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Graphical Abstract

Comprehensive whole-genome bisulphite sequencing of prostate cancer tissue
identified 1420 differentially methylated regions (DMRs) between patients with
lethal disease versus non-lethal disease. DMRs were used to develop a tar-
geted sequencing biomarker panel which validated cancer-specific methylation
patterns in an independent cohort (n = 185). The epigenetic biomarker panel
improves accuracy of identifying patients at risk of death compared to existing
clinicopathological markers.
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Abstract
Background: Prostate cancer is a clinically heterogeneous disease with a sub-
set of patients rapidly progressing to lethal-metastatic prostate cancer. Current
clinicopathological measures are imperfect predictors of disease progression.
Epigenetic changes are amongst the earliest molecular changes in tumourige-
nesis. To find new prognostic biomarkers to enable earlier intervention and
improved outcomes, we performedmethylome sequencing ofDNA frompatients
with localised prostate cancer and long-term clinical follow-up.
Methods: We used whole-genome bisulphite sequencing (WGBS) to compre-
hensively map and compare DNA methylation of radical prostatectomy tissue
between patients with lethal disease (n = 7) and non-lethal (n = 8) disease
(median follow-up 19.5 years). Validation of differentially methylated regions
(DMRs) was performed in an independent cohort (n = 185, median follow-up
15 years) using targeted multiplex bisulphite sequencing of candidate regions.
Survival was assessed via univariable and multivariable analyses including
clinicopathological measures (log-rank and Cox regression models).
Results: WGBS data analysis identified cancer-specific methylation patterns
including CpG island hypermethylation, and hypomethylation of repetitive
elements, with increasing disease risk. We identified 1420 DMRs associated with
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prostate cancer-specific mortality (PCSM), which showed enrichment for gene
sets downregulated in prostate cancer anddenovomethylated in cancer. Through
comparisonwith public prostate cancer datasets, we refined theDMRs to develop
an 18-gene prognostic panel. Applying this panel to an independent cohort, we
found significant associations between PCSM and hypermethylation at EPHB3,
PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strik-
ingly in amultivariablemodel, inclusion ofCACNA2D4methylationwas a better
predictor of PCSM versus grade alone (Harrell’s C-index: 0.779 vs. 0.684).
Conclusions: Our study provides detailed methylome maps of non-lethal and
lethal prostate cancer and identifies novel genic regions that distinguish these
patient groups. Inclusion of our DNA methylation biomarkers with existing
clinicopathological measures improves prognostic models of prostate cancer
mortality, and holds promise for clinical application.

KEYWORDS
biomarkers, CACNA2D4, DNA methylation, prognosis, prostate cancer, survival

1 BACKGROUND

Prostate cancer is the second-most common cancer diag-
nosed in men. Currently, 80% of patients present with
localised disease1 and are typically recommended for
active surveillance or radical prostatectomy (RP) surgery.
However, of the patients treated with RP, up to 40% expe-
rience a biochemical recurrence (BCR), with 5%–10% of
patients progressing to lethal-metastatic prostate cancer.2
Current prognostic clinicopathological factors, including
prostate-specific antigen (PSA) levels, ISUP Grade Group
pathological score, pathological T-category and surgical
margin status, lack sensitivity and specificity in predict-
ing progression or outcome, particularly in patients with
localised intermediate risk prostate cancer.3 There is a
critical need for more reliable and accurate prognostic
biomarkers to guide more personalised management.
Molecular profiling promises novel prognostic biomark-

ers. DNA methylation at cytosine-guanine (CpG) sites is
of particular interest as it is one of the earliest molecu-
lar changes to occur in prostate cancer and is preserved
through metastatic progression.4 Early methylation stud-
ies, which focused on candidate gene promoters, revealed
a small number of methylation alterations associated with
prognosis.5 Recent studies have widened the genomic
‘search area’ by conducting unbiased epigenome-wide
microarray-based techniques to identify novel prognostic
markers.6 However, microarray-based technologies only
cover a small percentage (∼1%–3%) of the∼28 million CpG
sites in the genome.7 Moreover, most studies have focused
on prognostic methylation markers of BCR, but BCR is
not always a suitable surrogate for prostate cancer-specific

mortality (PCSM).8 Long-term follow-up (>15 years) is
needed for the clinically important endpoints of metastatic
relapse (MR) and PCSM to manifest.9
In this study, we applied single-base resolutionmethyla-

tion sequencing technologies to two independent prostate
cancer cohorts with long-term follow-up clinical data
(median: >15 years). We profiled DNA from primary
prostate cancer tissue obtained at RP in a discov-
ery cohort using whole-genome bisulphite sequencing
(WGBS), which can measure methylation at almost every
CpG in the genome. We identified a set of differentially
methylated regions (DMRs) between patients who died
≤10 years post-RP and those still alive >10 years post-RP.
Multiplex bisulphite PCR sequencing (MBPS) was then
used to validate a subset of these DMRs in RP tissue from a
validation cohort8,10 using PCSM,MR and BCR as survival
endpoints.

2 METHODS

2.1 Study populations

2.1.1 Discovery cohort

The discovery cohort consists of 15 patients that underwent
RP to treat clinically localised prostate cancer between
the years 1989 and 2003, at the St. Vincent’s Hospital,
Sydney, Australia. Seven patients died of prostate cancer
within 10 years of RP (‘lethal’ group), whilst the remain-
ing eight patients were alive at last follow-up (minimum:
13.5 years, median: 19.5 years) (‘non-lethal’ group). The
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non-lethal group was matched to the lethal group accord-
ing to tumour grade, clinical stage and local invasion
(seminal vesicle invasion and extracapsular). As additional
controls, adjacent normal tissue from four prostate cancer
patients was included.

2.1.2 Validation cohort

An independent group of 186 prostate cancer patients was
used for validation of the prognostic significance of 18
DMRs identified in the discovery cohort. This group of
patients, selected with ISUP Grade Group 2 or higher, is a
subset of patients that underwent RP treatment between
1997 and 2003 at the St. Vincent’s Hospital.8,10 Over an
extensive follow-up period (median: 15 years, range: 0.8–
22 years), 86 patients experienced BCR, 25 patients hadMR
and 16 patients died of prostate cancer.

2.2 Tumour tissue preparation, DNA
extraction and bisulphite conversion

Archival formalin-fixed paraffin-embedded (FFPE)
prostate tumour tissue blocks were obtained from RP
specimens for both cohorts. Haematoxylin and eosin
staining on prostate tissue specimens was reviewed by
(uro)pathologists to mark and confirm the presence and
location of prostate cancer tumour areas. For each patient,
five 1 mm tumour tissue cores from within histologically
verified tumour region (at least 50% neoplastic cells
(typically >70%)) were taken for genomic DNA extrac-
tion. For the four normal adjacent samples, five 1 mm
tissue cores were taken per patient from regions with 0%
neoplastic cells (no carcinoma, intraductal carcinoma of
prostate, prostatic intraepithelial neoplasia, proliferative
inflammatory atrophy, or necrosis). DNA was extracted
using the AllPrep FFPE DNA/RNA Kit (Qiagen, Cat. No.
80234), quantified with the Qubit dsDNA HS Assay Kit
(Life Technologies, USA), and stored at -80◦C until use.
Extracted DNA was bisulphite treated using the EZ DNA
Methylation-Lightning Kit (Zymo Research, USA, Cat.
Nos. D5030 and D5033) according to the manufacturer’s
instructions.

