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Abstract: N6-methyladenosine (m6A) modification on RNA plays an important role in tumorigenesis
and metastasis, which could change gene expression and even function at multiple levels such as
RNA splicing, stability, translocation, and translation. In this study, we aim to conduct a comprehen-
sive analysis on m6A RNA methylation-related genes, including m6A RNA methylation regulators
and m6A RNA methylation-modified genes, in liver hepatocellular carcinoma, and their relationship
with survival and clinical features. Data, which consist of the expression of widely reported m6A
RNA methylation-related genes in liver hepatocellular carcinoma from The Cancer Genome Atlas
(TCGA), were analyzed by one-way ANOVA, Univariate Cox regression, a protein–protein inter-
action network, gene enrichment analysis, feature screening, a risk prognostic model, correlation
analysis, and consensus clustering analysis. In total, 405 of the m6A RNA methylation-related
genes were found based on one-way ANOVA. Among them, DNA topoisomerase 2-alpha (TOP2A),
exodeoxyribonuclease 1 (EXO1), ser-ine/threonine-protein kinase Nek2 (NEK2), baculoviral IAP
repeat-containing protein 5 (BIRC5), hyaluronan mediated motility receptor (HMMR), structural
maintenance of chromosomes protein 4 (SMC4), bloom syndrome protein (BLM), ca-sein kinase I
isoform epsilon (CSNK1E), cytoskeleton-associated protein 5 (CKAP5), and inner centromere protein
(INCENP), which were m6A RNA methylation-modified genes, were recognized as the hub genes
based on the protein–protein interaction analysis. The risk prognostic model showed that gender,
AJCC stage, grade, T, and N were significantly different between the subgroup with the high and low
risk groups. The AUC, the evaluation parameter of the prediction model which was built by Random-
Forest, was 0.7. Furthermore, two subgroups were divided by consensus clustering analysis, in which
stage, grade, and T differed. We identified the important genes expressed significantly among two
clusters, including uridine-cytidine kinase 2 (UCK2), filensin (BFSP1), tubulin-specific chaperone D
(TBCD), histone-lysine N-methyltransferase PRDM16 (PRDM16), phosphorylase b ki-nase regulatory
subunit alpha (PHKA2), serine/threonine-protein kinase BRSK2 (BRSK2), Arf-GAP with coiled-coil
(ACAP3), general transcription factor 3C polypep-tide 2 (GTF3C2), and guanine nucleotide exchange
factor MSS4 (RABIF). In our study, the m6A RNA methylation-related genes in liver hepatocellular
carcinoma were analyzed systematically, including the expression, interaction, function, and prognos-
tic values, which provided an important theoretical basis for m6A RNA methylation in liver cancer.
The nine important m6A-related genes could be prognostic markers in the survival time of patients.

Keywords: m6A modification; m6A related genes; survival; liver cancer; TCGA

1. Introduction

Liver hepatocellular carcinoma (LIHC) is one of the common malignant tumors of the
digestive system, mainly caused by hepatitis virus infection. It is a leading cause of cancer-
related deaths worldwide, with few effective therapeutic options [1]. Liver hepatocellular
carcinoma is insidious and develops rapidly, and most patients have already progressed
to the middle and late stages when they are diagnosed, and have lost the opportunity for
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surgery [2]. Therefore, finding new treatment and prognostic targets for LIHC will be
beneficial to patients.

Previous studies have shown that tumors are mainly driven by gene mutations [3].
With the deepening of research, epigenetic modifications such as DNA methylation, histone
acetylation, and RNA modification have all been proved to participate in the development
and progression of tumors, which have been recognized as new treatment and prognostic
targets. More and more post-transcriptional modifications of RNA have been identified
until now [3]. m6A is considered to be the most common and conservative modification of
eukaryotic mRNA, miRNA, and lncRNA. The dynamic balance of m6A methylation modi-
fication is maintained in the cell by m6A RNA methylation writers, readers, and erasers [4].
Methyltransferase-like 3 (METTL3), Methyltransferase-like protein 14 (METTL14), WT1-
associated protein (WTAP), and RNA binding motif protein 15 (RBM15) were considered as
the important m6A RNA methylation writers [5]. Fat mass and obesity-associated protein
(FTO) and RNA demethylase ALKBH5 (ALKBH5) were found as demethylases for m6A-
modified RNA [6]. The YTH protein family, ETS-related transcription factor Elf-3 (ELF3),
Insulin-like growth factor 2 mRNA-binding protein (IGF2BP), and Heterogeneous nuclear
ribonucleoprotein (HNRNP) could decode methylation and generate functional signals [7].
In previous studies, m6A modification of RNA were proved to play an important role in
tumorigenesis and metastasis. Wen et al. found that m6A on ncRNA NEAT1-1 plays a
critical role in the pathogenesis and development of bone metastatic prostate cancer [8].
Chang et al. demonstrated that overexpression of YTH domain-containing family protein 3
(YTHDF3) could induce the transcription of m6A-enriched genes to promote breast cancer
metastasis [9]. In addition, Geng et al. systematically analyzed the relation between m6A
RNA methylation-related genes and the survival of pancreatic cancer [10].

