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Abstract

Background: Dental implants have become well-established in oral rehabilitation for fully or partially edentulous patients.
However, peri-implantitis often leads to the failure of dental implants. The aim of this study was to understand the core
microbiome associated with peri-implantitis and evaluate potential peri-implantitis pathogens based on canine peri-
implantitis model.

Results: In this study, three beagle dogs were used to build peri-implantitis models with ligature-induced strategy. The peri-
implant sulcular fluids were collected at four different phases based on disease severity during the peri-implantitis
development. Microbial compositions during peri-implantitis development were monitored and evaluated. The microbes
were presented with operational taxonomic unit (OTU) classified at 97% identity of the high-throughput 16S rRNA gene
fragments. Microbial diversity and richness varied during peri-implantitis. At the phylum-level, Firmicutes decreased and
Bacteroides increased during peri-implantitis development. At the genus-level, Peptostreptococcus decreased and
Porphyromonas increased, suggesting peri-implantitis pathogens might be assigned to these two genera. Further species-
level and co-occurrence network analyses identified several potential keystone species during peri-implantitis development,
and some OTUs were potential peri-implantitis pathogens.

Conclusion: In summary, canine peri-implantitis models help to identify several potential keystone peri-implantitis associated
species. The canine model can give insight into human peri-implantitis associated microbiota.
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Background
With the development of oral technologies, dental im-
plants are a highly successful and predictable treatment
for replacing missing teeth, which can rehabilitate oral

health-related quality of life [1]. However, breakdown of
soft and hard tissue around osseointegrated implants
would result in the failure of dental implants known as
inflammatory peri-implant disease [2–4]. Clinically, in-
flammatory peri-implant diseases are categorized into
peri-implant mucositis and peri-implantitis [5, 6]. Peri-
implant mucositis is defined as a reversible inflammatory
reaction in the soft tissues surrounding a functioning
implant, while peri-implantitis is described as inflamma-
tory reactions involving supporting bone loss [5, 6]. It
has been estimated that the rate of implant-based and
subject-based peri-implantitis are 9.25% and 19.83%,
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respectively [7]. In another study, the prevalence of peri-
implantitis is up to 22% [8]. Therefore, understanding
the mechanism that induces peri-implantitis is essential
in current restorative dentistry, and might help to find
preventive strategies for peri-implantitis and provide ef-
fective peri-implantitis treatment methods [9, 10].
It is generally accepted that peri-implantitis is a com-

plex disease with multiple risk factors, and it initiates
from a bacterial challenge and host overreaction [11,
12]. Much effort has been made to study the peri-
implant biofilm and its difference from periodontal bio-
film [13], and reveal the bacterial colonization in healthy
and diseased states [14]. The comparison between dis-
eased peri-implant and healthy periodontal tissues has
been applied [15]. Several potential microbial strains,
such as Porphyromonas gingivalis and Prevotella inter-
medius, have been detected in oral biofilm at the peri-
implantitis sites. However, there is no clear consensus
for core microbiota associated with peri-implantitis [16].
Traditional cultured strategies provide valuable informa-
tion regarding known pathogens, but limited data on
unculturable species and microbiota during peri-
implantitis development are available. Global investiga-
tion of microbiota variation during peri-implantitis de-
velopment would make it possible to identify peri-
implantitis associated microbiota [17, 18], and high-
throughput sequencing of 16S rRNA gene technology
provides a wealth of data pertaining to the differences
between healthy and diseased implants [19, 20].
Experimental peri-implantitis animal models, such as

mice and dogs, have been developed to study the mecha-
nisms and development of marginal bone loss [8, 21]. In
previous animal studies, undisturbed peri-implant
plaque accumulation often led to negligible or no mar-
ginal bone loss [22]. In order to obtain reliable peri-
implantitis animal models, sub-marginal ligatures of cot-
ton, silk or other materials have been used to induce
and speed up the peri-implantitis process [19, 23, 24].
Normally, sub-marginal ligation results in significant
bone loss in a few weeks, and the peri-implantitis model
can be established in a short time [25, 26]. However, in-
vestigation of microbial dynamics during peri-implantitis
model establishment had not been reported.
Here, the present study was designed to conduct a