2.3 DNAmethylation profiling
(discovery)

2.3.1 WGBS library preparation, quality
control and sequencing

WGBS libraries were prepared using the EpiGnome
Methyl-Seq Kit (Epicentre, EGMK81312), according to the

manufacturer’s protocol. Library quality was assessedwith
the Agilent 2100 Bioanalyzer using the High-Sensitivity
DNA Kit (Agilent, CA, USA). DNA was quantified using
the KAPA Library Quantification Kit by quantitative PCR
(KAPA 6 Biosystems). Libraries from patient specimens
were analysed with 70 bp paired-end sequencing on the
Illumina HiSeq 2500 platform using TruSeq Rapid SBS Kit
- HS (50 cycle) and TruSeq Rapid PE Cluster Kit - HS.
Six samples were multiplexed across two lanes. Sequenc-
ing was performed multiple times to gain sufficient
coverage.

2.3.2 WGBS data processing and statistical
analysis

Adaptor sequences and poor quality bases were
removed using Trim Galore (version 0.2.8, http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) in
paired-end mode with default parameters. bwa-meth (ver-
sion 0.10)11 was used to align reads to hg19 using default
parameters. PCR duplicates were removed using Picard
(version 1.91, http://broadinstitute.github.io/picard).
Count tables of the number of methylated and
unmethylated bases sequenced at each CpG site in
the genome were constructed using the ‘tabulate’
module of bwa-meth and BisSNP (version 0.82.2)12
with default parameters. The processed WGBS data
were exported and uploaded to NCBI GEO reposi-
tory GSE158927 (https://www.ncbi.nlm.nih.gov/geo) as
‘GSE158927_BigTable.tsv.gz’; a tsv file providing coverage
and methylation data for each sample (columns) at each
CpG site (rows). In the column names, chr: chromosome,
position: genomic position; then for each sample, C: count
methylated and cov: total coverage.
All statistical analyses were conducted using R (ver-

sion ≥3.2.2)13 and all scripts uploaded to public Github
repository (https://github/clark-lab/ProstateLethal). For
dimensionality-reduction analysis, principal components
analysis (PCA) and plots were generated using the vegan
package in R.14 Plots of average methylation by CpG
context were created using the methWindowRatios and
methDensityPlot functions implemented in the R pack-
age aaRon (https://github.com/astatham/aaRon). For this
analysis, a bed-formatted annotation file of CpG islands
was downloaded from UCSC hg19 using the rtracklayer
Bioconductor package.15 CpG shores were defined as the
regions 2000 bp either side of each CpG island, and all
genomic regions >2000 bp distant were defined as non-
CpG.Annotation data for repetitive elements (LINE-1, LTR
and Alu) corresponding to the RepeatMasker database on
USCS were downloaded using the REMP package (version
1.10.1).16

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://broadinstitute.github.io/picard
https://www.ncbi.nlm.nih.gov/geo
https://github/clark-lab/ProstateLethal
https://github.com/astatham/aaRon
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DMRs between lethal and non-lethal patients
were called using DMRcate17 with parame-
ters C = 50, min.cpgs = 5 and a Stouffer threshold of
<0.05, with DSS18 used as an initial differentially methy-
lated loci caller. Methylation values of samples at all
DMRs were visualised as a heatmap with dendrogram,
using the heatmap.2 function in the gplots R package.19
Individual DMRs were visualised using the DMR.plot
function in DMRcate.17 For downstream analysis, DMRs
were separated according to whether they were hyper- or
hypomethylated in lethal patients. DMRs were annotated
for overlap and proximity with genetic features using the
annotateRegions function implemented in the R package
aaRon. For investigation of the lethal DMRs in lymph
node carcinoma of the prostate (LNCaP) cells and prostate
epithelial cells (PrEC), we used in-house chromatin state
and WGBS data that was generated and processed as
previously described.7,20 The import.bw function in the
rtracklayer Bioconductor package15 was used to extract
LNCaP and PrEC WGBS methylation data, from bigwig
files, at the DMR locations.
For functional enrichment analysis, DMRs were

flagged for overlaps with any GeneHancer Double Elite21
region. The list of interacting genes for DMR-overlapping
enhancers and/or promoters was then tested for gene set
enrichment in gene sets from the Molecular Signatures
Database (MSigDB) version 6.122 using the RITAN and
RITANdata Bioconductor packages.23 The background
was defined as the complete list of GeneHancer Dou-
ble Elite genes with known interactions and enhancer
and/or promoter regions, and terms with a false dis-
covery rate (FDR) <0.05 were called as significant.
The results were filtered to only include gene sets with
between 15 and 500 genes, and visualised by adapting
functions from the enrichplot Bioconductor package
(https://github.com/GuangchuangYu/enrichplot).

2.4 Validation of candidate DMRs in
public datasets

From the top list of DMRs, we identified 18 to be devel-
oped into a diagnostic panel, by identifying DMRs with
a large mean difference between ‘lethal’ and ‘non-lethal’
RP samples (≥30%) and confirming their suitability via
comparison with public datasets.

2.4.1 Processing and analysis of public
methylation and expression data from prostate
tissue

Prostate adenocarcinoma (PRAD) HumanMethylation450
BeadChip (HM450K) methylation data were downloaded

from The Cancer Genome Atlas (TCGA) Data Portal web-
site (http://tcga-data.nci.nih.gov/tcgafiles) and processed
as described in Pidsley et al.,24 giving 414 133 CpG sites
from 437 samples (n = 45 normal and n = 392 tumour).
We identified 96 CpG probes that overlapped with 17 out of
18 of the WGBS candidate DMRs. We then calculated the
average methylation of all CpGs within a DMR, to obtain a
methylation value for each of the 17DMRs for each sample.
PRAD processed RNA-seq V2 data (level 3) was down-

loaded from the TCGA Data Portal website. We used R
to perform Pearson’s correlation tests between patient-
matched DMRmethylation and the RNA-seq gene expres-
sion of the nearest-protein coding gene.

2.4.2 Processing and analysis of public
methylation data from whole blood

Processed HM450K methylation data from human whole
blood samples were downloaded from the NCBI GEO
database (https://www.ncbi.nlm.nih.gov/geo/)with acces-
sion GSE4027925 and imported into the R environment13
using the minfi Bioconductor package.26 We subset the
methylation β values to only include the bloodmethylation
data for male samples, leaving n = 318 samples for analy-
sis. We identified 91 CpG probes that overlapped with 16
out of 18 of theWGBS candidate DMRs (note: chromosome
X data were not available for this dataset). We then calcu-
lated the average methylation of all CpGs within a DMR,
to obtain a methylation value for each of the 16 DMRs for
each sample.