In our study, we aimed to analyze the data from TCGA to identify the important m6A
RNA methylation-related genes in LIHC and evaluate the interaction, function, and prog-
nostic value of the important m6A RNA methylation-related genes in liver hepatocellular
carcinoma. Meanwhile, we tried to build a prognostic model to predict the survival status
of patients with LIHC.

2. Results
2.1. Identification of m6A-Related Genes which were Correlated with AJCC Stage

All 1190 m6A RNA methylation-related genes, which were related to LIHC, were
specifically selected with AJCC stage and RNA-seq expression data. A total of 405 m6A
RNA methylation-related genes were obtained according to the subgroups which were
clustered by AJCC stage. These m6A RNA methylation-related genes were expressed
differently at different clinical stages of liver cancer. The different expression of candi-
date m6A RNA methylation-related genes at different AJCC stages are shown in Figure 1.
Obviously, there are nine m6A RNA methylation regulatory factors that differed signif-
icantly between the subgroups: METTL3, Methyltransferase-like 16 (METTL16), WTAP,
RBM15, YTH domain containing 1 (YTHDC1), YTH N6-methyladenosine RNA binding
protein 1 (YTHDF1), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), Hetero-
geneous nuclear ribonucleoprotein C (HNRNPC), and FTO, including “writer”, “reader”,
and “eraser”.

2.2. Functional Annotation of the Survival-Related m6A RNA Methylation-Related Genes

The univariate analysis was performed to analyze the relationship between m6A RNA
methylation-related genes and survival time of the liver cancer patients from TCGA. A
total of 254 of the survival-related genes were obtained from the candidate m6A RNA
methylation-related genes, which were significantly related to survival time (p < 0.05),
including m6A RNA methylation regulatory factors METTL3, WTAP, RBM15, YTHDC1,
YTHDF1, YTHDF2, and HNRNPC. The above genes are detrimental to the overall survival
rate of patients (HR > 1), which are shown in Supplementary Figure S1. The protein–
protein interaction network of the survival-related genes was constructed by STRING
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to identify the hub genes in the PPI network, which are shown in Figure 2a. The hub
genes occupied the key nodes in the PPI network and played important roles in the
PPI network. DNA topoisomerase 2-alpha (TOP2A), exodeoxyribonuclease 1 (EXO1),
serine/threonine-protein kinase Nek2 (NEK2), baculoviral IAP repeat-containing protein
5 (BIRC5), hyaluronan mediated motility receptor (HMMR), structural maintenance of
chromosomes protein 4 (SMC4), bloom syndrome protein (BLM), casein kinase I isoform
epsilon (CSNK1E), cytoskeleton-associated protein 5 (CKAP5), and inner centromere protein
(INCENP) were identified as the hub genes based on the degrees of nodes which were
more than 10 (Figure 2a) [11]. TOP2A, EXO1, NEK2, BIRC5, SMC4, BLM, CSNK1E, CKAP5,
and INCENP were related to DNA replication and cell division, and HMMR was related
to cell motility [12–24]. The detailed functions of the hub genes are described in the
discussion section and Supplementary Table S3. Enrichment analysis was performed by
ClueGO, including Gene Ontology (GO) and Pathway, which are shown in Figure 2b,c.
The results show that the biological functions, such as mitotic DNA integrity checkpoint,
regulation of mitotic cell cycle, and mitotic DNA damage checkpoint, were related to the cell
proliferation and cell cycle. In addition, SUMOylation of DNA replication proteins, HDR
through Homologous Recombination (HRR), the Fanconi Anemia Pathway, SUMOylation,
and SUMO E3 ligases SUMOylate target proteins were indicated the most significantly
enriched (all p < 0.001).
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Figure 2. Protein–protein interaction network and enriched analysis of the survival-related m6A RNA methylation-related
genes. (a) The protein–protein interaction network of the survival-related m6A RNA methylation-related genes was
constructed by Cytoscape. Nodes were represented as genes and the size of nodes represents degree of the nodes. Edges
were represented as interactions and the color and width of edges represent the value of combined score and co-expression.
(b) Each biological function term is represented by a node, its color represents p-value, and its size represents the number
of genes. (c) Each pathway term is represented by a node, its color represents p-value, and its size represents the number
of genes.
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2.3. The Prognostic Value of the Survival-Related m6A RNA Methylation-Related Genes and a
Risk Signature Built Using Nine Selected Survival-Related m6A RNA Methylation-Related Genes

