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Summary
Background It is estimated that ∼60% of people with Alzheimer’s disease (AD) are undetected or undiagnosed, with
higher rates of underdiagnosis in low-to middle-income areas with limited medical resources. To promote health
equity, we have developed a web-based tool that utilizes easy-to-collect clinical data to enhance AD detection rate
in primary care settings.

Methods This study was leveraged on the data collected from participants of the Australian Imaging, Biomarker &
Lifestyle (AIBL) study and the Religious Orders Study and Memory and Aging Project (ROSMAP). The study
included three phases: (1) constructing and evaluating a model on retrospective cohort data (1407 AIBL participants),
(2) performing simulated trials to assess model accuracy (30 AIBL participants) and missing data tolerability (30 AIBL
participants), and (3) external evaluation using a non-Australian dataset (500 ROSMAP participants). The auto-score
machine learning algorithm was employed to develop the Florey Dementia Risk Score (FDRS). All the simulated trials
and evaluation were performed using a web-based FDRS tool.

Findings FDRS achieved an area under the curve (AUC) of approximately 0.82 [95% CI, 0.75–0.88], with a sensitivity
of 0.74 [0.60–0.86] and a specificity of 0.73 [0.70–0.79]. The accuracy of the simulated pilot trial for 30 AIBL par-
ticipants with complete record was 87% (26/30 correct), while it only slightly decreased (80.0–83.3%, depending on
imputation methods) for another 30 AIBL participants with one or two missing data. FDRS achieved an AUC of 0.82
[0.77–0.86] of 500 ROSMAP participants.

Interpretation The FDRS tool offers a potential low-cost solution to AD screening in primary care. The present study
warrants future trials of FDRS for optimization and to confirm its generalizability across a more diverse population,
especially people in low-income countries.
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Introduction
Alzheimer’s disease (AD) is the major cause of de-
mentia. It is estimated that 59% of older adults with
dementia in the United States are undiagnosed or
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unaware of their diagnosis, suggesting shortcomings in
detection of dementia.1 From a global perspective, a
systematic review of 23 studies published prior to 2016
revealed that the pooled rate of undetected dementia
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Research in context

Evidence before this study
We searched PubMed for studies published from the database
inception to April 20, 2024, using combinations of the terms
“binary classification”, “machine learning”, “Alzheimer’s
disease”, “auto-score”, “self-report tool”, and “cognitive
decline” without language restrictions. Additionally, we
searched Google Scholar and reviewed reference lists to
identify relevant studies. We excluded studies that developed
binary classification models for Alzheimer’s disease (AD) and
cognitively unimpaired (CU) individuals using cognitive
assessments, cerebrospinal fluid biomarkers, and
neuroimaging. Most of the included studies focused on the
binary classification of CU/AD using self-report tools such as
the Australian National University Alzheimer’s Disease Risk
Index. These tools typically use an evidence-based medicine
approach for feature selection. Of note, many of these tools
use an excessive number of features or include
neuropsychological tests that require the assistance from
neuropsychologists, making them unsuitable for AD
screening, especially for countries and areas with limited
medical resources.

Added value of this study
To our knowledge, this is the first study exploring the use of
an auto-score framework for binary classification for AD. This
novel method employs random forest feature selection and
parsimony analysis to minimize the number of features used
in the model, while also incorporates evidence-based
medicine information. We have developed a web-based tool,
the Florey Dementia Risk Score (FDRS), which has achieved a
classification accuracy of 80–87% for older Australians
(n = 60) and Americans (n = 500).

Implications of all the available evidence
The developed FDRS is an easy-to-use, machine learning-
based tool for the binary classification of AD. By utilizing
demographic information, medical history, self-report data,
vital signs, and apolipoprotein E genotype data, the FDRS
offers a new digital health technology with the potential to
improve AD detection rate in primary care settings, especially
where diagnostic resources are limited. Further trial is required
to validate FDRS in low- and medium-income countries and
evaluate its potential to promote health equity by facilitating
AD screening in primary care.
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was 61.7% [95% CI 55.0–68.0%], and the rate of under-
detection was higher in China and India (versus North
America and Europe), and in the community setting
(versus residential/nursing care).2 In clinical practice,
the diagnosis of AD is based primarily on clinical
symptoms, supplemented by neuropsychological tests,
advanced imaging and, where possible, biomarkers.3