2.4.3 Analysis of public methylation and
chromatin state data from cell lines

Further investigation of the potential functional impor-
tance of the 18 candidate DMRs was performed using the
LNCaP and PrEC WGBS methylation and chromatin state
data (also used to investigate the full set of DMRs above).
bedGraph files were generated to visualise all the public
validation data in the IGV genome browser.27

2.5 Multiplex bisulphite PCR
sequencing (validation)

2.5.1 MBPS panel design, optimisation and
sequencing

A panel of 18 candidate prognostic DMRs was developed
into an MBPS assay, following the protocol detailed in a
study by Lam et al. 28 Briefly, MBPS primers targeting the

https://github.com/GuangchuangYu/enrichplot
http://tcga-data.nci.nih.gov/tcgafiles
https://www.ncbi.nlm.nih.gov/geo/
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18 selected DMR regions were designed using the custom
multiplex-specific primer design software, PrimerSuite
(www.primer-suite.com),29,30 with the following parame-
ters: 105–150 bp amplicon size, oligo melting temperature
of 54◦C, sodium concentration of 50 mM and maximum
of one CpG dinucleotide allowed within primers. The
18 designed primers were pooled together, and the opti-
mal annealing temperature andprimer concentrationwere
determined to be 56◦C and 10 μM, respectively, and 28
PCR cycles. Primer sequences, location and the number of
CpG dinucleotides interrogated are given in Table S1 and
amplicon locations relative to WGBS DMR are visualised
in Figure S1.
The optimised PCR conditions were used to run the

MBPS assay on n = 186 samples from the validation
cohort. PCR amplification of the 18 primers was per-
formed on bisulphite-treated patient DNA (∼6 ng) in
triplicate, with patients randomly distributed across two
384-well plates. Individual libraries (per patient) were
pooled at equal amounts (96 samples per sequencing run),
and diluted to 10 nM following library quantification,
ready for sequencing. Sequencing was performed on the
Illumina NextSeq sequencer (Illumina, CA, USA), with
sample preparation for sequencing performed according
to Illumina’s instructions (1.8 pM, 20% PhiX Control v3
[Illumina, FC-110-3001]). A series of methylated-control
DNA samples with known methylation percentages (0%,
1%, 25%, 50%, 75%, 100%) were also sequenced, prepared
by proportionally mixing 0% and 100% methylated DNA
(whole-genome-amplified non-methylated and methy-
lated DNA, Cat. No. D5013). These methylated-control
DNA samples were used to assess PCR bias of each region
examined.31

2.5.2 MBPS data processing and quality
control

We used the MethPanel workflow31 to preprocess and
align MBPS reads to predefined regions (based on Primer-
Suite software output, Table S1) of the reference genome
hg19 build. Specifically, FASTQ files were trimmed to
produce high-quality reads with base quality ≥30, read
length ≥20 bp and to clip 1 bp from both reads (https://
github.com/FelixKrueger/TrimGalore). Bismark (version
0.22.3)32 was used to map these trimmed reads to the pre-
defined reference genome, allowing one non-bisulphite
mismatch per read, with all other parameters kept to their
default values.
For each bam file produced by Bismark, MethPanel was

used to perform calculation of DNAmethylation levels and
merge all samples into a single table. Further quality con-
trol was performed to remove amplicons and samples with

<100× coverage from the methylation table. PCR bias was
assessed using methylation-control samples, as described
in Lam et al.28 This showedminimal bias across the ampli-
cons, so bias-correction was not applied to themethylation
data prior to prognostic analysis. Methylation values were
then averaged across the CpGs within each region.

2.5.3 Survival analysis

The prognostic value of the candidate DMRs was tested in
an independent cohort of 186 patients for validation, using
survival outcomes: BCR, defined as a serum PSA concen-
tration ≥0.2 ng/ml increasing over a 3-month period; MR,
determined by biopsy or positive scan(s) confirming local,
visceral or bony metastasis; and PCSM, with deaths iden-
tified from the NSW State Cancer Registry and cause of
death confirmed by contacting patients’ general practi-
tioner and through review of medical records. For survival
analysis, Kaplan–Meier, log-rank tests and univariable and
multivariable Cox proportional hazard models were per-
formed, with significance set at p <.05. Known prognostic
clinicopathological factors were assessed as dichotomous
variables: ISUP Grade Groups (2 vs. ≥3), pathological
T-category (≤pT2 vs. ≥pT3), pre-operative PSA levels
(<10 ng/ml vs. ≥10 ng/ml) and surgical margin status
(negative vs. positive). One of the patients was found to
havemissing pre-operative PSAdata, sowas excluded from
survival analysis leaving n = 185 patients. For analyses
using methylation markers, patients were dichotomised
into high/low methylation groups for each of the 17 DMRs
surviving quality control, based on the methylation value
at the 75th percentile cut-off. For multivariable Cox anal-
yses, the Statistically Equivalent Signatures (SES) feature
selection algorithm, part of the ‘MXM’Rpackage,was used
to identify minimal-size predictive signatures with maxi-
mal predictive power by performing a variant of forward
selection.33 Using the inbuilt conditional independence
test for survival analysis (Cox regression, ‘censIndCR’ test),
the input variables were ISUP Grade Group, pathological
T-category, PSA level, surgical margin status and methy-
lation at our 17 DMRs. Harrell’s concordance index was
used to measure the predictive discrimination of the mul-
tivariable Cox proportional hazard models for the three
survival outcomes, and to assess the additive prognostic
effect of methylation markers on existing clinicopatho-
logical markers.34 This was further investigated through
a time-dependent receiver operating characteristic (ROC)
analysis of the multivariable Cox regression models using
the ‘risksetROC’ package in R,35 with CACNA2D4 methy-
lation included and excluded from the final model. Area
under the curves (AUC) were calculated for survival at 1, 5,
10 and 15 years post-RP.

http://www.primer-suite.com
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
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To ensure that between-patient variability in the
sequencing coverage of the CACNA2D4 DMR was not
affecting the results, original bam files were downsam-
pled using SAMtools (version 1.12)36 to 1000, 10 000, 50
000 and 100 000 reads (or maximum number of reads
for each patient if lower). Downsampled datasets were
processed and analysed as described above to generate
results for log-rank tests, univariable and multivariable
Cox proportional hazard models.

2.5.4 Characterisation of CACNA2D4

The GeneHancer list of Double Elite21 regions was used
to identify overlap between the CACNA2D4 DMR and
known enhancer/promoter regions and their putative
target genes. To determine whether CACNA2D4 expres-
sion changes were observable in patient specimens, we
used the TCGA PRAD processed RNA-seq V2 data
(described above) and performed Student’s t-test to test
for differential expression between tumour and normal
specimens.

