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Abstract: Temperature changes, drought, frost, and the presence of pest and diseases place enormous
stress on crops, which implies that the potential performance of these crops may be affected. One of
the main goals for agronomists, horticulturists, growers, physiologists, soil scientists, geneticists,
plant breeders, phytopathologists, and microbiologists is to increase the food production on the
same cultivable area and to ensure that they are safe and of high quality. Understanding the
biophysical changes in soil will help to manage the crop’s ability to cope with biotic and abiotic stress.
Optimization is needed in the nutrition of crops, which involves the use of biostimulants to counter
oxidative stress and the management of strain bioformulations (bacteria and fungi) that protect and
stimulate roots for the acquisition of nutrients. The implementation of these strategies in fertigation
programs improves crop yields. This article addresses the importance of the stimulation and the
bioprotection of the root as a fundamental pillar in ensuring the high performance of a crop.

Keywords: fertigation; nutrition; roots; high production; stimulation; bioprotection; biotic and
abiotic stress

1. Introduction

Redox potential (Eh) and pH are the main drivers of soil–plant–microorganism systems. This was
determined based on the hypothesis that the plants function physiologically inside an Eh–pH specific
internal rank and alter the Eh–pH of the rhizosphere together with the microorganisms to guarantee
cellular homeostasis [1]. This perspective is important in the crop production as it provides us strategies
for achieving high yields. It also highlights that the plant nutrition, the temperature extremes, drought,
frost, the presence of pest and diseases as well as the use of biostimulants in the fertigation programs for
the high production management are necessary. For precision agriculture and the characterization of
soil conditions, the Eh–pH electrical conductivity (EC) could be used as an indicator of soil quality [2].
Geneticists and plant breeders are focusing their studies on developing plants with roots that improve
the crop productivity under drought conditions, which have specific root characteristics including a
thin diameter, specific length, and length density [3]. Architectural traits under genetic control include
basal-root gravitropism, adventitious root formation, and lateral branching. This trait is important
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for the acquisition of phosphorus from infertile soils. Genetic variation in rhizosphere modification
through the efflux of protons, organic acids, and enzymes is important for the mobilization of nutrients,
such as phosphorus and transition metals, and the avoidance of aluminum toxicity [4]. Plants have
diverse organs with different functions and nutritional requirements [5]. Therefore, understanding the
root development is of vital agronomic importance [6]. It has been suggested that the distribution of
the roots in the soil can be improved through genetic manipulation of the root system architecture by
optimizing the absorption of water and nutrients [7]. It is challenging to obtain the measurement of the
root architecture in the crops and the evaluation of the changes. It has been previously demonstrated
that the changes in roots result in higher efficiency and tolerance to stress [8].

2. Nutrient Solution in Fertigation

The high yield and quality of crops is possible if nutrition is optimized. This includes the
composition of the nutritive solution, water supply, nutrient solution temperature, concentration of
dissolved oxygen, EC, and nutrient solution pH [9]. A high value of EC (3.5 and 4.5 dS m−1) increases
the metabolites that are related to human diet (lycopene, ascorbic acid, phenols content, and antioxidant
activity) [10], while an increase in EC reduces fruit cracking [11]. When the roots absorb excessive
cations compared to anions, the roots offset this by excreting protons (H+), which generally leads to
rhizosphere acidification. When they absorb more anions than cations, the roots excrete hydroxyl
(OH−). Hydroxyl reacts with carbon dioxide to form bicarbonate (HCO3