canine peri-implantitis model using sub-marginal liga-
tures method. The clinical parameters at different
peri-implantitis phases were evaluated, and microbial
variation associated with the severity of tissue de-
struction and inflammatory progression of experimen-
tal peri-implantitis were investigated. The core
microbiota associated with peri-implantitis and their
networks were analyzed, and the potential keystone
microbial taxa associated with peri-implantitis were
discussed.

Results
Establishment of peri-implantitis models
Eight teeth of each dog were successfully removed with
minimal trauma (Supplementary Figure 1). After healing
and recovery, the peri-implantitis induction was imple-
mented. Overall, healing after tooth extraction and im-
plant placement was uneventful at all surgical sites.
Initial stability of each implant was confirmed after im-
plant installation, and no implant loss was observed dur-
ing the entire experimental period.
No visible inflammatory signs were observed before

ligatures were applied at the implant sites (Phase T0)
(Fig. 1 and Supplementary Figure 1). As expected, heavy
plaque accumulation, bleeding on probing and probing
depths increased following ligature placement, and sam-
ples at peri-implantitis timepoints were collected (Phase
T1 to Phase T3). After each sampling, the implants were
kept immobile by manually checking.
The disease severity around the inflammatory teeth

were evaluated with heavy depth measurements (Fig. 2).
The disease severity around the distobuccal, tongue side,
and mesiobuccal increased during the peri-implantitis
induction period (Phase T1-T2) and self-spontaneous re-
covery period (Phase T3). Meanwhile, the disease sever-
ity around buccal increased during the peri-implant
inflammation period (Phase T1 and Phase T2), and the
disease severity alleviated during the spontaneous recov-
ery period (Phase T3). Taken together, teeth health dete-
riorated after peri-implantitis induction (Phase T1 to
Phase T3) (Fig. 2).

Diversity of the peri-implant sulcus samples at different
phases
The 24 peri-implant sulcus samples collected at Phase
T0 to T3 were sequenced, and the data were used to in-
dicate microbial diversity of these samples (Supplemen-
tary Figure 2). The operational taxonomic unit (OTU)
numbers of these 24 samples were 206–445. The average
OTU numbers of Phase T0 to T3 were 294, 337, 389,
and 305, respectively (Table 1). Only the OTU numbers
between Phase T0 and Phase T2, as well as Phase T2
and Phase T3 displayed differences (Supplementary
Table 1). The alpha parameters of Shannon_2, simpson,
dominance and equitability at Phase T0 were higher
than the respective parameters at Phase T1 to T3 (Table
1). Moreover, these four alpha parameters displayed dif-
ferences or significant differences between the healthy
state and the peri-implantitis period, including Phase T0
and Phase T1, Phase T0 and Phase T2, and Phase T0
and Phase T3 (Supplementary Table 1). However, these
four alpha parameters displayed no differences between
Phase T1 and Phase T2, Phase T1 and Phase T3, and
Phase T2 and Phase T3 (Table 1 and Supplementary
Table 1).
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Microbiota analyses
The microbial distribution of the same phases were simi-
lar (Supplementary Figure 3), while the microbial
distribution of different phases harbored different phyla
(Fig. 3a). At Phase T0 of the healthy state, the most
dominant phyla were Firmicutes (68.1%), Actinobacteria
(11.7%), and Bacteroidetes (9.4%). At Phase T1 during
the first 2 weeks of peri-implantitis, the most dominant
phyla were Firmicutes (27.8%), Bacteroidetes (35.8%),
and Spirochaetes (10.2%). At Phase T2, the most domin-
ant phyla were Firmicutes (39.9%), Bacteroidetes (30.0%),
and Euryarchaeota (14.1%). At Phase T3 of the self-
spontaneous recovery period, the most dominant phyla
were Firmicutes (30.7%), Bacteroidetes (33.9%), Spiro-
chaetes (13.6%), and Euryarchaeota (6.1%). The Firmi-
cutes, Bacteroidetes and Synergistetes distribution
between Phase T0 and Phase T1 to T3 displayed signifi-
cant differences. The Euryarchaeota distribution be-
tween Phase T0 and T2, T0 and T3, T1 and T2, and T1
and T3 displayed significant differences (Supplementary
Table 2). Besides, a few other phyla displayed differences
between different phases (Supplementary Table 2).