A relief algorithm was used to filter the important survival-related genes (Figure 3a).
Nine of the m6A RNA methylation-related genes from the LIHC cohort from TCGA in-
versely related to survival were chosen for further analysis. They are uridine-cytidine
kinase 2 (UCK2), filensin (BFSP1), tubulin-specific chaperone D (TBCD), histone-lysine
N-methyltransferase PRDM16 (PRDM16), phosphorylase b kinase regulatory subunit al-
pha (PHKA2), serine/threonine-protein kinase BRSK2 (BRSK2), Arf-GAP with coiled-coil
(ACAP3), general transcription factor 3C polypeptide 2 (GTF3C2), and guanine nucleotide
exchange factor MSS4 (RABIF) (Figure 3b). The LIHC cohort was split as high and low
risk groups according to the median value of risk score. Kaplan–Meier survival analysis
was performed to analyze the differences between the two groups. The result showed
the overall survival was significantly better in low-risk patients than high-risk patients
(p = 1.583 × 10−5) (Figure 3c–e). Then, the data of GSE76427 were used to test the perfor-
mance of risk score. The results are shown in Supplementary Figure S2.

To explore the correlations between the prognostic model and various clinical features,
the clinical features were analyzed with the risk scores. Gender, AJCC stage, grade, T, and
N were significantly different between the subgroup with high and low risk scores. Age and
M were not significantly different between the high- and low-risk groups. The results are
shown in Supplementary Figures S3 and S4. The expression of important survival-related
genes and various clinical features of corresponding patients are shown in Figure 4. Based
on the important survival-related genes, prediction models were built by different machine
learning algorithms, which are shown in Figure 5 and Table 1. The model which was
constructed based on RandomForest showed better prediction performance (AUC = 0.70),
suggesting it could be used to predict the survival event of LIHC patients, and be used as
an indicator to evaluate the prognosis of patients.

Table 1. Evaluation results of models based on different algorithms.

Model AUC CA F1 Precision Recall

RF 0.70 0.67 0.63 0.64 0.67
LG 0.65 0.70 0.64 0.67 0.70
NB 0.64 0.65 0.65 0.64 0.65
NN 0.64 0.70 0.65 0.67 0.70

SVM 0.64 0.69 0.63 0.66 0.69
KNN 0.62 0.66 0.61 0.61 0.66
SGD 0.59 0.64 0.64 0.64 0.64
DT 0.57 0.68 0.64 0.64 0.67

Note: RF—Random Forest; LG—Logistic Regression; NB—Naïve Bayes; NN—Neural Network; SVM—Support
Vector Machine; KNN—k-Nearest Neighbor; SGD—Stochastic Gradient Descent; DT—Decision Tree.