−), which leads to rhizosphere
alkalization [12]. Fertigation is widely used in commercial and horticultural agriculture to produce high
yield of high quality fruits and vegetables, with the combination of water and nutrients determined to
be the key to success. Fertigation is not optional but it is indeed necessary for horticultural crops [13].
In fertigation, with the application of 56.4 cm of irrigation water and 3.4 kg ha−1 of urea daily, this
results in higher performance of onion crops with less NO3-N leachate [14]. Better efficiency in the use
of nutrients and water can be achieved through fertigation. A total of 25% of irrigation water can be
saved and 33% more production can be obtained [15], while we can also maintain a low (but constant)
nutrient level in soil solution, which is principally N [16,17]. An increase in fertigation frequency will
allow us to reduce the concentration of immobile macronutrients, such as P, K, and micronutrients, and
decrease environmental pollution [18]. Considering that nutrient leaching by fertigation is possible,
the applied nutrients should not be submitted to excessive irrigation during application or in further
irrigation [19]. Micronutrients, such as Fe, Mn, Zn, and Cu, may be applied through the irrigation
system in chelated traces without causing any precipitation [20]. Through adequate management,
it is possible to increase water use efficiency (WUE) by 25–40%. At the field level, these changes
significantly increase the crop yield [21]. The nitrogenous fertilizers in the majority of crops is the most
expensive, demanding and limiting ingredient for obtaining high yield, while the phosphate content
varies at the soil micro-spatial level. Therefore, roots need to develop continuously to reach new soil
sectors that are high in P [22]. P is the most immobile of the nutrients and K is relatively immobile,
while Ca and Mg have an intermediate mobility [23]. The availability of N, P, K, and S limits low-input
agriculture, while the phytoavailability of Fe, Zn, and Cu limits the crop production on alkaline and
lime soil. Furthermore, P, Mg, Ca, and K deficiencies as well as Al and Mn proton toxicity limit the
crop production in acid soil. Consequently, the development of genotypes that have a higher capacity
for nutritional acquisition must increase yields in infertile soil [24]. Nutrient acquisition efficiency in
soil is influenced by root proliferation, exuded carriers for nutrient activation, symbiotic associations,
massive water flow, and ion spread over root surface [25,26]. Crop nutrition optimization in fertigation
must involve a good balance of anion and cation, pH control, and EC of nutrient solution. The EC of
this solution will be calculated based on the physico-chemical properties of soil and water quality. A
challenge for agronomists in the world involves minimizing biotic or abiotic stress impact, which will
be achieved through the usage of stimulants (vegetable or animal origin) and bioprotection (fungi and
bacteria) in roots for a higher nutrient acquisition and high crop production as shown on Figure 1.



Plants 2018, 7, 88 3 of 13
Plants 2018, 7, x FOR PEER ARTICLE  3 of 12 

 

 

Figure 1. High crop production in the near future will be done through a good control of nutrient 

solution. In addition, we should consider stimulants (algae extract, protein hydrolysates, humic acids, 

phosphites, and phytohormones) and root bioprotection (fungi and bacteria) for greater nutrient 

acquisition and yield in improving fertigation programs. 

3. Biostimulants Usage in Crops 

Another strategy for achieving high yields involves the usage of biostimulants, which include 

the vitamins and enzymes that are easily metabolized by microorganisms [27]. Biostimulants 

improve metabolic efficiency to induce an increase in yields and enhancement in crop quality; 

increase the plants’ tolerance and abiotic stress retrieval; and ease absorption, translocation and 

nutrient usage. Furthermore, this results in better quality attributes of products, including sugar 

content and color. Improving certain physicochemical properties of soil and building soil 

microorganism development contribute to the production of low-input crop [28,29]. Algae extract, 

protein hydrolyzates, humic and fulvic acids, and other compound mixtures have properties that are 

better than basic nutrition. They often improve growth and stress tolerance. Furthermore, all are 

vegetable biostimulants or bioefectors [30]. Biostimulant action is diverse, but it can include N 

metabolism activation, P release on soil, stimulation of soil microbial activity, and root stimulation 

[31]. 

