances it. For the detailed values for
the characterized optical properties, please see Supplementary
Table S1.
Clearly, the mechanism responsible for the enhanced optical

properties is beyond a simple picture of defect passivation, in
which the enhancement of ηPL comes with an elongated PL
lifetime.49,50 For B-site doping (or Pb replacement), it has
been reported that the incorporation of divalent metal cations
could give a shorter lifetime.32 In the HEP NCs, the lifetime
can be further shortened to 5 ns, which is significantly shorter
than that of the single-doped systems, confirming that high-
entropy B-site doping stabilizes the LHP structure with a
higher degree of Pb replacement.
We attribute the observed enhancement of emission

characteristics upon alloying to the nature of intrinsic and
surface defects and their interactions with metal cations.50−52

First, the divalent cations could rectify these intrinsic defects
by occupying the vacancies within the crystal lattice, thereby
increasing the short-range ordering in perovskite lattices.25,33

Second, the shallow surface trap states, which are responsible
for the delayed fluorescence in perovskite NCs, were
passivated by the metal and bromide ions, as reflected by the
shortened lifetime and enhanced ηPL.

53 The entropy of mixing
certainly plays a role in defect passivation, as more secondary
elements are involved; shorter lifetimes are observed, but the
exact mechanisms remain unclear. Interestingly, when bare
PbBr2 was used as the solid source in the LASPS reaction,
instead of defect passivation, the parent MAPbBr3 NCs were
fragmented to form nanoplatelets (NPLs),54 yielding a
blueshift of the PL emission and a strong excitonic peak in
the absorption spectra directly after the synthesis (Supple-

mentary Figure S2), whereas complete dissolution of parent
MAPbBr3 NCs was observed if the reaction is performed
without any metal bromide salts (Supplementary Figure S3).
We further investigated the colloidal stability of the

synthesized HEP NCs by monitoring the solution optical
density (OD) and ηPL with time (Supplementary Figure S4).
For all samples considered here, the solution OD remained
nearly unchanged within one month. Their ηPL values are also
very stable, except that of MA(PbZnCd)Br3 and MA-
(PbMgZnCd)Br3 HEP samples, which gradually decreased
by approximately 10%, whereas ηPL remarkably enhanced by
approximately 10% for bare MAPbBr3 NCs over a period of
one month. Overall, the colloidal stability of the HEP NCs is
comparable to that of the parent MAPbBr3 NCs. The strong
fluorescence properties of the colloidal NC dispersions are
preserved upon a storage time of one year, demonstrating their
excellent colloidal and shelf stability (Supplementary Figure
S5).
Figure 3 presents the cryo-scanning transmission electron

microscopy (cryo-STEM) images and the corresponding size
distribution graphs of the NCs, revealing that the NC shape
and morphology are preserved upon alloying (also see
Supplementary Figure S6). The insets show the corresponding
electron diffraction (ED) patterns. For each sample, the two
most intense diffraction rings, corresponding to (100) and
(200) lattice planes, were preserved. In other words, the cubic
crystalline structure of parent MAPbBr3 NCs is preserved. The
size analysis reveals a small degree of size reduction for the
metal-doped perovskite NCs. Specifically, metal-doped perov-
skite NCs have an average lateral size of ∼9 ± 2 nm, which is
about 2 nm smaller as compared to parent MAPbBr3 NCs
(∼11 ± 3 nm). A similar degree of size reduction has also been
observed for B-site-doped perovskite NCs synthesized via the
hot-injection technique with mixed precursors.55 The differ-
ence in the size could result from the use of surfactants during
the metal-doping process, whose polar nature is known to
cause a degree of NC size reduction to quantum-confined

Figure 3. Structural characterization of HEP NCs. Cryo-STEM images, electron diffraction patterns, and corresponding size distribution graphs for
(a) parent MAPbBr3, (b) MA(PbCd)Br3, (c) MA(PbMgZn)Br3, and (d) MA(PbMgZnCd)Br3 NCs, revealing that the NC shape, morphology, and
crystallography are preserved upon alloying. Scale bars: 20 nm for STEM images and 2 nm−1 for ED patterns.
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matter.56 Although the metal-doped NCs possess similar sizes,
they exhibit different PL emission wavelengths (λPL). In
addition, there is a lack of extensive excitonic absorption
features in the absorption spectra of the metal-doped
perovskite NCs (Supplementary Figure S1), agreeing that
the size of the NCs remains far larger than the excitonic Bohr
radius, which is known to be ∼2 nm for MAPbBr3.