PET imaging is the gold standard for quantifying
amyloid-beta, the hallmark of AD; however, it is rarely
used in the clinic. The technical complexity and high
costs of these approaches pose significant challenges to
screening and early detection of AD in primary care,
especially in low-income countries or remote areas
where diagnostic resources are even more limited.4 In
addition, stigma associated with neuropsychological
tests may deter some individuals from undergoing the
required tests for AD diagnosis.5,6

Several digital tools and risk indices have been
developed to assess the probability/risk of individuals
currently having AD.7–9 Using data from the Northern
Manhattan study, Reitz et al. integrated factors such as
sex, education, ethnicity, apolipoprotein E (APOE) ge-
notype, diabetes, hypertension, smoking, high-density
lipoprotein, and waist-to-hip ratio to develop a vascular
risk score.7 Although this score helps identify older
adults who might be at risk for AD, their output (relative
risk) is difficult to interpret clinically, and more impor-
tantly, the accuracy of the model was not assessed.
Another tool was developed using the German primary
care patient registry, tracking 3055 patients across three
follow-ups with an 18-month interval. This tool requires
age, subjective memory complaints, Mini-Mental State
Examination score, depressive symptoms, and instru-
mental activities of daily living as features of AD and
achieved a prediction accuracy of 0.79.8 However, neu-
ropsychologists need to be involved to use this tool,
making it less practical for AD screening in the primary
care settings. In addition, the Australian National Uni-
versity AD Risk Index (ANU-ADRI) is a self-reported
risk index that uses an evidence-based medicine
approach to predict AD occurrence.9 Demographic data
(e.g., age), medical history (e.g., depression, diabetes),
and lifestyle factors (e.g., physical activity) were
collected. The ANU-ADRI has been tested in three in-
dependent AD cohort datasets (the Rush Memory and
Aging Project, Kungsholmen Project, and Cardiovascu-
lar Health Cognition Study), and achieved an accuracy
of 0.7.10 Although these tools have the potential to
facilitate early detection of AD, their practicability and
performance require further improvement.

Here, we developed and validated a new web-based
diagnostic tool, the Florey Dementia Risk Score
(FDRS), which was designed for AD screening in older
adults (≥65 years) during their primary care, with cli-
nicians as the intended users. FDRS was developed by
leveraging the Australian Imaging, Biomarker & Life-
style (AIBL) study11 and was powered by an auto-score
machine learning algorithm.12 Our tool only requires
relatively easy-to-collect data, such as age, living
arrangement, occupation, heart rate, blood pressure,
self-reported difficulty in memory, history of neurolog-
ical disorders, Geriatric Depression Scale (GDS) score,
www.thelancet.com Vol 76 October, 2024
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and APOE genotype. The performance of FDRS is
promising in older Australians, demonstrating a high
consistency between FDRS results and clinical di-
agnoses. We also evaluated FDRS using participants of
the Religious Orders Study and Memory and Aging
Project (ROSMAP),13–16 and a consistently good perfor-
mance was achieved.
Methods
Study design and participants
This study follows the Transparent Reporting of a
multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) guideline, which is used to aid
the reporting of studies developing prediction models
for diagnosis or prognosis using machine learning or
regression methods and/or evaluating (validating) their
performance.17 This study is not a clinical trial and
therefore was not registered. The AIBL dataset (n =
1407) was used to construct the FDRS model (70% of
the participants) and internally evaluated the model
(30% of the participants). Additional AIBL participants
data (unseen by the model) were used for a simulated
trial (n = 30) and a missing value trial (n = 30). The
FDRS was also externally evaluated using 500 partici-
pants of ROSMAP study. AIBL and ROSMAP study
were conducted in Australia (since 2006) and the United
States (since 1994), which are two of the most well
characterized observational dementia cohorts in the
world.