3.1. Seaweed Extract 

For the production of biostimulants, seaweed contains cytokines and auxins, which are 

essentially trace amounts of plant hormones [32–35]. The biologically active compounds that are 

transferred from seaweed biomass to the liquid phase during its fabrication include: polysaccharides, 

proteins, fatty acids, pigments, polyphenol, and minerals [36]. Mineral trace amounts present in 

seaweed extract act as enzymatic enhancers [34]. The benefits of seaweed application in the 

agricultural field are numerous: they stimulate germination, plant growth, root and stem elongation, 

water and nutrient absorption, frost resistance, biological control against phytopathogenic 

organisms, and contaminated soil remediation [37]. Micro-algae extract has a biostimulant effect in 

from the expression of characteristics of the roots and the genes related to nutrient acquisition [38]. 

In hydroponic systems, the micro-algae aggregation from the nutritive solution is possible as its use 

encourages the good development of the plants [39] and increases leaf photochemical efficiency, root 

length and dry weight, carbohydrates, K, Ca, and proline [40]. They have positive effects on 

Figure 1. High crop production in the near future will be done through a good control of nutrient
solution. In addition, we should consider stimulants (algae extract, protein hydrolysates, humic
acids, phosphites, and phytohormones) and root bioprotection (fungi and bacteria) for greater nutrient
acquisition and yield in improving fertigation programs.

3. Biostimulants Usage in Crops

Another strategy for achieving high yields involves the usage of biostimulants, which include the
vitamins and enzymes that are easily metabolized by microorganisms [27]. Biostimulants improve
metabolic efficiency to induce an increase in yields and enhancement in crop quality; increase the
plants’ tolerance and abiotic stress retrieval; and ease absorption, translocation and nutrient usage.
Furthermore, this results in better quality attributes of products, including sugar content and color.
Improving certain physicochemical properties of soil and building soil microorganism development
contribute to the production of low-input crop [28,29]. Algae extract, protein hydrolyzates, humic
and fulvic acids, and other compound mixtures have properties that are better than basic nutrition.
They often improve growth and stress tolerance. Furthermore, all are vegetable biostimulants or
bioefectors [30]. Biostimulant action is diverse, but it can include N metabolism activation, P release
on soil, stimulation of soil microbial activity, and root stimulation [31].

3.1. Seaweed Extract

For the production of biostimulants, seaweed contains cytokines and auxins, which are essentially
trace amounts of plant hormones [32–35]. The biologically active compounds that are transferred
from seaweed biomass to the liquid phase during its fabrication include: polysaccharides, proteins,
fatty acids, pigments, polyphenol, and minerals [36]. Mineral trace amounts present in seaweed
extract act as enzymatic enhancers [34]. The benefits of seaweed application in the agricultural
field are numerous: they stimulate germination, plant growth, root and stem elongation, water
and nutrient absorption, frost resistance, biological control against phytopathogenic organisms, and
contaminated soil remediation [37]. Micro-algae extract has a biostimulant effect in from the expression
of characteristics of the roots and the genes related to nutrient acquisition [38]. In hydroponic systems,
the micro-algae aggregation from the nutritive solution is possible as its use encourages the good
development of the plants [39] and increases leaf photochemical efficiency, root length and dry weight,



Plants 2018, 7, 88 4 of 13

carbohydrates, K, Ca, and proline [40]. They have positive effects on attainment and profitability,
while they also improve the content of proteins in corn grain under stress conditions [41,42]. In soy,
the use of seaweed increased yield and a better absorption of N, P, K, Ca, and S was observed [43].
Furthermore, they have a reductive effect on abiotic stress, such as salinity, extreme temperatures,
nutrient deficiency, and drought [44].

Seaweed and algae extract enhance the soil health by improving the capacity of moisture retention
and developing microbe growth [45]. This improves the overall quality and certain characteristics,
which includes: size, color, firmness, total soluble solids, ascorbic acid level, and minerals in
tomato [46,47]. In corn, the algae extracts mainly stimulated the root growth, the nutrition uptake,
the esterase activity, and sugar content [48]. New research proves that algae extract that is fortified
with polysaccharides from the same algae resource can efficiently develop the growth of beans and
tomato [49], while the combination of algae extract and 5-aminolevulinic acid increased flavonoid and
antioxidants accumulation in Asparagus aethiopicus L. in saline [50].