At the genus-level, microbial distribution at different
phases changed (Fig. 3b). At Phase T0, the most dominant
genera were Peptostreptococcus (43.5%), Actinomyces (7%),
and Streptococcus (4.9%). At Phase T1, the most dominant
genera were Portostreptococcus (25.6%), Treponema
(10.0%), and Fusobacterium (8.8%). At Phase T2, the most
dominant genera were Portostreptococcus (13.0%), Peptos-
treptococcus (10.5%), and Methanobrevibacter (5.7%). At
Phase T3, the most dominant genera were Portostrepto-
coccus (20.0%), Treponema (13.4%), and Portostreptococcus
(10.9%). Some genera, including Peptostreptococcus, Por-
phyromonas, Treponema and Fretibacterium, displayed
significant differences between Phase T0 and Phase T1 to
T3. The Methanobrevibacter displayed significant differ-
ences between T0 and T2, T0 and T3, T1 and T2, and T1
and T3 (Supplementary Table 3). No significant differ-
ences of Bacteroides and Streptococcus between Phase T0
and Phase T1 to Phase T3 were observed.

The dominant OTUs in the microbiota
Most OTUs with average compositions > 1% in the four
phases had > 97% identity with known isolates (Table 2).

Fig. 1 Peri-implantitis development timeline and the sampling time points

Fig. 2 Disease severity of the bucca, distobucca, tongue side and mesiobuccal of the implants during Peri-implantitis development. The error
bars represent the standard deviation of six replicates of each site around the implant
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Table 1 Average alpha diversity parameters during Peri-implantitis development of the dog teeth

Richness Chao1 Shannon_2 Simpson Dominance Equitability

Phase T0 294 ± 78 295 ± 78 4 ± 0.8 0.2 ± 0.1 0.8 ± 0.1 0.5 ± 0.1

Phase T1 337 ± 76 339 ± 75 5.3 ± 0.5 0.07 ± 0.03 0.9 ± 0.03 0.6 ± 0.08

Phase T2 389 ± 34 390 ± 34 5.6 ± 0.4 0.05 ± 0.02 1 ± 0.02 0.7 ± 0.04

Phase T3 305 ± 78 307 ± 76 5.1 ± 0.4 0.06 ± 0.02 0.9 ± 0.02 0.6 ± 0.07

Fig. 3 Microbial compositions of the implant samples during Peri-implantitis development at phylum-level (a) and genus-level (b)
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Besides, OTU distribution at different phases displayed
difference or significant difference (Supplementary
Table 4). OTU_1, which composes 43.46% at Phase T0,
might be one Peptostreptococcus canis strain isolated
from subgingival plaque from canine oral cavity [27].
Compared with Phase T0, P. canis composition de-
creased to 5.5% at Phase T1, 10.5% at Phase T2, and

10.9% at Phase T3. The compositions of OTU_3 which
might be Porphyromonas macacae increased from <
0.2% at Phase T0 to 6.3% at Phase T1, 1% at Phase T2,
and 11% at Phase T3 [28]. OTU_7, which was assigned
to the genus of Porphyromonas, composed 0.12% at
Phase T0, but increased to 0.48% at Phase T1, 5.43% at
Phase T2, and 6.71% at Phase T3. OTU_13, which was

Table 2 The distribution of dominant OTUs identified during Peri-implantitis development and the 16S rRNA gene fragments of
their closest isolates and uncultured bacteria

