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The interval set is a special set, which describes uncertainty of an uncertain concept or set Z with its two crisp boundaries named
upper-bound set and lower-bound set. In this paper, the concept of similarity degree between two interval sets is defined at
first, and then the similarity degrees between an interval set and its two approximations (i.e., upper approximation set 𝑅(Z) and
lower approximation set 𝑅(Z)) are presented, respectively. The disadvantages of using upper-approximation set 𝑅(Z) or lower-
approximation set 𝑅(Z) as approximation sets of the uncertain set (uncertain concept) Z are analyzed, and a new method for
looking for a better approximation set of the interval set Z is proposed. The conclusion that the approximation set 𝑅

0.5
(Z) is an

optimal approximation set of interval set Z is drawn and proved successfully. The change rules of 𝑅
0.5
(Z) with different binary

relations are analyzed in detail. Finally, a kind of crisp approximation set of the interval setZ is constructed. We hope this research
work will promote the development of both the interval set model and granular computing theory.

1. Introduction

Since the twenty-first century, researchers have done more
and more research on uncertain problems [1]. It is an impor-
tant research topic on how to effectively deal with uncertain
data and how to acquire more knowledge and rules from
the big data. At the same time, many methods for acquiring
uncertain knowledge from uncertain information systems
appeared gradually. In 1965, fuzzy sets theory was proposed
by Zadeh [2]. In 1982, rough sets theory was proposed by
Pawlak [3]. In 1990, quotient space theory was presented by
L. Zhang and B. Zhang [4]. In 1993, interval sets and interval
sets algebra were presented by Yao [5, 6].

Rough set theory is a mathematical tool to handle the
uncertain information, which is imprecise, inconsistent, or
incomplete. The basic thought of rough set is to obtain con-
cepts and rules through classification of relational database
and discover knowledge by the classification induced by
equivalence relations; then approximation sets of the target
concept are obtained with many equivalence classes. Rough
set is a useful tool to handle uncertain problems, as well
as fuzzy set theory, probability theory, and evidence theory.

Because rough set theory has novel ideas and its calculation
is easy and simple, it has been an important technology
in intelligent information processing [7–9]. The key issue
of rough set is building a knowledge space which is a
partition of the domain 𝑈 and is induced by an equivalence
relation. In the knowledge space, two certain sets named
upper approximation set and lower approximation set are
used to describe the target concept 𝑋 as its two boundaries.
If knowledge granularity in knowledge space is coarser, then
the border region of described target concept is wider and
approximate accuracy is relatively lower. On the contrary,
if knowledge granularity in knowledge space is finer, then
the border region is narrower and approximate accuracy is
relatively higher.

The interval set theory is an effective method for describ-
ing ambiguous information [10–12] and can be used in uncer-
tain reasoning as well as the rough set [13–15]. The interval
set not only can be used to describe the partially known
concept, but also can be used to study the approximation set
of the uncertain target concept. So, the interval set is a more
general model for processing the uncertain information [16].
The interval set is described by two sets named upper bound
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and lower bound [17]. The elements in lower bound certainly
belong to target concept, and the elements in upper bound
probably belong to target concept.When the boundary region
has no element, the interval set degenerates into a usual
set [5], while, in a certain knowledge granularity space,
target concept may be uncertain. To solve this problem, in
this paper, the approximate representation of interval set is
discussed in detail in Pawlak’s approximation space. And
then, the upper approximation set of interval set and lower
approximation set of interval set are defined, respectively.The
change rules of the approximation set of interval set with the
different knowledge granularity in Pawlak’s approximation
space are analyzed.

In this paper, an approximation set of the target concept
Z is built in a certain knowledge space induced by many
conditional attributes, and we find that this approximation
set may have better similarity degree with the target concept
Z than that of 𝑅(Z) or 𝑅(Z). Therefore, an interval set
is translated into a fuzzy set at first in this paper. And
then, according to the different membership degrees of
different elements in boundary region, an approximation set
of interval set Z is obtained by cut-set with some threshold.
And then, the decision-making rules can be obtained through
the approximation set instead of Z in current knowledge
granularity space. In addition, the change rules of similarity
between a target concept Z and its approximation sets are
analyzed in detail.