The current study included five data categories as
predictors: demographics (D), medical history (M), self-
reports (S), vital signs (V), and APOE genotype (G). All
predictor data were collected/measured by AIBL and
ROSMAP research groups as per their published
method.11,13 Two sets of features, DMSVG and DMSV,
were used for model construction. The demographic
data included age, sex, living arrangements, primary
occupation, retirement status, and marital status. For
medical history, the AIBL study employed a question-
naire covering 22 diseases, and each was represented as
a binary variable. Self-reported data included the GDS18

and difficulty in memory. The vital signs included blood
pressure and heart rate. The APOE genotypes included
ε2/ε2, ε2/ε3, ε3/ε3, ε4/ε2, ε4/ε3, and ε4/ε4.19 These data
can be collected using non- or less invasive approaches/
procedures,20 and therefore they are selected as initial
predictors for FDRS.

Out of a total of 2449 AIBL participants, 1407 had all
the DMSVG data recorded and were therefore included
in the current study. This size of participant data has
been successfully used for the development and valida-
tion of existing machine learning models for AD.20 The
counts for each feature for these 1407 AIBL participants
are listed in Supplementary Materials (A), Table S1. An
additional 60 participants were recruited from AIBL for
www.thelancet.com Vol 76 October, 2024
the simulated trials: 30 participants with full DMSVG
information and 30 participants with one or two pieces
of missing data. To test the generalizability of the FDRS,
500 ROSMAP participants (375 CU and 125 AD) with
complete DMSVG information were used for external
evaluation. For participants with multiple records at
different ages after enrolment, only the last records were
included. This approach was used to mitigate correla-
tions between time series of multiple assessments for
an individual participant21 and to avoid imbalanced oc-
currences of AD and non-AD cases in subsequent ana-
lyses.22 The use of de-identified human data from these
participants was consented.

FDRS model development
Details of the model development including exact data
handling steps are available in Supplementary Materials
(B). Briefly, the development of the FDRS is based on
an algorithm and software package called auto-score,
which introduces a framework for automating the
development of a clinical scoring model for predefined
outcomes and systematically presents its structure.12

The auto-score algorithm comprises six modules: 1)
variable ranking by random forest, 2) variable trans-
formation, 3) score derivation, 4) parameter determi-
nation by parsimony plot, 5) fine-tuning, and 6)
predictive performance evaluation. The first module
ranks features by their importance, helping to select
relevant features for the development of FDRS. The
second module converts continuous variables into cat-
egorical ones, allowing for the modeling of nonlinear
effects. This approach has been widely used in medical
research and can reduce the impact of outliers on the
performance. The third module uses multi-logistic
regression to create a risk score for outcome predic-
tion, assigning a weight and an integer point value for
the categories within each feature. The fourth module
employs parsimony analysis to balance model perfor-
mance and complexity, which is used to determine the
final number of features to be used by FDRS. Since the
variable transformation in module two is data-driven
and lacks domain knowledge, the fifth module fine-
tunes the automatically generated interval boundary
values for continuous variables by combining, round-
ing, and aligning them with standard clinical norms
(e.g., clinical guidelines). The threshold for the binary
classification was thereafter determined by the auto-
score algorithm. Finally, the sixth module assesses the
developed FDRS on an unseen test set to evaluate its
performance after the previous modules. For the cur-
rent study, the AIBL dataset was randomly divided into
a non-overlapping training set (70%) and a test set
(30%). The training set was utilized for training,
development, and fine-tuning of the FDRS (module
1–5), while the test set served as unseen data to evaluate
the performance of the developed FDRS (module 6).
3

http://www.thelancet.com


Articles

4

FDRS construction and evaluation
As mentioned above, the data were categorized into five
categories, DMSVG. As APOE genotype data (G) may
not be readily available for the target users, we have also
developed FDRS model using DMSV data (i.e. a model
without the use of APOE genotype). The FDRS-DMSV
was compared to the standard FDRS model, to eval-
uate the impact of missing APOE genotype on model
performance. We have also developed two baseline
models using multi-logistic regression with 1) all fea-
tures in the AIBL dataset and 2) the selected features
(using module 1 and 4), to demonstrate the advantages
of using feature selection and auto-score algorithm,
respectively. The receiver operating characteristic (ROC)
analysis was chosen as the evaluative metric, incorpo-
rating several key performance indicators, including
area under the curve (AUC) of ROC, sensitivity, and
specificity.