Closest isolates Identity Closest uncultured (nr/nt) Identity Phase
T0

Phase
T1

Phase
T2

Phase
T3

OTU_
1

Peptostreptococcus canis (NR_117641.1) 99.50% Uncultured bacterium (JQ192915.1) 100% 43.46% 5.48% 10.50% 10.89%

OTU_
3

Porphyromonas macacae (NR_025908.1) 97.88% Uncultured bacterium (KX437329.1) 100% 0.19% 6.29% 0.95% 10.98%

OTU_
7

Porphyromonas endodontalis (NR_
113085.1)

94.37% Uncultured Porphyromonas sp. canine
oral (JN713348.1)

99.30% 0.12% 0.48% 5.43% 6.71%

OTU_
13

Fretibacterium fastidiosum (NR_108538.1) 95.82% Uncultured Fretibacterium sp. Feline
(KM462182.1)

100% 0.58% 3.05% 3.99% 4.66%

OTU_
5

Bacteroides pyogenes (NR_113048.1) 100% Uncultured Bacteroides (MH755473.1) 100% 3.49% 0.61% 2.32% 5.30%

OTU_
9

Fusobacterium simiae (NR_113318.1) 99.51 Uncultured Fusobacterium sp. canine
(JN713401.1)

100% 0.07% 8.22% 0.79% 2.07%

OTU_
8

Porphyromonas gulae (NR_113088.1) 99.53% Uncultured bacterium (HM328336.1) 99.76% 0.29% 6.92% 2.65% 0.88%

OTU_
4

Methanobrevibacter oralis (LN898260.1) 100% Uncultured Methanobrevibacter
(JN052095.1)

100% 0.23% 0.09% 5.68% 4.53%

OTU_
2

Methanimicrococcus blatticola
(JQ268014.1)

98.97% Uncultured Methanimicrococcus
(LT624863.1)

97.42% 0.24% 0.09% 8.23% 1.55%

OTU_
19

Treponema denticola (NR_074582.1) 97.91% Uncutlured Treponema (JN713361.1) 100% 0.09% 3.37% 0.79% 4.89%

OTU_
10

Porphyromonas cangingivalis (NR_
113080.1)

100% Uncultured bacterium (JF241087.1) 100% 0.85% 6.38% 1.72% 0.10%

OTU_
6

Intestinimonas butyriciproduens (NR_
118554.1)

94.1% Uncultured Clostridiales bacterium
(JN713380.1)

99.75% 0.40% 0.17% 5.41% 2.56%

OTU_
14

Treponema sp. PT8 (AM980447.1) 100% Uncultured Treponema sp. (GQ424168.1) 99.77% 0.05% 2.75% 0.06% 4.36%

OTU_
37

Odoribacter denticanis strain (NR_
042977.1)

99.76% Odoribacter denticanis canine oral
(JN713247.1)

99.76% 0.83% 1.28% 2.29% 1.79%

OTU_
16

Olivibacter sitiensis (NR_043805.1) 84.15% Uncultured Bacteroidia bacterium
(KM462114.1)

100% 0.07% 0.04% 3.87% 1.81%

OTU_
17

Staphylococcus intermedius NCTC 11048
(NR_113351.1)

100% Uncultured Staphylococcus sp. strain
(JX482520.1)

100% 4.94% 0.02% 0.02% 0.07%

OTU_
15

Metaprevotella massiliensis (NR_147377.1) 90.59% Prevotella sp. canine oral taxon
(JN713360.1)

100% 0.09% 0.45% 3.52% 0.91%

OTU_
11

Porphyromonas crevioricanis (NR_
104834.1)

100% Uncultured bacterium (JF17468.1) 100% 0.04% 2.47% 1.24% 1.16%

OTU_
47

Schaalia canis (NR_025366.1) 98.34% Uncultured bacterium (JF223833.1) 100% 3.76% 0.51% 0.35% 0.02%

OTU_
26

Intestinimonas butyriciproducens (NR_
118554.1)

94.84% Uncultured Ruminococcaceae bacterium
(MH572181.1)