3 RESULTS

3.1 Methylome profiling of primary
prostate cancers reveals global and
site-specific methylation differences
between men with non-lethal and lethal
disease

To identify DNA methylation changes associated with
prostate cancer survival, we first curated an archival cohort
of 15 patients with localised prostate cancer, who had
undergone RP, with n = 8 patients with non-lethal disease
(alive>10 years post-RP) and n= 7 patients with lethal dis-
ease (dead of prostate cancer ≤10 years post-RP). Groups
were well-matched for the clinical characteristics that are
typically used for disease prognosis (Table 1A).
We performed WGBS on FFPE tissue from RP, and

adjacent normal tissue specimens from four patients. Ini-
tial visualisation of the data using PCA showed that, at
the global level, variation in genome-wide DNA methyla-
tion was able to distinguish between the patient groups
(Figure 1A). The first principal component explains 14.6%
of the variance in the methylation data and shows a
gradation between the normal, non-lethal and lethal dis-
ease groups. Sub-setting the data by genomic context, we
observed that with increasing disease risk methylation
increased in CpG dense regions, ‘islands’ and ‘shores’,
and decreased at repetitive elements (LINE-1, LTR, Alu)
(Figures 1B and S2).

Next, we sought to identify if there were specific
genomic regions of differential methylation that could
be used as biomarkers to distinguish between non-lethal
and lethal prostate cancer. Using DMRcate,17 we identi-
fied 1420 DMRs, with the majority (92%) hypermethylated
(increased) in the ‘lethal’ compared to the ‘non-lethal’ RP
samples (Table S2 and Figure 1C). For example, a 1 kb
region at the promoter CpG island of the tumour sup-
pressorDEUP1(CCDC67) gene37 showed significant hyper-
methylation, with an average 38% methylation increase
in the ‘lethal’ compared to ‘non-lethal’ disease groups
(Figure 1D).
To examine the potential functional importance of these

DMRs, we determined their location relative to specific
genomic features (Figure 1E). Consistent with our initial
global methylation analysis of CpG context, we found that
most hypermethylated DMRs were located in CpG islands
(74%), whereas hypomethylated DMRs were more com-
mon in non-CpG islands regions (75%) (Figure 1E, left
panel). Relative to annotated protein-coding genes, 48%
of hypermethylated compared to 14% of hypomethylated
DMRswere located at promoter regions, and overall hyper-
methylated DMRs were located closer to transcription
start sites (TSSs) (median distance to TSS hypermethylated
DMRs = 745 bp vs. hypomethylated DMRs = 12 799 bp,
Mann–Whitney U-test, p = 4.6e-21) (Figure 1E, right
panel).
We next examined the overlap between the DMRs and

putative regulatory elements, using ChromHMM segmen-
tation data from prostate cell lines20: normal PrEC and
LNCaP cells. This analysis revealed that the ‘lethal’ hyper-
methylated DMRs overlapped with more active regulatory
regions in PrEC compared to LNCaP (active TSS, flank-
ing active TSS and bivalent enhancer regions) and more
silenced regions in the LNCaP compared to PrEC (het-
erochromatin and quiescent regions) (Figure 1F). This
comparison suggests that the hypermethylated DMRsmay
represent promoters and enhancers that are epigenetically
silencedwith prostate cancer severity, as is known to occur
at tumour suppressor genes during tumourigenesis.4 In
contrast, the hypomethylated DMRs overlap with more
silenced regions in PrEC compared to LNCaP (heterochro-
matin and quiescent regions) and more active regulatory
regions in LNCaP compared to PrEC (active TSS, flank-
ing active TSS and enhancer regions) (Figure S3). The
hypomethylated DMRs may therefore represent promot-
ers that are epigenetically activated with prostate can-
cer severity, as is known to occur at oncogenes during
tumourigenesis.4 Additionally, WGBS methylation data7
from the LNCaP and PrEC cells show that the 1420 DMRs
are also highly differentially methylated between these
cell lines, with 97% of the hypermethylated DMRs show-
ing an increase in LNCaP compared to PrEC, and 89% of
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TABLE 1 Clinicopathological characteristics: (A) discovery and (B) validation cohorts

(A) Discovery cohort
Characteristic Non-lethal Lethal
Number of patients 8 7
Age at RP, mean ± SD (range) 60.3 ± 2.1 (57–63) 62.7 ± 5.5 (54–72)
ISUP Grade Groups
1 (Gleason score ≤6), n (%) 1 (12.5) 1 (14.3)
2 (Gleason score 3 + 4), n (%) 4 (50.0) 1 (14.3)
3 (Gleason score 4 + 3), n (%) 1 (12.5) 3 (42.8)
4 (Gleason score 8), n (%) 2 (25.0) 2 (28.6)

Pre-operative PSA (ng/ml), mean ± SD (range) 11.58 ± 4.4 (5.8–18.4) 18.8 ± 16.9 (2.0–32.4)
Pathological T-category
pT2, n (%) 1 (12.5) 1 (14.3)
pT3, n (%) 7 (87.5) 6 (85.7)

Positive margin status 6 (75.0) 4 (57.2)
Follow-up (years), median (range) 19.5 (13.5–24.8) 6.6 (2.3–10)
Clinical outcome
Biochemical recurrence, n (%) 4 (50.0) 7 (100.0)
Metastatic relapse, n (%) 0 (0.0) 6 (85.7)a

(B) Validation cohort
Characteristic
Number of patients 185
Age at RP, mean ± SD (range) 61.9 ± 5.8 (46–73)
ISUP Grade Groups
2 (Gleason score 3 + 4), n (%) 119 (64.3)
3 (Gleason score 4 + 3), n (%) 34 (18.4)
4 (Gleason score 8), n (%) 19 (10.3)
5 (Gleason score 9, 10), n (%) 13 (7.0)

Pre-operative PSA (ng/ml), mean ± SD (range) 10.3 ± 7.3 (1.6–63.0)
PSA <10 ng/ml, n (%) 115 (62.2)
PSA ≥10 ng/ml, n (%) 70 (37.8)

Pathological T-category
≤pT2, n (%) 89 (48.1)
≥pT3, n (%) 96 (51.9)

Surgical margin statusb

Negative, n (%) 91 (49.2)
Positive, n (%) 93 (50.3)

Follow-up (years), median (range) 15 (0.8–22)
Clinical outcome
Biochemical recurrence, n (%) 86 (46.5)
Metastatic relapse, n (%) 25 (13.5)
Prostate cancer-specific mortality, n (%) 16 (8.6)