Web-based tool development
The FDRS model developed in this study has been
embedded into a user-friendly, self-report web-based
tool through a co-design process23 involving health
consumers and clinicians. The co-design was held
virtually and physically via the Victorian Co-design
Research Hub. This tool prompts clinicians to input
data into several specifically chosen features. Once the
required information is entered, the tool calculates and
displays the FDRS with binary classification of AD.

Simulated pilot trial, missing data trial, and
external evaluation
To appreciate the real-world applicability of our web-
based tool, we randomly selected 30 older Australians
from the AIBL study. In addition, as missing data is
common in clinical settings,20 we evaluated its impact
on the performance of FDRS using another simulated
trial with 30 older Australians with one or two pieces of
missing data. For imputation, we attempted three
imputation methods for the respective feature values,
including 1) mean substitution, 2) the k-nearest
neighbor, and 3) multiple imputation by chain equation.
Finally, FDRS was externally evaluated on 500 (125 AD,
375 CU) participants of a United State-based cohort
study, the ROSMAP, to ensure model generalizability.
All participants were randomly selected, and their data
had not been previously used in the construction and
validation of the FDRS model. The FDRS results were
calculated by auto-score algorithm, which is handled by
a researcher (GJ) blinded to the participants’ clinical
diagnoses. The FDRS results of trials/external evalua-
tion were compared against clinical diagnoses as a
measure of accuracy.

Software and packages
All data preprocessing and analyses were performed
using Python version 3.9 and RStudio version
12.0 + 369. The developed model relies on the auto-
score package in the R 3.5.3 programming environ-
ment (R Foundation).24 The auto-score package enables
the convenient creation of point-based clinical scoring
models to predict outcomes, minimizing manual inter-
vention for data processing, parameter tuning, and
model optimization.

Ethics statement
The AIBL study was approved by the St Vincent’s Health
Melbourne Human Research Ethics Committee (HREC
Reference number: 028/06), and all participants pro-
vided written informed consent prior to study enrol-
ment.11,25 ROSMAP was approved by the Institutional
Review Board of Rush University Medical Centre, and
all participants provided informed consent.13

The current study analyzes the de-identified sec-
ondary data collected by AIBL and ROSMAP, and
informed consent or local ethical committee approval
was not required.

Role of the funding source
The funder of the current study had no role in the study
design, data collection, data analysis, data interpretation,
or writing of the study.
Results
FDRS model construction and internal validation
using AIBL dataset
We first performed a random forest feature selection to
identify the most to least important features for classi-
fication. The feature importance ranking table is shown
in Fig. 1, with age standing out as the most important
feature for AD binary classification. These results are
not unexpected, as age is the greatest known risk factor
for AD.26 Blood pressure (systolic and diastolic) and
heart rate are also strongly associated with AD. This is
also in line with existing clinical and epidemiological
evidence.27,28 In addition, the GDS score, living ar-
rangements, APOE genotype, and history of neurolog-
ical disorders (other than AD) are also highlighted as
important features, which are well supported by clinical
and epidemiological observation.29 Overall, the features
selected via the machine learning approach are consis-
tent with the evidence-based medicine.

An ideal FDRS should balance the number of fea-
tures with its performance. A parsimony plot (Fig. 2)
was therefore employed to determine the number of
features required by FDRS to achieve the most optimal
performance. We noted a dramatic increase in perfor-
mance when comparing models using two-five features
(AUC 0.69–0.71) to those using age as a single feature
(AUC 0.59). Notably, incorporating the APOE genotype
(the sixth feature) increased the AUC by 0.06. The per-
formance was improved further by using more than six
features (AUC 0.75–0.80) and peaked at eleven features
www.thelancet.com Vol 76 October, 2024
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Fig. 1: Importance ranking of features. The x-axis displays the importance determined by the random forest feature selection, with a higher
numerical value indicating higher importance, while the y-axis lists the name of 35 features collected in the Australian Imaging, Biomarker &
Lifestyle study. The plot illustrates the relative importance of various features. Age is the most important feature, while epilepsy is the least
important one. Abbreviations: Geriatric Depression Scale (GDS), apolipoprotein E (APOE).