To better analyze the interactions and functions among the nine important survival-
related genes, analysis of interactions and correlations was carried out between these
genes. The protein–protein interaction network was constructed based on HuRI, and seven
important survival-related genes were obtained in the network (Figure 6a). These genes
were related to virion assembly, vesicle docking, exocytic process, vesicle docking involved
in exocytosis, Rab protein signal transduction, and cellular carbohydrate catabolic process
according to the GO analysis (Figure 6b) and Pathway analysis (Figure 6c). The correlations
of the survival-related genes were calculated by Spearman’s correlation significantly, which
are shown in Figure 6d. Evidently, GTF3C2, BFSP1, and RABIF were positively associated
with UCK2, and BFSP1 was positively associated with GTF3C2.
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Figure 3. Features selection and Cox regression analysis were used to construct and analyze risk
scores based on the survival-related m6A RNA methylation-related genes. (a) Rank of the survival-
related m6A RNA methylation-related genes based on Relief algorithm. (b) The impact of important
survival-related m6A RNA methylation-related genes on overall survival. (c) The Kaplan–Meier
curve described the significant survival difference between the high-risk group and the low-risk
group. (d) The distribution of survival time of samples in TCGA dataset. (e) The distribution of risk
score of samples in TCGA dataset.
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Figure 6. Interactions, functions, and correlations of 9 survival-related m6A RNA methylation-related genes. (a) The
protein–protein interaction network of 9 m6A RNA methylation-related genes with interacting proteins. (b) GO analysis of
proteins in (a). (c) Pathway analysis of proteins in (a). (d) Spearman correlation analysis of 9 survival-related m6A RNA
methylation-related genes.
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2.4. The Prognostic Value of the Important m6A-Related Genes for Liver Hepatocellular Carcinoma
with Distinct Clinical Outcomes

To specifically analyze the prognostic value of the nine important m6A-related genes
in liver hepatocellular carcinoma, TCGA liver hepatocellular carcinoma samples were
divided into different subgroups according to the expression of the nine selected survival-
related m6A RNA methylation-related genes by using the R package ConsensusClusterPlus.
K = 2 should be an adequate choice according to the expression similarity of the important
m6A-related genes with clustering stability from 2 to 12 based on the TCGA (Figure 7a–d).
The clinical features differed significantly among cluster 1 and cluster 2 when they were
analyzed based on the Kolmogorov–Smirnov test, stage, grade, and T (Figure 7e). In addi-
tion, there is a clear difference in survival time between the two clusters (p = 6.413 × 10−11)
(Figure 8a). The expression of the nine selected survival-related m6A RNA methylation-
related genes was significantly different (p < 0.05, Supplementary Figure S4). These genes
were associated with poor survival, which are shown in Figure 8b–j.
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Figure 7. TCGA samples were divided into 2 subtypes by using 9 survival-related m6A RNA methylation-related genes.
(a) The consensus clustering matrix at k = 2. (b) CDF curve for k = 2 to 12. (c) The relative variation of the area under the
CDF curve that k from 2 to 12. (d) Tracking plot for k from 2 to 12. (e) The heatmap of the expression of 9 survival-related
m6A RNA methylation-related genes in the different risk groups. The distribution of clinical features was compared in the
different risk group.
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Figure 8. Kaplan–Meier analysis of clusters according to the ConsensusClusterPlus and the important survival-related m6A
RNA methylation-related genes. (a) Kaplan–Meier curves of TCGA samples which were divided into 2 clusters according
to the ConsensusClusterPlus. (b–j) Kaplan–Meier curves of the important survival-related m6A RNA methylation-related
genes. The unit of survival time is months.
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3. Discussion

Liver hepatocellular carcinoma is the malignant tumor with high mortality rate in the
world. At present, the mechanism of LIHC development is still not fully understood [25].
The prognosis of patients is poor. Surgical interventions and other treatment methods often
bring greater damage to patients and may not be effective to extend patient survival time.
Therefore, looking for treatment and prognosis targets of LIHC can benefit more LIHC
patients and it is easier to realize current personalized treatment and minimally invasive
or even non-invasive treatment [26]. Previous studies pointed out that tumors including
LIHC were driven by genetic mutations and were a kind of genetic disease. However,
DNA methylation, miRNA, lncRNA, histone acetylation, and others have been confirmed
to participate in tumorigenesis and development [4]. A total of 163 different chemical
modifications of RNA were identified before 2018. m6A is considered to be the most
common, and most conservative modification of eukaryotic messenger RNA (mRNAs),
miRNA, and lncRNA. Some studies point out that m6A modification is related to the
occurrence and development of liver hepatocellular carcinoma. METTL3 is significantly
upregulated in liver cancer. Overexpression of METTL3 could promote HCC proliferation
and migration. METTL3 could regulate the m6A modification of SOCS2 mRNA and con-
tributes to LIHC process. METTL3 is also a tumor suppressor—it promotes the occurrence
and development of liver cancer by reducing the stability of SOCS2 mRNA through m6A-
YTHDF2-dependent pathways [27]. In addition, YTHDF2 is closely related to the degree of
malignancy of liver cancer, and regulates mRNA degradation by recognizing m6A sites,
resulting in the enhancement of liver cancer cell proliferation [28]. Those studies prove that
m6A modification could have an important impact on the occurrence and development of
liver hepatocellular carcinoma.