Abbreviations: PSA, prostate-specific antigen; pT, pathological T-category; RP, radical prostatectomy; SD, standard deviation.
aDate of metastatic relapse for one patient in the Lethal group not reported.
bMargin status for one patient was not reported.
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F IGURE 1 Discovery cohort findings. (A) Principal component analysis of variation in genome-wide DNA methylation across cancer
tissue from patients with lethal (red) and non-lethal (green) disease, and normal adjacent tissue (light brown). (B) Boxplots of genome-wide
DNA methylation levels in normal adjacent tissue, non-lethal and lethal patients, split across different CpG contexts: (i) CpG islands, (ii) CpG
island shores, (iii) LINE-1 repetitive elements and (iv) long tandem repeats (LTRs). Each dot indicates the median methylation value for each
patient. (C) Heatmap of all 1420 differentially methylated regions (DMRs) (hypermethylated: dark green; hypomethylated: purple), comparing
methylation across normal adjacent (brown), non-lethal (green) and lethal (red) patient samples, alongside lymph node carcinoma of the
prostate (LNCaP) (purple) and prostate epithelial cells (PrEC) (blue) prostate cancer cell lines. (D) DMRcate heatmap of a representative
DMR (DEUP1—DMR #9, turquoise bar) showing methylation across individual patients in the non-lethal (green) versus lethal (red) groups.
The DEUP1 gene is represented by a dark blue bar, with the promoter CpG island represented by a dark green bar. (E) Bar graphs of the
percentage overlap of DMRs with different genomic features. Left panel: CpG island (dark brown), CpG island shore (light brown) and
non-CpG island (brown). Right panel: promoter (dark purple), gene body (light purple) and intergenic regions (purple). (F) Bar graph of the
percentage difference in overlap between PrEC and LNCaP ChromHMM states with all hypermethylated DMRs. The putative regulatory
elements from ChromHMM segmentation data have been grouped into promoter (active transcription start site (TSS), flanking active TSS)
(green), transcription (transcription at 5′ and 3′, strong transcription, weak transcription) (light green), enhancer (genic enhancer, enhancer)
(dark green), bivalent (bivalent/poised TSS, flanking bivalent TSS, bivalent enhancer) (light orange), repressive (ZNF genes and repeats,
heterochromatin, repressed polycomb, weak repressed polycomb) (red) and quiescent (light grey). (G) Top 10 gene sets enriched in the
hypermethylated DMRs, from the Molecular Signatures Database (MSigDB) C2 collection. Significance of enrichment denoted by q-value,
and terms highlighted in yellow refer to cancer-related gene sets.
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TABLE 2 The panel of 18 differentially methylated regions (DMRs) chosen to be validated as prognostic biomarkers

DMR
no. Genomic position (hg19)

Nearest-protein
coding gene

Distance
to TSS
(bp)

Lethal mean
methylation
(WGBS) (%)

Non-lethal
mean
methylation
(WGBS) (%)

Normal tissue
mean
methylation
(WGBS) (%)

1 chr1:208132439-208132824 CD34 47 691 69.23 30.89 4.51
2 chr2:27958210-27958689 AC074091.13 19 610 58.58 16.09 5.32
3 chr3:184243657-184243936 EPHB3 35 635 62.83 23.66 8.94
4 chr4:81118427-81118588 PRDM8 69 70.95 28.67 26.36
5 chr5:10333634-10334055 MARCH6 19 759 59.00 20.00 3.43
6 chr5:115151283-115152645 CDO1 −5 52.55 19.09 3.46
7 chr7:99155673-99157071 ZNF655 0 42.26 14.01 1.66
8 chr8:95246476-95246871 CDH17 16 944 59.10 19.29 11.48
9 chr11:93063135-93064069 DEUP1 0 63.99 25.44 6.97
10 chr12:1906206-1906676 CACNA2D4 −14 209 54.89 12.29 11.75
11 chr12:3862069-3862497 CRACR2A 0 44.67 4.37 4.62
12 chr12:103311054-103311276 PAH 21 64.43 22.12 2.29
13 chr13:53312994-53313591 CNMD 0 69.66 30.95 6.84
14 chr14:90849492-90850589 CALM1 12 256 49.11 3.85 4.56
15 chr15:72564636-72565252 PARP6 0 45.41 9.11 2.02
16 chr17:62773682-62777796 LRRC37A3 −77 948 61.14 28.82 10.69
17 chr22:19742681-19743728 TBX1 497 68.39 29.20 14.29
18 chrX:102000717-102001518 BHLHB9 0 51.15 5.97 1.86

Note: For the distance of DMRs to the TSS of the nearest-protein coding gene, positive values indicate that the DMR lies downstream of the TSS, whilst negative
values indicate that the DMR lies upstream of the TSS.
Abbreviations: TSS, transcription start site; WGBS, whole-genome bisulphite sequencing.

the hypomethylated DMRs showing a decrease in LNCaP
compared to PrEC (Figure 1C). Combined with the results
from the LNCaP and PrEC chromatin state data, this pro-
vides further support for an association between DNA
methylation and changes in gene activation with disease
progression.
We next examined whether the DMRs were enriched

in particular biological pathways through comparison
with curated gene sets from the MSigDB. Hypermethy-
lated DMRs were significantly enriched for 298 terms
(see Table S3). Notably, within the MSigDB C2 collection,
the DMRs demonstrated enrichment for cancer-associated
gene sets, including genes reported as downregulated in
prostate cancer and as de novo methylated in cancer
(Figure 1G). Hypomethylated DMRs were only enriched
for one MSigDB term (Table S3), a cancer-related gene set.

3.2 Selection criteria of genomic regions
for a prognostic DNAmethylation panel

We next sought to test the clinical relevance of the DMRs
through the development of a prognostic DNA methyla-
tion panel for validation in an independent prostate cancer
cohort. We applied stringent selection criteria to iden-

tify DMRs showing prognostic potential, resulting in 18
DMRs that we considered suitable for inclusion in the
DNA methylation panel (Tables 2 and S4 for full details
and methylation values). First, we used the WGBS DMR
results to select hypermethylated DMRs with a large mean
difference between ‘lethal’ and ‘non-lethal’ RP samples
(≥30%), that also importantly had low methylation lev-
els in the WGBS data from the normal prostate tissue
samples (Figure S4A). Next, we used two publicly avail-
able DNA methylation microarray (Illumina HM450K)
datasets to confirm that, for thoseDMRs targeted by probes
on the microarray, the DMRs were indeed hypermethy-
lated in tumour versus normal tissue (PRAD samples from
TCGA Data Portal), and hypomethylated in blood sam-
ples (GSE40279 from the NCBI GEO database),25 to allow
the potential use of the DNA methylation panel in liquid
biopsies in the future (Figure S4B). Interestingly, we found
highly significant correlations between methylation and
expression levels of the nearest-protein coding gene in the
TCGA PRAD samples for the majority of DMRs (Figure
S5 and Table S4). We then used our PrEC and LNCaP
WGBS7 and chromatin state data20 to confirm the potential
functional relevance of these specific regions in this cellu-
lar model of advanced prostate cancer. Here, we required
DMRs to also show a large increase in methylation in
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LNCaP versus PrEC (Figure S4C), and prioritised those
DMRs that exhibited a change from an active to a repressed
state to indicate the functional importance of the DMR.
Full data for DMRs meeting these criteria are shown in
Figure S1 and summarised in Table S4. Finally, a review of
the literature showed that many of the DMRs were located
near to genes with a known role in prostate cancer or other
cancer types (Table S4), whereas other DMR genes were
novel, thus allowing us to explore both known and novel
candidates through our selected 18 regions.