3.2. Protein Hydrolyzates

Protein hydrolyzates are a group of important biostimulants that are based on a mixture of
peptides and amino acids, which can be of vegetable or animal origin [51,52]. Protein hydrolyzates
relieve the negative effects of abiotic stress from salinity, drought and heavy metals, and can stimulate
the plant microbiome [53]. Under saline conditions, hydrolyzates increase yield in fresh, dry biomass
and dry root weight in lettuce [54]. Hydrolyzate application in tomatoes improved the concentration
of K and Mg in the leaf and net assimilation of CO2 [55]. Besides, they have a similar effect to auxins
and gibberellin as they induce higher absorption of N and yield of corn, pea, and tomato [51]. With the
application of 2.5 and 5.0 mL L−1, the percentage of germination, weight, and height in soy, tomato,
and corn seedlings were improved [56].

3.3. Humic Acids

Humic acids are macromolecules that are a compound of humic substances. Commercial humic
acids are extracted from the peat, which can be produced by fermentation and polymerization/
condensation reactions. The humic substances are soluble in alkaline solutions, partially soluble
in water and insoluble in acidic solutions [57–63]. The more labile and functionalized fraction of
humic substances is responsible for root emission, while the more recalcitrant and less functionalized
fraction of humic acids is related to root growth [64]. The most recalcitrant structures of the humic
acids improve the preservation of organic matter in sandy soil [65]. Humic acids have a significant
effect on soil fertility and are vital in the establishment of biotic and abiotic interactions in the plant’s
rhizosphere [66]. The use of humic acids in the nutrient solution improves the root growth, with
the absorption of nutrients including Ca, and increases the shelf life in Gerbera jamesonii L. [67].
When they are applied to soil, leaves, or before seeding, they significantly improve the grain yield in
Vigna radiata L. [68], induce lateral root formation, and stimulate the micronutrient and macronutrient
assimilation [69]. Furthermore, they induce tolerance to environmental stress [70] and successfully
eliminates stress toxicity produced by Cd by modulating the status of water, photosynthetic apparatus,
and antioxidant activity [71].

3.4. Phosphites (Phi)

Phi is a reduced form of phosphate (Pi), which is widely used as commercial fungicide and
fertilizer or as biostimulants [72]. Phi is easily absorbed and transported through the xylem and the
phloem to all parts of the plant and can be applied in many ways to the crops, such as fertigation, foliar
spraying, log spraying, log injecting, surrow injecting, and soil flooding [73]. Potassium phosphite
(KPhi) can be used as a protection strategy in crops against pathogens [74]. Phi improved and
provided protection to cucumber plants against Pythium ultimum, and induced major yield and
growth. The foregoing was related with higher induction of antioxidant enzymes (peroxidases,
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superoxide, dismutase and catalasas) [75]. Phi increase the positive regulation of various defense genes
in jasmonate, salicylic acid and ethylene routs against Phytophthora [76]. Besides, it has an antibiotic
effect on mycelial growth and the production of zoospores of the oomycete [77]. KPhi improves
resistance through increasing the expression of defense molecules. The first events unleashed by
KPhi are related to the enhancement of the cell wall. At the same time, the transcription factors
StNPR1 and StWRKY act as coordinating amplifiers in the cascade in defense signaling [78]. Oxidative
stress caused by UV–B radiation is reduced in plants that are pretreated with KPhi as this increases
the defense mechanisms [79]. The application of KPhi before infection by pathogens efficiently
activates the antioxidant system and eliminates the reactive oxygen species [80]. There was an
increase in the flower number, foliar area, and P concentration in cucumbers [81]. Recently, innovative
and promising research has been carried out on cotton plants. Transgenic cotton plants expressing
the bacterial dehydrogenase phosphite gene (ptxD) are able to acquire the capacity to convert Phi
into orthophosphate (Pi, the metabolizable form of phosphorus). Such plants allow for a selective
fertilization scheme that is based on Phi as the sole source of P for the crop while offering an effective
alternative for suppressing weed growth [82]. This technology has the potential to prevent the overuse
of the limited Pi reserve and is environmentally sound. The Phi fertilizer use efficiency is close to
100% due its high solubility, reduced reactivity with soil components and non-utilization by most soil
bacteria. These characteristics make Phi superior to conventional phosphate-based fertilization [73].
Using phosphite as a dual fertilizer and herbicide may mitigate the overuse of phosphorus fertilizers
and reduce eutrophication and the development of herbicide resistance, which in turn will improve
the sustainability of agriculture [83].