Fig. 2: Parsimony plot for the Florey Dementia Risk Score (FDRS) model using a cumulative number of features. This plot was obtained
using the training set, which shows the area under curve (AUC) values when increasing number of features are used in the FDRS model. The
number within the bar represents the total number of features used, and the height of the bar indicates the mean AUC value from a 10-fold
cross validation. For example, the third bar on left means when the first three features are used for FDRS, the AUC is ∼0.7 as indicated on the y-
axis. Abbreviations: Geriatric Depression Scale (GDS), apolipoprotein E (APOE).
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(AUC 0.83). Thereafter, the performance remained
steady despite adding additional features (AUC
0.80–0.83). Balancing performance and model
complexity, we decided to use eleven features for our
FDRS model.

After feature selection, multiple logistic regression
was used to derive the score for each category/interval of
the selected features (Table 1). The maximum FDRS is
100. The cut-off score for AD binary classification (i.e.
FDRS = 76) was automatically determined by the auto-
score algorithm. The performance metrics on the vali-
dation set were as follows: AUC 0.88 [95% CI,
Features Category/interval Scores

Age <77 0

[77,82) 2

≥82 3

Geriatric Depression Scale <0 0

[0,2) 28

≥2 31

Blood pressure (diastolic),
mm Hg

<79 0

≥79 1

Heart rate, beats/min <62 1

[62,68) 0

[68,76) 1

≥76 0

Blood pressure (systolic),
mm Hg

<151 2

≥151 0

Apolipoprotein E genotype ε2/ε2 0

ε3/ε2 32

ε3/ε3 33

ε4/ε2 34

ε4/ε3 36

ε4/ε4 39

Neurological disorders (other
than AD)

No 0

Yes 5

Present living arrangements Home of Relative 6

Other 2

Own (or rented) home alone 0

Own (or rented) home with
spouse/others

3

Residential Hostel 7

Primary occupation Clerical/Teaching/Nursing 0

Domestic Duties/Factory/
Agriculture

2

Other 1

Difficulty with memory No 0

Yes 4

Marital status Cohabiting 0

Divorced/Single/Windowed 1

Married 2

Separated 4

Table 1: Score table of features for the Florey Dementia Risk Score
model.
0.85–0.91], sensitivity 0.79 [0.71–0.85], and specificity
0.82 [0.80–0.85]. After that, we manually fine-tuned the
interval to ensure clinical relevancy. For example, the
GDS score was fine-tuned with clinically relevant ranges
[0,5), [5,10), [10,15].18 For diastolic blood pressure, the
intervals are <60, [60,80), [80,90), and ≥90, while for
systolic blood pressure, the intervals are <120, [90,150),
and ≥150.30 The updated scores for the selected features
after fine tuning and the clinical guidelines used to
determine these ranges/intervals are listed in Table 2.
The performance of the fine-tuned FDRS model on the
validation set was as follows: AUC 0.88 [95% CI,
0.84–0.91], sensitivity 0.74 [0.70–0.81], and specificity
0.84 [0.82–0.87], which was comparable to that of the
FDRS without fine tuning. However, incorporating fine-
tuning is essential as it integrates clinical information
for score derivation, thereby avoiding non-clinically
meaningful intervals for some features (e.g., GDS <
0). After fine tuning, the FDRS was evaluated on the test
set, and the FDRS cutoff score decreased to 66. This
reduction in cutoff score is likely due to fine tuning. The
performance of the fine-tuned FDRS model on the test
set was as follows: AUC 0.82 [95% CI, 0.75–0.88],
sensitivity 0.74 [0.60–0.86], and specificity 0.73
[0.70–0.79]. Overall, the results indicated that FDRS can
distinguish CU and AD subjects.