3.3 Validation of prognostic DNA
methylation panel in an independent RP
cohort

We usedMBPS28 to quantify methylation at the selected 18
regions in FFPE tumour tissue from a well-characterised,
population-based cohort of 185 patients with localised
prostate cancer, with median 15 years follow-up and ISUP
Grade Group ≥210 (see Table 1B for cohort details). Details
on the MBPS primer sequences and locations are given in
Table S1 and Figure S1. Sequencing data from this panel
were processed using MethPanel,31 which showed that 17
out of 18 regions passed quality control (CDH17—DMR
#8 had low coverage and so was removed from all down-
stream analysis). PCR bias was observed to be minimal,
with no batch effects between sequencing runs (Figure
S6), and extremely high sequencing coverage (averaging
∼100 000 reads) was achieved across all 17 regions (Figure
S7 and Table S5). Correlations between DNA methylation
at the 17 genomic regions (pairwise r ranging from 0.16
to 0.65) were consistently positive but incompletely corre-
lated, indicating that each region may contribute unique
information (Figure S8).

3.4 Survival analysis

Clinical follow-up data in the validation cohort, with a
median of 15 years (range: 0.8–22 years), showed that 86
patients (46.5%) had a BCR, 25 patients (13.5%) had an MR
and 16 patients (8.6%) died of prostate cancer. One patient
was missing pre-operative PSA data, so was excluded from
subsequent analysis, leaving n = 185 patients. The survival
analysis was conducted in three stages, as described below.

3.4.1 Univariable clinicopathological
analysis

Log-rank and Cox regression analyses were performed to
evaluate the associations between clinicopathological fac-

tors and BCR-free survival, MR-free survival and PCSM.
Both log-rank (Figure 2 and Table S6) and univariable
Cox regression analyses (Figures 3A and S9 and Table S6)
showed that all four routine prognostic clinicopatholog-
ical factors (ISUP Grade Group, pathological T-category,
pre-operative PSA level and surgical margin status) were
significantly associated with time to BCR (Figures 2A–D
and 3Ai), as well as with time to MR (Figures 2E–H
and 3Aii). Only ISUP Grade and margin status were iden-
tified as significant predictors of prostate cancer death
in log-rank and Cox regression analyses (Figures 2I–L
and 3Aiii).

3.4.2 Univariable methylation analysis

To analyse the prognostic capacity of the 17 genomic
regions in our methylation panel, the 185 patients in
this validation cohort were grouped into low and high
methylation groups for each of the regions, based on the
75th percentile value of the MBPS data. Again, log-rank
and univariable Cox regression analyses were performed
to examine the relationships between these methylated
regions and event-free survival (Figures 3, S9 and S10 and
Table S6). Log-rank analysis revealed that methylation lev-
els at five genomic regions were associated with BCR-free
survival (AC074091.13: p = .0066, CACNA2D4: p = .00037,
PRDM8: p = .011, MARCH6: p = .027, ZNF655: p = .043);
only CACNA2D4 was associated with MR-free survival
(p = .013) and five regions were associated with PCSM
(CACNA2D4: p= .00011,EPHB3: p= .023, PARP6: p= .019,
TBX1: p = .0063, MARCH6: p = .042) (Figures 3B and S10
and Table S6). As expected (from the analysis of the dis-
covery cohort), higher methylation levels were associated
with poorer survival. Similar results were observed in uni-
variable Cox regression analysis (Figures 3A and S9 and
Table S6), and notably CACNA2D4, which encodes a pro-
tein in the voltage-dependent calcium channel complex,38
was a significant predictor of poor outcomes following
RP across all three survival endpoints (BCR: p = .0005,
hazard ratio [HR] = 2.18 [1.4–3.38], Figure 3Ai; MR:
p= .016, HR= 2.64 [1.2–5.83], Figure 3Aii; PCSM: p= .001,
HR = 5.84 [2.12–16.13], Figure 3Aiii).

3.4.3 Multivariable analysis

To find the optimal panel of markers with the great-
est predictive power, we performed forward selection
for multivariable Cox regression, using the four clinico-
pathological factors and 17 methylated genomic regions.
The final multivariable prognostic models for each of
the three clinical endpoints (BCR, MR and PCSM) are
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F IGURE 2 Kaplan–Meier survival curves: clinicopathological factors. Kaplan–Meier survival analysis of four clinicopathological
factors: ISUP Grade Group (A, E, I), pathological T-category (B, F, J), pre-op prostate-specific antigen (PSA) level (C, G, K) and margin status
(D, H, L) across three endpoints—biochemical recurrence (A–D), metastatic relapse (E–H) and prostate cancer-specific mortality (I–L).
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F IGURE 3 Univariable survival analysis. (A) Univariable Cox regression analysis: Forest plots showing the univariable hazard ratio, 95%
confidence interval (CI) and p-value for methylation and clinicopathological variables significant in univariable Cox regression analysis for:
(i) biochemical recurrence, (ii) metastatic relapse and (iii) prostate cancer-specific mortality. Methylated regions are shaded in orange, and
clinicopathological factors are shaded in brown. (B) Prognostic potential of CACNA2D4 (DMR #10): Kaplan–Meier survival curves with
endpoints of: (i) biochemical recurrence, (ii) metastatic relapse and (iii) prostate cancer-specific mortality. Red line indicates higher
methylation (>75th percentile) and blue line indicates lower methylation (≤75th percentile).

summarised in Table 3. For BCR, the final model with
the most predictive power from SES analysis consisted
of CACNA2D4 (p = .003, HR = 1.94 [1.25–3.03]), ISUP
Grade Group (p = .000, HR = 2.23 [1.45–3.42]) and pre-
operative PSA levels (p = .001, HR = 2.08 [1.36–3.2]).
For MR, methylation did not add prognostic value, with
only ISUP Grade Group (p = .000, HR = 5.41 [2.16–
13.59]) and margin status (p = .028, HR = 2.67 [1.11–6.41])
in the final model. For PCSM, the final multivariable
prognostic model consisted of CACNA2D4 (p = .001,
HR = 5.33 [1.93–14.73]) and ISUP Grade Group (p = .009,
HR = 4.53 [1.46–14.07]). Harrell’s C-indices show that the
addition of CACNA2D4 methylation improved the pre-
dictive accuracy compared to the model containing only
the SES-derived clinicopathological markers (ISUP Grade
and pre-operative PSA levels) in predicting BCR (C-index:
0.680 vs. 0.649) (Table 3A). Notably, the SES-derivedmodel
of CACNA2D4 and ISUP Grade was a better predictor of
PCSM as compared to ISUP Grade alone (C-index: 0.779
vs. 0.684) (Table 3C). In a complementary approach, we
applied a time-dependent ROC analysis to calculate AUC

for survival at 1, 5, 10 and 15 years post-RP. Again at
all time points assessed, the models had a higher accu-
racy with CACNA2D4 methylation included in the model
(Table S7). For example, for PCSM survival at 5 years post-
RP, we observed a clinically relevant increase in AUC from
0.69 with ISUP Grade Group alone to 0.78 after including
CACNA2D4 methylation. Finally, to ensure CACNA2D4
results were not biased by between-patient variability
in PCR sequencing read depth, we performed bioinfor-
matic downsampling of the CACNA2D4 sequencing data
and repeated the survival analyses. Results remained
similar across all sequencing coverage levels (Tables S8
and S9).