3.5. Plant Hormones

The use of plant hormones in crops is also a strategy to achieve high yields. For example,
the application of indol-3-butyric acid (AIB) through fertigation at 0.5 L ha−1 doses increased
pepper yields [84]. When auxins are applied in fertigation, the yield is significantly higher [85].
However, the response differed in growing melons (Cucumis melo L.) because the auxin application
did not improve yield and the nutrients in crops [86]. Auxins play a crucial role in the regulation
and development of different organs, including the root. They work as long- and short-distance
signals and they coordinate cellular proliferation, cellular elongation, cellular differentiation, and
endo-replication [87–89]. The response of the root architecture to nutrients can be modified through
growth regulators, which suggests that nutritional control in root development can be mediated by
changes in the synthesis and hormonal carriage [90]. It has been suggested that abscisic acid (ABA)
accumulation modulates auxin carriage in the root, thus fostering root growth under water stress [91].
The lateral root formation and emergence in response to the phosphate availability is mediated by
auxins [92]. Cytokinins regulate the auxin distribution in the root apical meristem [93] and function as
a key regulator in stress tolerance [94].

4. Bioprotection in Plants

The microbial activity also stimulates plant growth through hormonal signaling, while plant
growth-promoting rhizobacteria (PGPR) increase nutrient bioavailability in the soil and carbon
cycle [22,95–99]. Most of the plants have an additional mechanism of nutrient acquisition (particularly
N and P) [100–102]. These include beneficial microorganisms, such as bacteria, and fungi, which can
be free-living, rhizospheric, or endosymbiotic [29]. The interaction between fungi and host plants
is principally part of a nutrient acquisition strategy as the mycorrhizal fungi improve the nutrient
absorption for plant growth. Therefore, the fungi is compensated by C compounds derived from
photosynthesis [22,100]. At a defined pH range, the soil microorganisms may develop. For example,
the bacteria population is higher in neutral soil and lower in acid soil [103]. Soil redox fluctuations,
pH, and organic matter regulate N formation by Azospirillum spp. [104]. In phytopathogenic fungi, the
Aphanomyces cochlioides and Pythium spp. impact was minor with an increase in pH [105]. When soil pH
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is increased to 7.0 and clay is added, it is possible to eradicate wilting due to Fusarium oxysporum [106].
On the other hand, the use of Bacillus subtilis can also reduce disease severeness caused by Phytophthora
and increase the root length [107]. Other Bacillus genera are capable of reducing the root rotting caused
by F. oxysporum by up to 70% [108]. Strain bioformulations of Pseudomonas and Beauveria effectively
reduce pest and disease impact [109]. Therefore, its application in the form of special solution in the
irrigation head should be considered in fertigation programs as a potential factor in obtaining high
yields (Figure 1).