Comparison between the standard FDRS and
baseline models
The developed standard FDRS was compared with two
baseline models: (1) multi-logistic regression with all 35
features, and (2) multi-logistic regression with the same
11 features used by the standard FDRS. The comparison
results have been summarized in Supplementary
Materials (C), Table S2. The ROC plots of these two
baseline models are shown in Supplementary Materials
(C), Figure S1(A) and 1(B). From these results, we can
see that compared to baseline model-1 (AUC 0.738 [95%
CI, 0.657–0.820]), although the FDRS used fewer fea-
tures, it achieved a better performance. Compared to
baseline model-2 (AUC 0.728 [0.646–0.810]), the FDRS
employing auto-score algorithm performed better,
although the same eleven features were used. Overall,
these comparisons demonstrated that advantages of
using the auto-score algorithm in the binary classifica-
tion of AD.

Comparison between FDRS-DMSV model with the
standard FDRS
Similar to the development of the standard FDRS, the
development process for FDRS-DMSV includes six
modules, which are detailed in Supplementary Materials
(D). In Module 1, random forest feature selection was
used to rank features by their importance (Figure S2). In
Module 4, a parsimony plot was used to determine the
number of features required by the FDRS-DMSV
(Figure S3). When 15 features were used, the model
www.thelancet.com Vol 76 October, 2024
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Features Interval Scores

Age <73 0

[73,77) 1

[77,82) 3

≥82 5

Geriatric depression scale18 [0,5) 0

[5,10) 5

[10,15) 4

Blood pressure (diastolic),30

mm Hg
<60 4

[60,90) 0

≥90 3

Heart rate, beats/min <62 2

[62,68) 1

[68,76) 2

≥76 0

Blood pressure (systolic),30

mm Hg
<120 2

[120,150) 3

≥150 0

Apolipoprotein E genotype ε2/ε2 0

ε3/ε2 42

ε3/ε3 43

ε4/ε2 45

ε4/ε3 48

ε4/ε4 52

Neurological disorders (other
than AD)

No 0

Yes 7

Present living arrangements Home of Relative 7

Other 3

Own (or rented) home alone 0

Own (or rented) home with
spouse/others

4

Residential Hostel 10

Primary occupation Clerical 0

Domestic Duties Factory/
Agriculture

3

Other 1

Teaching/Nursing 0

Difficulty with memory No 0

Yes 6

Marital status Cohabiting 0

Divorced/Single/Windowed 1

Married 2

Separated 5

Table 2: Score table of fine-tuned features for the Florey Dementia
Risk Score model.

Articles
achieved an AUC of 0.80 for the ROC, and there was no
evident improvement in performance when additional
features were added. Therefore, 15 features were used
for FDRS-DMSV. The score table of the selected fea-
tures is shown in Table S3. The FDRS-DMSV achieved
an AUC of ROC = 0.84 [95% CI 0.80–0.87], sensi-
tivity = 0.73 [0.66–0.80], and specificity = 0.81 [0.78–0.83]
on the validation set. In Module 5, fine tuning was
www.thelancet.com Vol 76 October, 2024
performed for clinical relevancy, and the revised score
table for the fine-tuned features is provided in Table S4.
The threshold for the FDRS-DMSV for the AD binary
classification is 37. FDRS-DMSV achieved an AUC of
ROC = 0.82 [95% CI: 0.78–0.86], sensitivity = 0.78
[0.71–0.84], and specificity = 0.74 [0.71–0.76] on the
validation set. Finally, the FDRS-DMSV was evaluated on
an unseen test set and achieved an AUC of ROC = 0.78
[95% CI: 0.73–0.84], sensitivity = 0.80 [0.70–0.88], and
specificity = 0.65 [0.60–0.70].

Simulated pilot trial and missing data trial using
the web-based FDRS tool
We have developed a web-based tool based on the FDRS
model (a demo video is available in Supplementary
Materials (E)). The tool automatically computes the
FDRS after the required information is entered. The
FDRS framework architecture is graphically presented
in Figure S4. The simulated pilot trial was conducted
using the web-based tool. Thirty AIBL participants with
complete records of all eleven required features were
selected. The data of these participants had not been
previously used for FDRS model construction and vali-
dation. Their FDRS scores were calculated via the web-
based tool and are presented in Supplement Materials
(F). This trial achieved an accuracy of ∼86.7%, with
26/30 correct classification overall, 20/22 correct classi-
fication for CU, and 6/8 correct classification for AD
(eTable 1). In addition, a simulated pilot trial was con-
ducted for another thirty participants, with one or two
missing data for the selected features. Only a slight
decrease in accuracy (80.0–83.3%, 24–25/30 correct
overall depending on imputation methods) was noted
(eTable 2). Overall, the simulated trial results support
the potential clinical application of FDRS in the AD
binary classification and demonstrate its tolerability for
missing data.