3.5 Characterisation of the CACNA2D4
DMR

The most promising methylation biomarker identified
in our study is a region within the CACNA2D4 gene,
which overlaps exon 35 of the main protein-coding
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TABLE 3 Results of multivariable Cox regression analyses in validation cohort (n = 185), showing models with the greatest predictive
power selected using the Statistically Equivalent Signatures (SES) feature selection algorithm (i) with and (ii) without methylation
measurements included as input variables

(i) Clinicopathological and
methylation variables

(ii) Clinicopathological variables
only

Variable Thresholds HR (95% CI) p-Value C-index HR (95% CI) p-Value C-index
(A) Biochemical recurrence
CACNA2D4 (DMR #10) ≤75th percentile versus

>75th percentile
1.94 (1.25–3.03) .003 0.681

Pathological ISUP
Grade Groups

2 versus 3–5 2.23 (1.45–3.42) .000 2.40 (1.57–3.68) .000 0.649

Pre-operative PSA <10 ng/ml versus
≥10 ng/ml

2.08 (1.36–3.2) .001 2.19 (1.43–3.37) .000

(B) Metastatic relapse
Pathological ISUP
Grade Groups

2 versus 3–5 5.41 (2.16–13.59) .000 0.760

Margin status Negative versus
positive

2.67 (1.11–6.41) .028

(C) Prostate cancer-specific mortality
CACNA2D4 (DMR #10) ≤75th percentile versus

>75th percentile
5.33 (1.93–14.73) .001 0.779

Pathological ISUP
Grade Groups

2 versus 3–5 4.53 (1.46–14.07) .009 4.99 (1.61–15.49) .005 0.684

Abbreviations: CI, confidence interval; DMR, differentially methylated region; HR, hazard ratio; PSA, prostate-specific antigen.

isoform of the gene, 14 kb downstream of the TSS (Figure
S11A). Our original comparison with PrEC and LNCaP
data indicated that, although distant from the gene pro-
moter, the DMR overlaps a regulatory DNA element:
defined as a hypomethylated, active regulatory region in
normal prostate cancer cells that becomes hypermethy-
lated and assumes a weaker active chromatin state in the
metastatic cancer cell line (Table S4 and Figure S1J). In
support of the region’s regulatory importance, we used
data from the GeneHancer ‘Double Elite’ list21 to confirm
that the DMR overlaps a validated promoter/enhancer
region (GeneHancer ID: GH12J001795). Next, we used the
Double Elite list to identify the regulatory element’s likely
target gene. Two or more sources of evidence showed that
there was a high likelihood of interaction between this
region and the CACNA2D4 gene promoter (Figure S11A).
The methylation status of a regulatory region can impact
long-range interactions,39 leading us to hypothesise that
the differential methylation we observed at this region
may affect its interaction with the CACNA2D4 promoter,
and thus its expression. Consistent with this, data from
TCGA show that CACNA2D4 expression is significantly
decreased in tumour versus normal tissue (Figure S11B);
however, we were unable to assess the corresponding
methylation difference in the same cohort as the HM450K
platform used by TCGA does not have probes targeting the
CACNA2D4 DMR. Taken together, these data suggest that
DNAmethylation at the CACNA2D4DMRmay play a role

in long-range transcriptional regulation of the CACNA2D4
gene.

4 DISCUSSION

Prostate cancer is a highly heterogeneous disease. Cur-
rent risk stratification tools based on standard clinico-
pathological variables provide some degree of predictive
ability. Advances in high-throughput genomic and RNA
sequencing has led to the development of several novel
tissue-based biomarkers that can improve prostate cancer
prognosis to aid disease management, including com-
mercialised gene expression prognostic biomarker tests,
such as Decipher (GenomeDx Biosciences, Vancouver,
British Columbia, Canada) and Prolaris (Myriad Genetics,
Salt Lake City, UT, USA), which both require RNA from
prostate tissue.40 However, DNA methylation biomarkers
could further improve disease prognosis, especially given
their potential to be developed for liquid biopsy, such as
the FDA approved Epi proColon test for colorectal cancer;
based on PCR detection of methylated SEPT9 (septin 9)
in cell-free circulating DNA shed from tumours into the
bloodstream.41
DNA methylation is a promising prostate cancer DNA

biomarker because it is one of the earliest molecular
changes to occur in tumourigenesis and is a more stable
molecule than RNA,42 allowing it to be measured even
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in low input, degraded clinical tissue, including FFPE
tissue.28 However, to date the discovery of prognostic DNA
methylation markers has been limited by the technologies
and the type of cohorts used.6 Even the landmark TCGA
prostate cancer study had an average follow-up time of
just 2 years after RP.43 Short follow-up time means that
many studies of prostate cancer prognosis use BCR as
an indicator of aggressive disease.6 However, the ICECaP
consortium has identified that MR, not BCR, is the best
surrogate for prostate cancer-specific death.44 In this study,
we applied single-base resolution methylation sequencing
technologies to two independent prostate cancer cohorts
with long-term follow-up clinical data (median:>15 years),
allowing analysis of the association between DNA methy-
lation alterations throughout the prostate cancer genome
and PCSM.
WGBS profiling of the discovery cohort provided new

insights into the associations between methylation and
prostate cancer risk, and identified a suite of candidate
DNA methylation prognostic biomarkers. Initial analy-
sis with PCA showed that the first principal component
(which explains the largest proportion of variance in the
methylation data) showed separation not only between
normal and tumour samples, but also between tumours
from patients with lethal and non-lethal disease. Sub-
setting the data according to genomic context revealed
locus-specific dynamics, with methylation at CpG-rich
islands and shores increasing with the aggressiveness
of disease, whereas methylation at repetitive elements
showed the opposite association. These results are con-
sistent with the known regional DNA hypermethylation
that occurs at promoter CpG islands in cancer, and with
the studies of promoter CpG islands of candidate genes
that have reported increasing methylation levels with dis-
ease progression.4 Conversely, repetitive elements, mak-
ing up ∼45% of the genome, are known to be highly
methylated in normal tissue, but lose methylation dur-
ing tumourigenesis,45 which can result in the activation of
transposable elements leading to potential mutagenesis.46
Furthermore, a recent study of the repetitive element
LINE-1 in prostate cancer showed evidence of increas-
ing loss of methylation with disease progression, that was
associated with patient survival.47
In the discovery cohort, our analysis of WGBS data