56,57 Overall,
the small degree of size reduction of the single-doped NCs and
the HEP NCs alone would not result in the considerable
blueshift of the PL emission wavelength observed.
We carried out more crystallographic analysis for the drop-

casted films using the powder X-ray diffraction (XRD)
goniometer and the grazing-incidence wide-angle X-ray
scattering (GIWAXS) at a synchrotron light source. Analogous
to the ED patterns, the XRD patterns show two main peaks
corresponding to the (100) and (200) lattice planes
(Supplementary Figure S7). We determine the unit cell
parameter a = 5.9311(21) Å for the parent MAPbBr3 cubic
phase, consistent with the literature.58,59 The detailed
crystallographic parameters are presented in Supplementary
Table S2.
As for the HEP NCs, the XRD and GIWAXS patterns

revealed a more complex picture. Because all the secondary
elements considered here, Mg2+, Zn2+, and Cd2+, have smaller
ionic radius than Pb2+, one would expect to see a degree of
lattice contraction upon alloying.19 As expected for samples of
nanosized crystallites, the reflections that originate from the
perovskite NCs are very broad and also very weak for
reflections at higher angles, which hampered the precise
determination of the peak positions. No significant change in
the average lattice parameter a could be detected, revealing the
complex nature of high-entropy alloying in colloidal perovskite
NCs. The emergence of low-angle peaks in the XRD patterns
could originate from the formation of layered structures (see
Supplementary Table S3).60 These findings are consistent with
low-angle reflections in the GIWAXS patterns (Supplementary
Figure S8). Furthermore, the formation of assembly structures
during the high-entropy alloying process is suggested
(scanning electron microscopy (SEM) image; see Supple-
mentary Figure S9).
We further looked into the synchrotron GIWAXS patterns,

which offer significantly higher resolution than benchtop XRD.
Figure 4 magnifies the (100) plane peaks extracted from the
GIWAXS patterns, revealing a clear trend that the diffraction
peak becomes more asymmetric and multicomponent when
more secondary elements are involved. We fitted each pattern
with multicomponent Lorentzians according to the number of
secondary elements involved in the system. Given the excellent
agreement with the measured data, our observations are
summarized as follows: (i) upon alloying, two sets of diffractive
components emerge; one shift toward higher wavenumbers
and the other toward lower wavenumbers, as compared to the
parent MAPbBr3 peak, (ii) when more secondary elements are
involved, components with a higher degree of wavenumber
shifts are attained; for example, for MA(PbMgZnCd)Br3 HEP
NCs, components centered at q = 10.10 and 11.07 nm−1,
corresponding to d-spacings of 6.22 and 5.67 Å were resolved,
or remarkably ∼5.0% expansion and ∼4.5% contraction, and
(iii) the summation of all components can therefore yield a
peak maximum shifting to lower or higher wavenumbers.
Accordingly, the crystallographic evidence presented here

elucidates the effects of high-entropy alloying on perovskite
NCs. First, similar to many high-entropy alloy metallurgical