100% 0.08% 0.94% 1.66% 1.77%

OTU_
12

Labilibacter aurantiacus (NR_156071.1) 85.31% Uncultured bacterium (KJ874155.1) 92.47% 0.12% 1.71% 1.40% 1.10%

OTU_
30

Filifactor villosus (NR_041928.1) 99.01% Filifactor sp. Feline (KM462053.1) 100% 0.19% 2.17% 1.09% 0.59%
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assigned to the genus of Fretibacterium, composed only
0.58% at Phase T0, but it increased to > 3% at Phase T1
to T3. In particular, some methanogens, such as OTU_2
and OTU_4, composed < 0.25% at Phase T0. The com-
position of OTU_2 and OTU_4 increased to 13.91% at
phase T2, and their composition decreased to 6.08% at
Phase T3. A few other dominant OTUs were assigned to
the typical oral microbiota or clinical pathogens, and the
compositions of clinical pathogens increased (Table 2).
For example, OTU_19 was assigned to teeth infection
associated bacteria Treponema denticola [29, 30]. OTU_
19 composition at Phase T0 was 0.09%, and its compos-
ition increased to 3.37% at Phase T1, 0.79% at Phase T2,
and 4.89% at Phase T3.

Microbial similarity of the samples at different phases
The microbial composition was used to compare sam-
ples at different phases. The NMDS result based on Bray
Cutis distance showed that the six samples at Phase T0
were clustered and were obviously different from other
peri-implantitis samples. Phase T1 samples were clus-
tered, and were different from other samples. Moreover,
twelve samples at Phase T2 and Phase T3 were clus-
tered, and were different from samples at Phase T0 and
Phase T1 (Fig. 4a). The UPGMA tree based on Bray
Cutis distance also showed that samples at different
phases were clustered. In particular, the six samples at
Phase T0 were clustered, and another eighteen samples

at Phase T1 to T3 were clustered (Fig. 4b). In addition,
the distance between samples at Phase T2 and Phase T3
was shorter than the distance between samples at Phase
T1 and Phase T2 or Phase T1 and Phase T3. In all, the
UPGMA result was in accordance with the NMDS result
that the healthy state Phase T0 samples were divergent
from the diseased samples at Phase T1 to Phase T3.

Network analyses of the microbiota
The correlations of all the samples were calculated, and
only the dominant OTUs (> 0.5%) with strong relation-
ship (ρ > 0.6 and P < 0.05) were used for network ana-
lyses [31, 32]. The co-occurrence network contained 37
nodes (OTUs) and 208 edges. The compositions of these
OTUs in the 24 samples were between 0.54% and 4.6%
(Fig. 5). Among the 208 edges, only one edge between
OTU_18 and OTU_28 indicated negative correlation.
The mean edge per node was 11, and the eccentricity of
the node was 3.6. The average shortest path length was
2.1 with a closeness centrality of 0.5. The average radial-
ity of the node was 0.8, and the topological coefficient
was 0.5.
Among the 37 nodes (OTUs), 13 of them were

assigned to Bacteroidetes, and 12 of them were assigned
to Firmicutes. The composition of Bacteroidetes and Fir-
micutes OTUs of the 37 OTUs was 67.57%. Interestingly,
Bacteroidetes and Firmicutes were the two most domin-
ant phyla of the 24 samples, and composed 68.89% of

Fig. 4 Microbial distribution differences of the collected implant samples during Peri-implantitis development were displayed with the NMDS (a)
and UPGMA (b) based on Bray Curtis distance
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the microbiota (Fig. 3a). All these 37 OTUs were among
the top39 OTUs of the whole microbiota. However, the
most abundant OTU in the microbiota, OTU_1, was not
in the network. Besides, OTU_ 122, which composed
12.34% of one sample and had an average composition
in the 24 samples of 0.56%, was not in the network.
Based on the connection in the network and average
compositions, OTU_3, OTU_7, OTU_13, OTU_18,
OTU_23, OTU_29, OTU_26, OTU_41, and OTU_30
were identified as the keystone taxa (Fig. 5). Addition-
ally, the compositions of all these nine OTUs at Phase
T0 were lower than their corresponding compositions in
Phase T1 to Phase T3. Among the nine keystone taxa,
four of them (OTU_18, OTU_23, OTU_26, OTU_30)
were assigned to Firmicutes, three of them (OTU_3,
OTU_7, OTU_29) were assigned to Bacteroidetes, OTU_

13 was assigned to Synergistetes, and OTU_41 was
assigned to Proteobacteria.