identified more than 1000 regions showing methylation
changes between the lethal and non-lethal patient groups,
of which the majority were in promoter and CpG island
regions. Promoter CpG island methylation is typically
inversely correlated with expression of the same gene. As
the majority of our DMRs were hypermethylated, this sug-
gests that these methylation changes may play a role in
gene silencing. Consistent with this, gene ontology anal-
ysis of the genes associated with our DMRs identified

enrichment for relevant gene sets including the MSigDB
‘LIU_PROSTATE_CANCER_DN’ set; a list of genes identi-
fied as downregulated in human prostate cancer compared
to benign tissue.48
We selected top-ranked lethal DMRs for validation in a

large, independent clinical cohort. Interestingly, a num-
ber of these top-ranked DMRs occur at the CpG island
promoter of genes previously associated with prostate can-
cer progression (see Table S4 for full details). Amongst
these is Calcium Release Activated Channel Regulator 2A
(CRACR2A), which encodes a calcium-binding protein
that is implicated in innate immune response.49 A recent
study also reported hypermethylation of CRACR2A in
prostate cancer tissue frommenwithmetastatic-lethal dis-
ease, at a region overlapping the promoter DMR identified
in our study. Hypomethylation of this regionwas also asso-
ciated with vigorous physical activity in the year before RP,
leading the authors to conclude that CRACR2A methyla-
tion could mediate the link between physical activity and
metastatic-lethal progression.50 Another study identified
the exact same region of CRACR2A (listed as EFCAB4B)
as the top-ranking DMR hypermethylated in breast can-
cer patients resistant to endocrine therapy, with a strong
negative correlation with gene expression, and hypothe-
sise that the observed methylation change may be reg-
ulating immune/inflammatory alterations in the tumour
microenvironment.49 Another top-ranked lethal DMR,
Cysteine Dioxygenase Type 1 (CDO1), is a potential tumour
suppressor gene, which has shown promoter hypermethy-
lation and gene silencing in a range of different cancers51
and notably showed that increased promoter methyla-
tion with BCR-free survival in prostate cancer patients
following RP.52 T-Box Transcription Factor 1 (TBX1), a
gene encoding a developmental transcription factor and
implicated in retinoic acid signalling,53 has also been asso-
ciated with prostate cancer risk. A recent meta-analysis
of 87 040 individuals (43 303 prostate cancer cases and
43 737 controls) identified an intronic single-nucleotide
polymorphism in the TBX1 gene that was significantly
associated with prostate cancer in both European and
Japanese populations.54 A study using a comprehensive,
single-base resolution technique, Enhanced Reduced Rep-
resentation Bisulfite Sequencing, to profile DNA methy-
lation in benign prostate, prostate cancer and castrate
resistant prostate cancer tissue identified a region in the
first intron of the TBX1 gene that showed increasing lev-
els of methylation with disease severity, together with
increased gene expression.53
To validate the prognostic utility of the top-ranked 18

lethal DMRs, we used targeted MBPS28 in an independent
cohort to test the association between the lethal DMRs
and each of the survival endpoints: BCR, MR and PCSM.
Log-rank analysis revealed five DMRs associated with
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BCR, one DMR with MR and five with PCSM. Given the
growing recognition that BCRmay not be a good predictor
of PCSM, it was interesting to note that a different set of
DMRs was associated with these two survival endpoints.
CACNA2D4, however, was significantly associated with all
three endpoints. It was also the only DMR to be selected in
the final multivariable models for BCR and PCSM, as a sig-
nificant independent prognostic variable, as measured by
Harrell’s C-index. Inclusion of CACNA2D4methylation in
multivariable models substantially improved the C-index
for predicting PCSM from 0.684 with clinicopathological
variables alone to 0.779. This C-index increase is compara-
ble to the improvements afforded to survivalmodels (using
standard clinicopathological variables) by the inclusion
of data from commercialised gene expression prognostic
biomarker tests, such as Decipher and Prolaris. For exam-
ple, a 2015 study reported that the cell cycle progression
score used by Prolaris improved the survival model pre-
diction of 10 year PCSM from a C-index of 0.74–0.78.55
For comparison, the inclusion of the Decipher Genomic
Classifier signature, measured in RP tissue, increased the
survival model C-index for predicting MR at 10 years post-
RP from 0.77 to 0.87.56 Whilst another study using biopsy
tissue reported that Decipher improved the C-index from
0.60 to 0.71.57 However, it should be noted that these
Decipher studies were focused on prediction of MR, and
did not calculate a C-index for multivariable models of
PCSM prediction; therefore, we cannot directly compare
these studies with our CACNA2D4multivariable model of
PCSM.
CACNA2D4 encodes a protein in the voltage-dependent

calcium channel complex, which mediates the influx
of calcium ions into the cell.38 Evidence of a role for
CACNA2D4 in cancer is limited (see Table S4).58–60 We
found that the CACNA2D4DMR overlaps a regulatory ele-
ment that is known to target the CACNA2D4 promoter,
suggesting that methylation at this DMR may play a role
in long-range transcriptional regulation of the CACNA2D4
gene; however, further work, using techniques such as
Hi-C and CRISPR interference,21,61 is necessary to fully
assess the regulatory mechanisms of this region. Of note,
the CACNA2D4 DMR is not covered by the commonly
used methylation microarrays, which may also explain
why CACNA2D4 methylation has not been identified as a
prognostic biomarker before.
One of the main strengths of the current study is the

long-term follow up (>15 years), which allowed for the
clinically important endpoints of MR and PCSM to man-
ifest. However, the longevity of the study means that it
ran over a period in which clinical practice changed:
widespread PSA screening was introduced in Australia
in 1995, which led to downward stage migration at
diagnosis.62 The majority of patients in the discovery

cohort were diagnosed in the early 1990s, in the pre-
PSA screening era when more men were diagnosed with
advanced cancer, whilst the validation cohort patients
were diagnosed from 1997 onwards, in the post-PSA
screening era. The change in clinical diagnostics between
the cohorts is a possible drawback in the study design,
although we are encouraged that many of the DMRs
identified in the discovery cohort did provide prognostic
value in the validation cohort, as a cohort which reflects
contemporary diagnosis and treatment algorithms.

5 CONCLUSIONS

Our findings provide a promising foundation for larger
prospective randomised studies to validate our novel panel
of epigenetic biomarkers, including the potential predic-
tive value of the CACNA2D4 locus. Future mechanistic
studies will determine if any of these epigenetic biomark-
ers identify early disruption of key regulatory pathways
that lead to prostate cancer metastases and death.
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