systems,35,36 the HEP NC systems are multiphase systems
rather than single-phase, solid solutions. Second, alloying with
more than one secondary element results in the emergence of
lattice expansion phases. Here, we term these phases the
“interstitial phases,” as the smaller secondary elements can
occupy some of the spaces within the perovskite lattices,
yielding lattice expansion.61 On the other hand, we refer the
“doping phases” to the lattice contraction phases, in which the
lead sites were replaced by the secondary elements (see the
arrows in Figure 4).32,62 Third, most importantly, when more
secondary elements were added, the phases with higher
degrees of lattice expansion and lattice contraction were
stabilized. The important findings promise the stabilization of
“lead-reduced” phases upon high-entropy alloying.
We systematically carried out energy-dispersive X-ray

spectroscopy (EDXS) in a scanning electron microscope for
the semiquantitative analysis of the elemental composition of
the parent MAPbBr3 NCs, single-doped perovskite NCs, and
HEP NCs (Supplementary Figures S10 and S11). Figure 5
presents the characterized atomic ratios of Br to Pb (left axis)
and Br to the sum of Pb and M (right axis) for all samples
considered here. The Br/Pb ratio for parent MAPbBr3 NCs is
3.49 ± 0.06. Remarkably, there exists a trend that the Br/Pb
ratio increases with the number of secondary elements,
increasing up to 7.31 ± 0.87 for MA(PbZnCd)Br3 NCs and
7.56 ± 1.95 for MA(PbMgZnCd)Br3 NCs. In other words, the
lead content is approximately reduced by 55% upon high-
entropy alloying. On the other hand, the Br/(Pb + M) ratios
for most HEP NCs are slightly below 3, the ideal perovskite
stoichiometry, independent of the number of secondary
elements. We attribute the reduced Br/(Pb + M) ratios in

Figure 4. Synchrotron X-ray scattering analysis of HEP NCs.
Magnified (100) plane peaks extracted from the GIWAXS patterns
of bare MAPbBr3, single-doped perovskite NCs, and HEP NCs, where
the dots correspond to the measured data, and the solid curves are
their multicomponent fittings, with individual Lorentzians represented
in dashed lines. The arrows highlight the emergence of doping (lattice
contraction) and interstitial (lattice expansion) phases. When more
secondary elements were added, the phases with higher degrees of
lattice expansion and lattice contraction were stabilized.
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HEP NCs to the formation of interstitial phases, echoing our
findings in Figure 4. We notice that the composition
heterogeneity for HEP NC systems with more than two
secondary elements, such as MA(PbZnCd)Br3 and MA-
(PbMgZnCd)Br3 HEP NCs, is relatively high, as reflected by
the increased error bars. It may suggest a degree of phase
segregation during the formation of the HEP NCs, for which
advanced nanometer-scale characterization would be required.
In addition, there is an outlier, MA(PbMg)Br3, having an
unusually high Br/Pb ratio because of the fact that the EDXS
peak for Mg K transition is very close to that for Br L transition
at an energy of ∼1.254 keV.63,64 This issue becomes less
considerable for other HEP NC systems because their Mg
content is relatively low.
Finally, the protocol presented here also worked for Mn2+

doping, yielding a strong blueshift of the emission wavelength
to 486 nm. Additionally, a broad and weak PL shoulder
peaking around 600 nm is visible (Supplementary Figure S12),
which corresponds to the nominally forbidden Mn2+ d−d
transition.65 The low PL intensity of the Mn2+ d−d transition
can be attributed to an ineffective exciton energy transfer
between the bromide-based perovskite donor material and the
Mn2+ acceptor.22 Because a different emission mechanism is
involved, we did not include it in our HEP analysis.

■ CONCLUSIONS
In summary, we report an approach to synthesize an
interesting class of lead-reduced perovskite NCs, the HEP
NCs. With a reduction of lead of up to 55%, the HEP NCs
remain to possess excellent optical properties and colloidal
stability. According to our crystallographic analysis, the
formation of interstitial and doping phases upon high-entropy
alloying is responsible for the stabilization of lead-reduced
perovskite lattices. Although we report the usage of Cd, we
anticipate the concept of high-entropy alloying presented here
will open an avenue toward less-toxic and more environ-
mentally friendly materials, which are strongly desirable for
future device applications.
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