The method used is getting the approximation of interval
sets with a special approximation degree. With this method,
we can use certain sets to describe an interval set in Pawlak’s
space. Our motivation is to get a mathematical theory model,
which can be helpful to promote interval sets development in
knowledge acquisition.

The rest of this paper is organized as follows. In Section
2, the related basic concepts and preliminary knowledge
are reviewed. In Section 3, the concept of similarity degree
between two interval sets is defined. The approximation set
of interval set and 0.5-approximation set are proposed in
Section 4. The change rules of similarity degree between the
approximation sets and the target conceptZwith the different
knowledge granularity spaces are discussed in Section 5.This
paper is concluded in Section 6.

2. Preliminaries

In order to introduce the approximation set of interval set
more easily, many basic concepts will be reviewed at first.

Definition 1 (interval set [17]). An interval set is a new
collection, and it is described by two sets named upper bound
and lower bound. The interval set can be defined as follows.
Let 𝑈 be a finite set which is called universal set, and then
let 2𝑈 be the power set of 𝑈 and let interval set Z be a
subset of 2𝑈. In mathematical form, interval set Z is defined
as Z = [𝑍

𝑙
, 𝑍
𝑢
] = {𝑍 ∈ 2

𝑈
| 𝑍
𝑙
⊆ 𝑍 ⊆ 𝑍

𝑢
}. If 𝑍

𝑙
= 𝑍
𝑢
, Z is a

usual classical set.

In order to better explain the interval set, there is an
example [17, 18] as follows. Let 𝑈 be all papers submitted

to a conference. After being reviewed, there are 3 kinds of
results. The first kind of results is the set of papers certainly
accepted and represented by 𝑍

𝑙
. The second kind of results

is the set of papers that need to be further reviewed and
represented by 𝑍

𝑢
− 𝑍
𝑙
. The last kind of results is the set of

papers rejected and represented by 𝑈 − 𝑍
𝑢
. Although every

paper just can be rejected or accepted, no one knows the final
result before further evaluation. Through reviewing, the set
of papers accepted by the conference is described as [𝑍

𝑙
, 𝑍
𝑢
].

Definition 2 (indiscernibility relation [4, 19]). For any
attribute set 𝑅 ⊆ 𝐴, let us define one unclear binary
relationship IND(𝑅) = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝑈

2
, ∀𝑏 ∈ 𝑅 →

𝑏(𝑥) = 𝑏(𝑦)}.

Definition 3 (information table of knowledge expression
system [4, 20]). A knowledge expression system can be
described as 𝑆 = ⟨𝑈,𝐴, 𝑉, 𝑓⟩.𝑈 is the domain, and𝐴 = 𝐶∪𝐷

is the set of all attributes. Subset 𝐶 is a set of conditional
attributes, and 𝐷 is a set of decision-making attributes. 𝑉 =

∪
𝑟∈𝐴

𝑉
𝑟
is the set of attribute values. 𝑉

𝑟
describes the range

of attribute values 𝑟 where 𝑟 ∈ 𝐴. 𝑓 : 𝑈 × 𝐴 → 𝑉 is
an information function which describes attribute values of
object 𝑥 in 𝑈.

Definition 4 (upper approximation set and lower approxima-
tion set of rough set [3]). A knowledge-expression system is
described as 𝑆 = ⟨𝑈,𝐴, 𝑉, 𝑓⟩. For any 𝑋 ⊆ 𝑈 and 𝑅 ⊆ 𝐴,
upper approximation set 𝑅(𝑋) and lower approximation set
𝑅(𝑋) of rough set𝑋 on 𝑅 are defined as follows:

𝑅 (𝑋) = ∪{𝑌𝑖 | 𝑌𝑖 ∈
𝑈

IND (𝑅)
∧ 𝑌
𝑖
∩ 𝑋 ̸= 𝜙} ,

𝑅 (𝑋) = ∪{𝑌𝑖 | 𝑌𝑖 ∈
𝑈

IND (𝑅)
∧ 𝑌
𝑖
⊆ 𝑋} ,

(1)

where 𝑈/IND(𝑅) = {𝑋 | (𝑋 ⊆ 𝑈 ∧ ∀
𝑥∈𝑋,𝑦∈𝑋,𝑏∈𝑅

(𝑏(𝑥) =

𝑏(𝑦)))} is the classification of equivalence relation 𝑅 on 𝑈.
Upper approximation set and lower approximation set of
rough set𝑋 on 𝑅 can be defined in another form as follows:

𝑅 (𝑋) = {𝑥 | 𝑥 ∈ 𝑈 ∧ [𝑥]𝑅 ⊆ 𝑋} ,

𝑅 (𝑋) = {𝑥 | 𝑥 ∈ 𝑈 ∧ [𝑥]𝑅 ∩ 𝑋 ̸= 𝜙} ,

(2)

where [𝑥]
𝑅
∈ 𝑈/IND(𝑅) and [𝑥]

𝑅
is an equivalence class

of 𝑥 on relation 𝑅. 𝑅(𝑋) is a set of objects which certainly
belong to 𝑈 according to knowledge 𝑅; 𝑅(𝑋) is a set of
objects which possibly belong to 𝑈 according to knowledge
𝑅. Let BN

𝑅
(𝑋) = 𝑅(𝑋) − 𝑅(𝑋) be called boundary region

of target concept 𝑋 on relation 𝑅. Let POS
𝑅
(𝑋) = 𝑅(𝑋) be

called positive region of target concept 𝑋 on relation 𝑅. Let
NEG
𝑅
(𝑋) = 𝑈 − 𝑅(𝑋) be called negative region of target

concept𝑋 on relation 𝑅. BN
𝑅
(𝑋) is a set of objects which just

possibly belong to target concept𝑋.

Definition 5 (similarity degree between two sets [20]). Let
𝐴 and 𝐵 be two subsets of domain 𝑈, which means 𝐴 ⊆

𝑈, 𝐵 ⊆ 𝑈. Defining a mapping 𝑆 : 𝑈 × 𝑈 → [0, 1], that is,
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(𝐴, 𝐵) → 𝑆(𝐴, 𝐵), 𝑆(𝐴, 𝐵) is the similarity degree between 𝐴
and 𝐵, if 𝑆(𝐴, 𝐵) satisfies the following conditions.

(1) For any 𝐴, 𝐵 ⊆ 𝑈, 0 ⩽ 𝑆(𝐴, 𝐵) ⩽ 1 (boundedness).
(2) For any 𝐴, 𝐵 ⊆ 𝑈, 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴) (symmetry).
(3) For any 𝐴, 𝐵 ⊆ 𝑈, 𝑆(𝐴, 𝐴) = 1; 𝑆(𝐴, 𝐵) = 0 if and

only if 𝐴 ∩ 𝐵 = 𝜙.

Any formula satisfying (1), (2), and (3) is a similarity
degree formula between two sets. Zhang et al. [20] gave out a
similarity degree formula

𝑆 (𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
, (3)

where | ⋅ | represents the number of elements in finite subset.
Obviously, this formula satisfies (1), (2), and (3).

Definition 6 (similarity degree between two interval sets). Let
Z = [𝑍

𝑙
, 𝑍
𝑢
] = {𝑍 ∈ 2

𝑈
| 𝑍
𝑙
⊆ 𝑍 ⊆ 𝑍

𝑢
} be an interval set

and let N = [𝑁
𝑙
, 𝑁
𝑢
] = {𝑁 ∈ 2

𝑈
| 𝑁
𝑙
⊆ 𝑁 ⊆ 𝑁

𝑢
} be also an

interval set. Similarity degree between two interval sets can
be defined as follows:

S (Z,N) =

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑁𝑙
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑁𝑙

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑁𝑢
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑁𝑢

󵄨󵄨󵄨󵄨

. (4)

S(Z,N) accords with Definition 5.