METTL3, METTL14, FTO, and ALKBH5 play important roles in the development and
progression of liver hepatocellular carcinoma in previous studies [29–32]. However, previ-
ous studies only reported that they influence the mRNA level of target genes individually,
and their role in predicting prognostic and survival time of LIHC patients as a cluster is still
unexplored. Therefore, we carried out studies to identify the important survival-related
genes from 1190 m6A RNA methylation-related genes and analyzed the relations between
genes and the clinical features of LIHC patients.

A total of 405 m6A RNA methylation-related genes were obtained according to the
analysis of different genes across different AJCC stages, which should be related to the
development and progression of LIHC. It is worth nothing that METTL3, METTL16, WTAP,
RBM15, YTHDC1, YTHDF1, YTHDF2, HNRNPC, and FTO, which were the m6A RNA
methylation regulatory factors, were identified to have significant differences among
AJCC-stage subgroups.

METTL3 with catalytic m6A formation function has been proved to play an important
role in tumors, brain development, and regulation of stem cell fate [33]. Current evidence
has shown that METTL3 expression is upregulated and mutes SOCS2 through the m6a-
dependent pathway to promote LIHC progression [29]. Other studies showed EIF3 is
recruited by METTL3 into the translation initiation complex to enhance the translation of
target mRNA, such as epidermal growth factor receptor (EGFR) and Tafazzin (TAZ) [34].
METTL16 was proved to control SAM homeostasis by regulating the abundance of SAM
synthase MAT2A mRNA in response to changing intracellular SAM levels [35]. WTAP
could specifically bind to the WT1 gene in vivo and in vitro, which could participate in a
variety of normal physiological processes in the body such as m6A methylation modifi-
cation, RNA alternative splicing, cell cycle regulation, and play an important regulatory
role in the occurrence and development of various malignant tumors of which we know
little [36]. RBM15 could recognize and interact with NXF1 to assist in promoting the
expression of genes, which could participate in the output pathway [37]. The YTH protein
family has a homologous YTH domain used to recognize the m6a site, which belong to
“Readers”. YTHDF1 promoted mRNA stability and translation, and YTHDF2 promotes
RNA degradation by selectively binding to target RNA decay sites in current studies. In
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addition, YTHDC1 could participate in RNA variable cleavage [38]. RNA-HNRNPC could
be modified by m6A after transcription to regulate the interaction to affect the structure of
coding and non-coding RNA [39]. FTO, which is identified as the first m6aRNA demethy-
lase, could promote LIHC progression by mediating PKM2 demethylation with the high
expression of FTO according to recent studies [35]. In addition, METTL3, WTAP, RBM15,
YTHDC1, YTHDF1, YTHDF2, and HNRNPC were found to have a significant relation with
survival time in our research.

A total of 254 survival-related genes were obtained from the 405 candidate m6A
RNA methylation-related genes according to the univariate analysis. The results of protein–
protein interaction analysis between 254 survival-related genes point to the fact that TOP2A,
EXO1, NEK2, BIRC5, HMMR, SMC4, BLM, CSNK1E, CKAP5, and INCENP are identified as
the hub genes in the network.

The role of TOP2A is to mediate DNA double strand unwinding, which was recog-
nized as a drug target to design drugs, such as Etoposide. The recent studies showed
overexpression of TOP2A is associated with early onset, changes in drug treatment re-
sponse, and poor prognosis, and indicates that TOP2A gene amplification may be the
internal mechanism that causes these changes [12–14].

EXO1 genes which are related to mismatch repairing were recognized as the new
cancer driver genes in a recent study, which are closely related to m6A RNA methylation-
related genes [15].

Furthermore, current reports have showed NEK2, as an important cyclin, has the
functions of regulating the assembly and separation of centrosomes, the formation of
spindles, and the precise separation of chromosomes [16,17]. In addition, NEK2 may also
become an important marker for tumor differentiation and prognosis detection, and is an
important potential target for cancer treatment [18].