Discussion
Peri-implantitis strongly affects adjacent tissues, result-
ing in losing the function of the osseointegrated implant
[7, 8]. Peri-implantitis is caused by microbial infection,
but the associated pathogenic microbes are unclear [9].
The microbial distributions between the healthy dental
sites and peri-implantitis sites in subjects with chronic
periodontitis had been conducted, showing diseased im-
plants and corresponding periodontally healthy sites har-
bored different microbiota [33]. However, global
microbial variation during peri-implantitis development
was unknown. The comparison between human healthy
and diseased peri-implant sites had been tried, but the

Fig. 5 Network of co-occurring dominant OTUs (with relative composition > 0.5%) based on correlation analysis. The selection standards for
strong correlation are Spearman’s ρ > 0.6, and significant correlation with P < 0.05. The size of each node is proportional to the relative
abundance; the thickness of each connection between two nodes (edge) is proportional to the value of Spearman’s correlation coefficients. The
line between two nodes in blue shows negative correlation between the two nodes; the line between two nodes in red shows positive
correlation between the two nodes
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human data might be affected by gender, antibiotic in-
take, or age [34]. The animal model can provide peri-
implantitis samples with the same criteria [35]. In this
study, the clinical parameters at different phases during
peri-implantitis setup and progression in a canine model
were collected, showing that the disease severity in-
creased during peri-implantitis development (Fig. 2).
Moreover, the microbiota changed dramatically during
the shift from healthy status to peri-implantitis status.
The clinical parameters showed that the disease sever-

ity increased and the peri-implantitis model was success-
fully built, indicating cotton ligature around dental
implant is one effective strategy for peri-implantitis in-
duction [19]. During peri-implantitis development, mi-
crobial richness and diversity increased from the healthy
phase to diseased phases (Table 1), suggesting high mi-
crobial richness and diversity were associated with se-
vere infection. These results were different from
previous results that high microbial richness was associ-
ated with healthy samples [33]. However, the increased
richness and diversity in canine peri-implantitis develop-
ment complements earlier study results that peri-
implantitis sites exhibited higher bacterial counts com-
pared to healthy sites [36]. The increased microbial spe-
cies during in peri-implantitis development might not
only derive from the original dental implant sites, but
also from the oral microbiome or environmental micro-
biome [14]. The decreased microbial richness and diver-
sity from Phase T2 to Phase T3 (Table 1) suggested that
the host self-spontaneous progression recovery system
functioned and the health status improved after removal
of the ligatures.
The human oral microbiome database (HOMD) col-

lects bacterial species distributed in the oral region and
the upper respiratory tracts, and the dominant phyla
were Actinobacteria, Firmicutes, and Proteobacteria [37].
Different from the microbial collection in HOMD, the
main phyla in the healthy implants were Firmicutes
(51.9%), Bacteroidetes (18.5%), Fusobacteria (11.1%), and
Proteobacteria (7.4%), while the dominant phyla in peri-
implantitis were Firmicutes (30.6%), Bacteroidetes
(40.3%), Fusobacteria (13.9%), and Proteobacteria (5.6%)
[15]. The decrease of Firmicutes and increase of Bacter-
oidetes in human peri-implantitis were the same as the
microbiota variation during peri-implantitis develop-
ment in this study [34], showing that phyla variation
might be a common phenomenon during peri-
implantitis development in human and animals. The
Synergistetes and Spirochaetes compositions of human
peri-implantitis sites were higher than that of human
healthy sites [34, 36], and their compositions increased
during peri-implantitis development (Fig. 3). Compared
with healthy dental implant sites, T. denticola were often
detected in peri-implantitis sites [36]. In this study, more