Definition 7 (upper approximation set and lower approxima-
tion set of an interval set). LetZ = [𝑍

𝑙
, 𝑍
𝑢
] = {𝑍 ∈ 2

𝑈
| 𝑍
𝑙
⊆

𝑍 ⊆ 𝑍
𝑢
} be an interval set. Let𝑅 be an equivalence relation on

domain 𝑈. Upper approximation set of this interval set Z is
defined as 𝑅(Z) = [𝑅(𝑍

𝑙
), 𝑅(𝑍

𝑢
)]. Lower approximation set

of this interval set Z is defined as 𝑅(Z) = [𝑅(𝑍
𝑙
), 𝑅(𝑍

𝑢
)].

Figures 1 and 2 are probably helpful to understand
Definition 7. In Figure 1, the outer circle standing for a set𝑍

𝑢

and inner circle standing for a set 𝑍
𝑙
represent an interval

set Z, and each block represents an equivalence class. The
black region represents 𝑅(𝑍

𝑙
), and the whole colored region

(black and gray region) represents 𝑅(𝑍
𝑢
). In Figure 2, the

outer circle standing for a set𝑍
𝑢
and inner circle standing for

a set𝑍
𝑙
represent an interval setZ, and each block represents

an equivalence class. The black region represents 𝑅(𝑍
𝑙
), and

the whole colored region (black and gray region) represents
𝑅(𝑍
𝑢
).

3. Approximation Set 𝑅
𝜆
(Z) of

an Interval Set Z

If 𝑅(Z) stands for the upper approximation set of the interval
set Z, then the similarity degree between Z and 𝑅(Z) can be
defined as follows:

S (Z, 𝑅 (Z)) =
𝑆 (𝑍
𝑙
, 𝑅 (𝑍

𝑙
))

2
+

𝑆 (𝑍
𝑢
, 𝑅 (𝑍

𝑢
))

2

=

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∪ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

.

(5)

Figure 1: Upper approximation set of an interval set.

Figure 2: Lower approximation set of an interval set.

If 𝑅(Z) stands for the lower approximation set of the interval
set Z, then the similarity degree between Z and 𝑅(Z) is
defined as follows:

S (Z, 𝑅 (Z)) =
𝑆 (𝑍
𝑙
, 𝑅 (𝑍

𝑙
))

2
+
𝑆 (𝑍
𝑢
, 𝑅 (𝑍

𝑢
))

2

=

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨

.

(6)

If the knowledge space keeps unchanged, is there a better
approximation set of the target concept 𝑍? In this paper, the
better approximation sets of target concept will be proposed.
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Figure 3: 0.5-approximation set of an interval set.

Let 𝑈 be a nonempty set of objects. Let 𝑍 ⊆ 𝑈, 𝑥 ∈ 𝑍, and
the membership degree of 𝑥 belonging to set 𝑍 is defined as

𝜇
𝑅

𝑍
(𝑥) =

󵄨󵄨󵄨󵄨𝑍 ∩ [𝑥]𝑅
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝑅
󵄨󵄨󵄨󵄨

. (7)

Obviously, 0 ⩽ 𝜇𝑅
𝑍
(𝑥) ⩽ 1.

Definition 8 (𝜆-approximation set of set 𝑍 [20]). Let 𝑈
be a nonempty set of objects, and let knowledge space be
𝑈/IND(𝑅). Let 𝑍 ⊆ 𝑈, 𝑥 ∈ 𝑍, and the membership degree
belonging to set 𝑍 is

𝜇
𝑅

𝑍
(𝑥) =

󵄨󵄨󵄨󵄨𝑍 ∩ [𝑥]𝑅
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝑅
󵄨󵄨󵄨󵄨

. (8)

If 𝑅
𝜆
(𝑍) = {𝑥 ∈ 𝑍 | 𝜇

𝑅

𝑍
(𝑥) ⩾ 𝜆, 1 ⩾ 𝜆 > 0}, then 𝑅

𝜆
(𝑍) is

called 𝜆-approximation set of set 𝑍.