BIRC5 was located at the center of the signaling networks of tumors, which was
regulated by kinases and enzymes, such as AURKB, CDK1, and HSP90. BIRC5 also
regulated the expression of proteins to affect the functions of tumors, such as IKK-β,
caspase3, and HIF1A. HMMR is significantly overexpressed in patients with primary liver
cancer and promotes the proliferation of liver cancer cells, which was reported in recent
studies [19,20].

SMC4 and SMC2 form the SMC2–SMC4 dimer to participate in cell mitosis, gene
regulation, and DNA repair, and are closely related to tumorigenesis. BLM, as a member
of the RecQ-like helicase family, plays an important role in cellular metabolism such as
DNA replication, recombination, transcription, repair, and telomere maintenance, which
overexpressed in the tumor cell [21]. CSNK1E was identified as a circadian gene, which
has been proved to be related to the DNA replication and repair that was mediated by
β-catenin in previous studies [22]. CKAP5 belong to the microtubule-like protein family,
which is involved in the assembly of microtubules. The overexpression of CKAP5 could
promote the development of tumor [23]. INCENP could be used as a structural platform to
complete the assembly of the CPC’s core structure and participate in the activation process
of Aurora B kinase [24].

To further analyze the prognostic potential of survival-related m6A RNA methylation-
related genes, we used the Relief algorithm to filter the important genes and constructed
a risk prognostic model. The high-risk and low-risk groups had significant differences
in overall survival, and gender, AJCC stage, grade, T, and N had significant differences
based on different groups in further analysis. Then, we built a different prognosis model
based on different algorithms, and the model which was constructed by RandomForest
had the best evaluation values, an AUC more than 0.7, which shows that the model could
predict the survival of LIHC patients with high accuracy. We also analyzed the interactions
of the important genes based on the HuRI, and we obtained the function of those genes,
which were related to the cellular carbohydrate catabolic process and vesicle docking.
Correlation analysis showed GTF3C2, BFSP1, and RABIF were positively associated with
UCK2 and BFSP1 was positively associated with GTF3C2. However, we need more works
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to understand the interaction of the nine important survival-related m6A RNA methylation-
related genes.

Two clusters of liver cancer were identified according to the expression of the nine
important survival-related m6A RNA methylation-related genes by consensus clustering
analysis. Stage, grade, and T differed significantly among cluster 1 and cluster 2. The nine
important survival-related m6A RNA methylation-related genes were identified, which all
differed in the subgroups in further studies, and those genes were positively associated
with positive cancer status [40–46]. Although there have been some studies on these
genes, more studies need to be performed to explain the mechanism of the nine important
survival-related m6A RNA methylation-related genes in liver cancer.

4. Materials and Methods
4.1. Data Preparation

The RNA sequencing data and clinical information of LIHC patients were downloaded
from The Cancer Genome Atlas (TCGA, 2020) [47]. GEO data were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). m6A RNA methylation-related
genes, which were related to LIHC, were collected from the known literature [48–51]
and were download from the m6Avar database (http://m6avar.renlab.org/) [52]. The
m6Avar database was a database of functional variants involved in m6A modification.
The m6A RNA methylation-related genes expression data from TCGA were obtained and
standardized as shown in Supplementary Table S1. The clinical information of all LIHC
patients is summarized in Supplementary Table S2.

4.2. The Differentially Expressed Genes (DEGs) Screening and Enrichment Analysis

One-way ANOVA was employed to analyze the difference in expression of m6A RNA
methylation-related genes between different stages of liver hepatocellular carcinoma based
on the TCGA data. Univariate analysis was performed to analyze the correlation between
m6A RNA methylation-related genes and survival. The protein–protein interaction net-
work of survival-related DEGs was formed by STRING (https://string-db.org/) to analyze
the key proteins in the network. All statistically enriched terms (Gene Ontology (GO) and
Pathway terms) were analyzed by ClueGO.

4.3. The Filter of Survival-Related m6A RNA Methylation-Related Genes and the Evaluation of
Risk Score

To explore the prognostic potential importance of the survival-related m6A RNA
methylation-related gene set, a Relief algorithm was used to filter the important survival-
related genes based on the Weka platform (Weka 3.8.4). The Relief algorithm belongs to
feature weighting algorithms, which assigned different weight to features according to
the correlation of features and categories and features with a weight less than a certain
threshold will be removed.