External evaluation of FDRS on ROSMAP study
participants
The ROC plot for the external evaluation among the 500
selected ROSMAP participants (eTable 3) is shown in
Fig. 3. The AUC of the ROC curve was 0.82 [95% CI,
0.77–0.86], similar to the performance on the test set in
AIBL. Moreover, the distribution of the FDRS of the 500
participants in ROSMAP is presented in Fig. 4. It is
evident that the FDRS for most CU participants (84.5%,
317/375) is below the cutoff score of 66, while the FDRS
for most AD participants (72.8%, 91/125) is above the
cutoff. Overall, these results demonstrate a good per-
formance of FDRS in an independent non-Australian
cohort, supporting the generalizability of FDRS.
Discussion
More than half of people living with dementia in the
community are not detected or diagnosed, as many
7
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Fig. 3: Receiver operating characteristic (ROC) plot on the Religious Orders Study and Memory and Aging Project dataset. The ROC curve
illustrates the trade-off between sensitivity (true positive rate) and specificity (1–false positive rate) for different threshold settings. The blue line
is the ROC curve when the cutoff score is 66 for Alzheimer’s disease binary classification. The red dashed line represents random guessing for
Alzheimer’s disease binary classification.
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older adults experiencing memory decline may consider
it part of the normal aging process. This issue is even
more concerning in low- and middle-income countries,2

where access to diagnostic resources are limited. To
improve AD detection rate and address health inequity,
we have developed a web-based tool- FDRS, powered by
Fig. 4: Histogram of frequency distribution of Florey Dementia Risk Sc
and Aging Project (ROSMAP). The plot shows the distribution of FDRS
indicated by the red dashed line separating cognitive unimpaired (CU, le
participants are color-coded, with green for CU and yellow for AD. It app
an auto-score algorithm to make an AD binary classifi-
cation (CU versus AD). This algorithm is composed of
six modules. We employed a random forest method for
feature ranking (module 1),31 which allow us to remove
unimportant features (Fig. 1). Parsimony analysis
(module 4) was used to determine the number of
ore (FDRS) for participants in Religious Orders Study and Memory
scores of 500 ROSMAP study participants, with a cutoff value of 66
ft) and Alzheimer’s disease (AD, right). The clinical diagnoses of the
ears that most of the CU and AD subjects can be correctly classified.
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features required for the optimal performance of FDRS
(Fig. 2), balancing model complexity and accuracy.32

Although using only easy-to-collect data such as age,
blood pressure, heart rate, medical history, and APOE
genotype, FDRS achieved an AUC of 0.82, a sensitivity
of 0.74, and a specificity of 0.73.

As per feature ranking and parsimony analysis,
APOE genotype was selected as a feature for FDRS.
Diverted scores for various APOE genotypes (ε2/ε2, ε2/
ε3, ε3/ε3, ε4/ε2, ε4/ε3, and ε4/ε4) were calculated and
shown in Tables 1 and 2. Notably, the APOE genotype is
the major contributor to the FDRS score. The ε2 allele
is associated with a lower score, while the ε4 allele is
associated with a higher score. In addition, the homo-
zygous ε4 genotype had the highest score compared to
other APOE genotypes. This observed score pattern is
well aligned with clinical findings that the ε3 allele is
considered the norm genotype, while the ε2 allele and
the ε4 allele decreases and increases the risk of AD,
respectively.33 This is also consistent with a recent study
reporting that homozygous APOE ε4 individuals are
destined to develop AD.34