T. denticola were detected at Phase T2 and T3 (Table
2). The results suggested a canine model can imitate hu-
man peri-implantitis, which might be useful in future
human peri-implantitis therapeutic studies.
Peri-implantitis has been successfully induced by oral

infection with P. gingivalis in mice, and P. gingivalis has
often been identified at peri-implantitis sites [12, 38, 39].
OTU_3 and OTU_7 assigned to Porphyromonas were
identified in this study, and the compositions of OTU_3
and OTU_7 were higher at the diseased phases (Phase
T1 to Phase T3) than at the healthy phase (Phase T0),
showing Porphytomonas might be associated with peri-
implantitis. OTU_3 and OTU_7 were identified as key-
stone taxa, suggesting these two strains might be one
potential peri-implantitis cause [10]. The compositions
of methanogens were higher at Phase T2 and Phase T3,
but they were not keystone taxa, indicating methanogens
might not be an indicator of peri-implantitis develop-
ment [40]. Prevotella nigrescens was also identified to be
associated with peri-implantitis lesion [12, 41], but no
Prevotella was identified in oral peri-implantitis micro-
biome in this study (Table 2). Though the microbiota
between humans and animals were slightly different at
species-level, establishment of animal oral models might
give insights into microorganisms associated with hu-
man oral diseases in the future.

Conclusion
In summary, we successfully established an experimental
peri-implantitis animal model using ligature-induced
method, and the increased severity of inflammation is
consistent with the progression of the peri-
implantitis disease as we expected. The investigation of
the microbial variation during peri-implantitis develop-
ment identified several OTUs associated with peri-
implantitis. This study provides insight into the peri-
implantitis microbiome and deepens our understanding
of keystone taxa during peri-implantitis development.

Methods
Animals
The animal experiment had been reviewed and approved
by the Ethics Committee for Animal Research in Shang-
hai 9th People’s Hospital, Shanghai Jiao Tong University.
Three two-year-old male beagles weighing 10–15 kg
were bought from Shanghai Jiagan Biotech Co. Ltd. and
used for the peri-implantitis experiment in this study.
The dogs were housed individually and fed a soft diet at
the Animal Research Center of Shanghai 9th People’s
Hospital, School of Medicine, Shanghai Jiao Tong Uni-
versity, Shanghai, China. All the dogs had fully erupted
permanent dentition and good general health before the
experiment. The dogs were sacrificed in enthanasia by
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intravenous administration of a lethal pentoharbital so-
dium dose of 120 mg/kg weight.
The remaining teeth were cleaned twice a week with

0.12% chlorhexidine and soft toothbrush. All surgical
procedures were performed under general anesthesia by
sedation with 2% xylazine hydrochloride and ketamine
hydrochloride/zolazepam hydrochloride. The surgical
sites were locally anesthetized using 2% lidocaine hydro-
chloride with 1:100,000 epinephrine. The surgical site
was shaved and cleaned with chlorhexidine ethanol solu-
tion 0.5 mg/ml, and covered with a sterile surgical drape.
The animals were made to fast for 12 h preoperatively,
but allowed to drink water ad libitum.

Teeth removal and implant placement
All the premolars (M1-M4) in the mandible (eight teeth
of each dog) were extracted bilaterally from the three
dogs using a minimally invasive approach (Supplemen-
tary Figure 1). After a healing period of 12 weeks, three
implants (3.0 mm in diameter and 9.0 mm in length,
Astra, Switzerland) were inserted at the extraction sites
of both sides. Mechanical cleaning was performed to re-
move supragingival calculus around natural teeth 1-
week pre-operation. All implants were left to heal in a
submerged position for another 12 weeks, and the
second-stage surgery was conducted to replace cover
screws with healing abutments (width: 4 mm, height: 4
mm) (Phase T0) (Fig. 1). No plaque control procedures
were performed after ligature placement.