5. Conclusions and Perspective

Recent climate models predict that the impact and duration of drought and stress periods caused
by heat are increasing in many regions of the world. This has a negative impact on the main crops, and
consequently, the principal challenges at the international level involve improving the yield of crops
under biotic and abiotic stresses. Furthermore, the genetic engineering of crop plants for enhanced
salt tolerance will be a very important approach. At least 20% of all irrigated lands are salt-affected,
with some estimates being as high as 50%. Attempts to improve the salt tolerance of crops through
conventional breeding programs have met with very limited success due to the complexity of traits as
salt tolerance is genetically and physiologically complex. Molecular genetics and functional genomics
provide a new opportunity to combine molecular and physiological knowledge to improve the salinity
tolerance of plants relevant to food production and environmental sustainability [110–114]. The current
applied technology in food productions is not enough to ensure that the global population is fed.
Promising research that enables a new green revolution will be related to root architecture, nutrient
absorption, and nitrogen fixation [115]. Projections for agriculture in Mexico due to climate changes
indicate that a reduction of 27% in national agro-food production will occur by the year of 2080 [116].
Therefore, it is necessary to develop efficient strategies to ensure food security [117]. Water scarcity
is present in many regions of the world. Agriculture consumes around 70% of fresh water at the
global level [118]. In areas where the supply of available water limits agriculture production, the
issue of deficit irrigation (DI) will gain importance as farmers endeavor to increase the productivity
of land. However, due to the limited resources of water, they must cautiously choose crops and
irrigation strategies to maximize the crop value and livestock production [119]. According to Yang
and Zang [120], it will necessary to improve water use efficiency (WUE) to maintain or even increase
crop yield. Hanjra et al. [121] mentioned that the reutilization of wastewater is an issue that needs
to be addressed at the global level, but human health and environment protection are insufficient in
most of the countries in development. Wastewater reutilization could reduce the water footprint in
food production. There is the need to integrate the usage of water reutilization in the governance
central framework in order to effectively face the challenges and maximize the potential of this vital
resource. The usage of wastewater could be a reliable source for the growth of crops throughout the
whole year [122]. It is also necessary to develop new technologies to accelerate the improvement
of crops through the enhancement of genotyping and phenotyping and to raise genetic diversity in
germplasm [123]. Features that reduce the difference between the potential yield and the real yield in
a drought-susceptible environment need to be determined. To achieve this, the main approaches must
involve the study of the plant physiology, molecular genetics, and molecular biology [124]. The rapid
advance in genomics and proteomics knowledge will indeed be beneficial in refining the methods
of transformation and molecular reproduction in order to achieve significant improvement of future
crops [125]. In the biostimulants case, the recommendations for future directions of investigation
include: finding the most promising substances, isolating active ingredients, and clearly demonstrating
the mechanisms that affect the nutrient absorption [126]. The usage of friendly bacteria in combination
with humic substances might be useful. For example, its potential has been observed when the plants
are subjected to moderate or severe stress. However, there is a lack of studies that have focused
on the combined usage of these techniques [127]. Another innovative study has indicated that the
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application of biostimulants and a low dose of fertilizer (N, P, and K) avoids oxidative stress and
improves adaptation to stress conditions without affecting yield [128].

Finally, the high yield management is possible if the agronomic management of
soil–plant–microorganism is considered. A challenge for the world’s agronomists involves raising
the yield in the same surface while ensuring that the product is safe and of high quality. Adequate
management of vegetal nutrition, the usage of biostimulants and strain bio-formulation for the nutrient
protection and acquisition must be undertaken in order to achieve this. The use of biostimulants
and microorganisms in fertigation programs is necessary since the crops are exposed to temperature
changes, drought, frost, pest, and disease exposure. Therefore, offsetting such stress will help to
achieve the potential yield in each crop.
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prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition.
J. Plant Interact. 2017, 12, 209–218. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fcr.2007.07.004
http://dx.doi.org/10.1016/j.biotechadv.2009.11.005
http://www.ncbi.nlm.nih.gov/pubmed/19914371
http://dx.doi.org/10.1186/s40538-017-0112-x
http://dx.doi.org/10.1080/17429145.2017.1319503
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Nutrient Solution in Fertigation 
	Biostimulants Usage in Crops 
	Seaweed Extract 
	Protein Hydrolyzates 
	Humic Acids 
	Phosphites (Phi) 
	Plant Hormones 

	Bioprotection in Plants 
	Conclusions and Perspective 
	References