It must be acknowledged that APOE genotype is not
always known by the target users of FDRS, and there-
fore, we have also developed an FDRS model without
the use of APOE genotype (FDRS-DMSV)
(Supplementary Materials (D)). The performance of the
FDRS-DMSV was slightly lower than the standard
FDRS, with an AUC of 0.77, a sensitivity of 0.67, and a
specificity of 0.75. The FDRS-DMSV requires five
additional features (history of anxiety, arthritis, hyper-
tension, sex, and recent illness) as informed by the
parsimony analysis (Figure S3), to compensate for the
lack of APOE genotype data. Interestingly, the associa-
tion of these additional features with AD has been
previously demonstrated by our laboratory and others.
For example, anxiety is associated with a higher risk of
AD,35–37 which is reflected by a higher FDRS score for
people with anxiety. Arthritis is associated with a lower
risk of AD (possibly due to the use of non-steroid anti-
inflammatory drugs),38 which is reflected by a lower
FDRS score for people with arthritis.29 The link between
hypertension and AD has also been well studied.39

The performance of the FDRS model can be influ-
enced by several potential errors and biases. For
instance, in the AIBL study, some data for selected
features were self-reported, which can introduce recall
bias. Additionally, the quality of the collected data may
be affected by the design of the questionnaire used in
the AIBL study. However, we anticipate that these errors
and biases have minimal impact on the results and
conclusions, as consistently good performance was
observed in the external evaluation on ROSMAP par-
ticipants. Regarding the missing data trial, the model’s
performance may be influenced by the different impu-
tation methods used. We compared three methods:
mean imputation, k-nearest neighbor, and multiple
www.thelancet.com Vol 76 October, 2024
imputation by chained equations. Interestingly, the
performance of the FDRS did not differ significantly
between these imputation methods. Whether the impact
will become more apparent in a larger trial cohort re-
quires further investigation in future studies.

The FDRS outperformed the baseline models and
three existing models for binary AD classification. By
comparing the FDRS with baseline model-1, we can
clearly see that feature selection was effective, as the
FDRS achieved a higher AUC while using fewer fea-
tures. Comparing the FDRS with baseline model-2, we
observe that, while using the same features, the auto-
score algorithm achieved a higher AUC than multi-
logistic regression. Considering the existing models
for the same classification task, the ANU-ADRI10 used
comparable types of features as the FDRS, but it ach-
ieved a lower AUC of 0.7. Prediction Score8 achieved an
AUC of 0.79, which is also lower than the FDRS. In
addition, it requires neuropsychologists for a Mini-
Mental State Examination, which would be a barrier to
its widespread application in communities with limited
diagnostic resources. We cannot compare FDRS with
vascular risk score,7 as the AUC was not reported.
Overall, these comparisons highlight the advantages of
FDRS over other tools. The advancement of the FDRS is
due to the incorporation of innovative computational
strategy (i.e. auto-score machine learning algorithm)
into the model development, as other tools were devel-
oped solely using principle of evidence-based medicine
or biostatistics/epidemiological approaches.

The FDRS is not without limitation. It was trained,
validated, and internally tested using data from the AIBL
Study, and it is known that the AIBL cohort consists
predominantly of highly educated Australians, and strict
inclusion/exclusion criteria were applied to participant
recruitment.11,40 This can introduce bias into the model,
which leads to a lower classification accuracy when the
model is applied to a different population. The gener-
alizability of our FDRS to other countries with different
ethnicities, especially low- and middle-income coun-
tries, needs to be further investigated. In addition,
although the external evaluation of the FDRS on the
ROSMAP participants achieved a high accuracy of
81.6% (417/500), comparable to the pilot trial using
AIBL participants (86.7%, 26/30), additional external
evaluations in other developed countries are desirable.
Regardless, the results achieved in this study warrant its
further development and validation using other AD
cohort datasets and larger-scale trials, and the perfor-
mance of FDRS should also be directly compared with
other models using the same dataset interact in the
handling of the input data.

The developed FDRS is an easy-to-use, machine
learning-based tool for the binary classification of AD. The
intended users do not need to have machine learning
expertise to use our web-based tool. By utilizing de-
mographic, medical history, self-report data, vital sign, and
9
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genetic data, FDRS offers a new digital health technology
to potentially improve AD detection rate in primary care,
that can be used when the diagnostic resources are
limited. FDRS is likely to promote health equity and
contribute significantly to public health efforts against AD
via disease screening in the primary care setting.
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