Induction of peri-implantitis and sample collection
A cotton ligature was ligated around each implant fix-
ture below the healing abutment to allow for plaque ac-
cumulation and inflammatory infection [19, 42]. Two
weeks later, a clinical and radiologic examination indi-
cated that the peri-implant mucositis was established,
and the samples were collected (Phase T1). Meanwhile,
additional ligation was performed below the preexisting
ligatures every 2 weeks, and the samples were collected
after another 6 weeks (Phase T2), while radiography
showed significant bone loss. Then the ligatures were re-
moved, and the inflammation sites were left alone for
self-spontaneous progression recovery. Four weeks later,
samples were collected (Phase T3) (Fig. 1).
During sample collection, the sampling sites were

dried with an air pistol, and samples of peri-implant sul-
cular fluid (PISF) were collected [39]. Sampling sites
were exposed from moisture after supra-mucosal plaque
was removed. Filter strips (2 mm × 10mm) were inserted
into the bottom of the peri-implant sulcus with a mild
resistance at the buccomesial and buccodistal aspects of
peri-implant sulcus for 30 s. All the collected strips were
stored at − 80 °C before use.

Clinical and radiographic examination
Clinical measurements were taken at the mesial, buccal,
distal, and lingual sites of each implant using a UNC15
probe (Hu-Friedy, Chicago, IL, USA). The peri-implant
probing depths (PD) and the relative clinical attachment
levels (rCAL) in mm were measured. In addition, the
Modified Plaque Index (mPI) was measured along the mu-
cosal margin and recorded as presence (1) or absence (0);
the bleeding on probing (BOP) was measured 15 s after
probing and recorded as presence (1) or absence (0).
These measurements were performed by two examiners

after a calibration exercise demonstrating 95.3% concordance
within 1mm for measurements of PD. The disease severity
was indicated based on the measured clinical parameters.
Intra-oral radiographs of all the implant sites were

taken using paralleling technique combined with long
cone (Rinn XCP, Dentsply, Elgin, IL, USA).

DNA extraction and sequencing
DNA were extracted from the collected strip samples using
DNeasy Kit (Cat No./ID: 47014, Qiagen, Germany). DNA of
each sample was diluted to proper concentration for gene
amplification of 16S rRNA gene V3-V4 regions [43]. The
Phanta Max Super-Fidelity DNA Polymerase (Vazyme Bio-
tech, Nanjing, China) was used for 16S rRNA gene fragment
amplification following the manufacturer’s procedure, and
the amplification cycles were 27. Further sequencing was im-
plemented by DeepLab Co., Ltd. (Shanghai, China).

16S rRNA gene analyses
USEARCH software with default parameters were used to
analyze the fastq files [44]. The USEARCH UPARSE was
used to classify the obtained clean reads into operational
taxonomic unit (OTU) based on 97% identity, and UPARSE
analysis pipeline was applied to remove chimeric reads [43,
45]. USEARCH was used to analyze the phylogenetic classifi-
cation of the obtained 16S rRNA gene fragment sequences,
and RDP training set (version v16) with a confidence thresh-
old of 0.8 was used as the reference database [46]. In
addition, USEARCH was further used for the α and β diver-
sity analyses [47]. The unweighted pair-group method with
arithmetic means (UPGMA) and non-metric multi-
dimensional scaling (NMDS) based on Bray Curtis were ana-
lyzed by R software [47].
The co-occurrence network analysis strategy was car-

ried out to explore co-occurrence of the abundant OTUs
in the microbiota [48]. The correlation between OTUs
was calculated with spearman’s method with pairwise
distance. To identify keystone taxa, only strong correl-
ation between OTUs’ relationship with ρ > 0.6, and sig-
nificant correlation with P < 0.05 was kept. Finally, only
OTUs with relative composition > 0.5% were used for
further co-occurrence analysis and network construction
using Cytoscape [32, 49].
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