Kaplan–Meier was used to test the significance of the survival curves and analyze the
difference in survival between different subgroups. To construct the risk characteristics
and calculate the risk score, the formula was as follows:

Risk Score =
n

∑
i=1

Coe fi × Expi

According to the median risk score, all of the samples were divided into low and high
subtypes. Survival analysis was performed on the low and high subtypes using the R
software “survival” package.

To better analyze the interaction and function among the important survival-related
genes, an analysis of the interactions was carried out between these genes by using the
HuRI (http://www.interactome-atlas.org/) and the correlations were analyzed by using R
software (3.6.3).

https://www.ncbi.nlm.nih.gov/geo/
http://m6avar.renlab.org/
https://string-db.org/
http://www.interactome-atlas.org/
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4.4. Construction and Evaluation of Prognostic Models Based on the Important Survival-Related Genes

The important survival-related genes were used to construct a predicted model to
predict the prognostics of patients by different machine learning algorithms based on a
20-fold cross-validation method and all setting parameters were set as default based on
orange data mining (Orange version: 3.25.0) [53]. According to the different evaluation
parameters to evaluate models, the model which had the highest evaluation parameters
was selected as the prognostic model.

4.5. Consensus Clustering for the Important Survival-Related m6A RNA Methylation-Related Genes

To specifically investigate the function of the candidate m6A RNA methylation-related
genes in liver hepatocellular carcinoma, the unsupervised clustering method—the Con-
sensusClusterPlus R package—was used to cluster the samples. The clusters were used to
analyze the candidate m6A-related genes in liver hepatocellular carcinoma.

5. Conclusions

In summary, the expression, interaction, function, and prognostic of m6A RNA
methylation-related genes in liver cancer were elucidated in our research. In addition, the
relations between m6A RNA methylation-related genes and clinical features were found in
our study. A number of genes were recognized as potential drug targets, which provide
new treatment strategies for the treatment of liver cancer. Our research provides important
evidence for further research on the function of RNA m6A methylation and related genes
in liver cancer.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
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AUC Area Under Curve
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BRSK2 Serine/threonine-protein kinase BRSK2
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CDK1 Cyclin-dependent kinase 1
CKAP5 Cytoskeleton-associated protein 5
CSNK1E Casein kinase I isoform epsilon
DEGs Differentially expressed genes
DT Decision Tree
EGFR Epidermal growth factor receptor
EXO1 Exodeoxyribonuclease 1
FTO Fat mass and obesity-associated protein
GO Gene Ontology
GTF3C2 General transcription factor 3C polypeptide 2
HCC Hepatocellular Carcinoma
HMMR Hyaluronan mediated motility receptor
HNRNPC Heterogeneous nuclear ribonucleoprotein C
HSP90 Heat shock protein HSP 90
INCENP Inner centromere protein
KNN k-Nearest Neighbor
LG Logistic Regression
LIHC Liver hepatocellular carcinoma
m6A N6-methyladenosine
METTL16 Methyltransferase like 16
METTL3 Methyltransferase like 3
NB Naïve Bayes
NEK2 Serine/threonine-protein kinase Nek2
NN Neural Network
NXF1 Nuclear RNA export factor 1
PHKA2 Phosphorylase b kinase regulatory subunit alpha
PRDM16 Histone-lysine N-methyltransferase PRDM16
RABIF Guanine nucleotide exchange factor MSS4
RBM15 RNA binding motif protein 15
RF Random Forest
SGD Stochastic Gradient Descent
SMC4 Structural maintenance of chromosomes protein 4
SOCS2 Suppressor of cytokine signaling 2
SVM Support Vector Machine
TAZ Tafazzin
TBCD Tubulin-specific chaperone D
TCGA The Cancer Genome Atlas
TOP2A DNA topoisomerase 2-alpha
UCK2 Uridine-cytidine kinase 2
WTAP WT1 associated protein
YTHDC1 YTH domain containing 1
YTHDF1 YTH N6-methyladenosine RNA binding protein 1
YTHDF2 YTH N6-methyladenosine RNA binding protein 2
YTHDF3 YTH N6-methyladenosine RNA binding protein 3
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