Definition 9 (𝜆-approximation set of setZ). LetZ = [𝑍
𝑙
, 𝑍
𝑢
]

= {𝑍 ∈ 2
𝑈
| 𝑍
𝑙
⊆ 𝑍 ⊆ 𝑍

𝑢
} and 𝑅

𝜆
(Z) = [𝑅

𝜆
(𝑍
𝑙
), 𝑅
𝜆
(𝑍
𝑢
)];

then 𝑅
𝜆
(Z) is called 𝜆-approximation set of the interval set

Z.

Figure 3 is probably helpful to understand Definition 9.
In Figure 3, the outer circle standing for a set 𝑍

𝑢
and inner

circle standing for a set 𝑍
𝑙
represent an interval set Z, and

each block represents an equivalence class. The black region
represents 𝑅

0.5
(𝑍
𝑙
), and the whole colored region (black and

gray region) represents 𝑅
0.5
(𝑍
𝑢
).

4. Approximation Set 𝑅
0.5
(Z) of

an Interval Set Z

Lemma 10 (see [20]). Let 𝑎, 𝑏, 𝑐, and 𝑑 be all real numbers. If
0 < 𝑎 < 𝑏, 0 < 𝑐 < 𝑑, then 𝑎/𝑏 < (𝑎 + 𝑑)/(𝑏 + 𝑐).

Lemma 11 (see [20]). Let 𝑎, 𝑏, 𝑐, and 𝑑 be all real numbers.
In the numbers, 0 < 𝑎 < 𝑏, 0 < 𝑐 < 𝑑. If 𝑎/𝑏 ⩾ 𝑐/𝑑, then
𝑎/𝑏 ⩽ (𝑎 − 𝑐)/(𝑏 − 𝑑). If 𝑎/𝑏 ⩽ 𝑐/𝑑, then 𝑎/𝑏 ⩾ (𝑎 − 𝑐)/(𝑏 − 𝑑).

In order to better understand the similarity degree
between 𝑅

0.5
(Z) and Z, Theorems 12 and 13 are presented as

follows.

Theorem 12. Let 𝑈 be a finite domain, let Z be an interval
set on 𝑈, and let 𝑅 be an equivalence relation on 𝑈. Then,
𝑆(Z, 𝑅

0.5
(Z)) ⩾ 𝑆(Z, 𝑅(Z)).

For example, let 𝑈/𝑅 = {{𝑥
1
, 𝑥
2
}, {𝑥
3
, 𝑥
4
}, {𝑥
5
, 𝑥
6
}}, 𝑍
𝑢

= {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}, 𝑍
𝑙
= {𝑥
2
, 𝑥
3
, 𝑥
4
}. Then, 𝑅(𝑍

𝑢
) = {𝑥

1
,

𝑥
2
, 𝑥
3
, 𝑥
4
}, 𝑅(𝑍

𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅
0.5
(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
,

𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅(𝑍

𝑙
) = {𝑥

3
, 𝑥
4
}, 𝑅(𝑍

𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
},

𝑅
0.5
(𝑍
𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}.

And then we can have S(Z, 𝑅(Z)) = (2/(2 × 3)) + (4/(2 ×
5)) = 11/15, S(Z, 𝑅(Z)) = (5/(2 × 6)) + (3/(2 × 4)) = 19/24,
S(Z, 𝑅

0.5
(Z)) = (1/2) + (3/(2 × 4)) = 7/8, S(Z, 𝑅

0.5
(Z)) ⩾

S(Z, 𝑅(Z)).

Proof. According to Definition 6,

S (Z, 𝑅
0.5 (Z)) =

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

,

S (Z, 𝑅 (Z)) =

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨

.

(9)

(1) There we first prove
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨

. (10)

For all 𝑥 ∈ 𝑅
0.5
(𝑍
𝑙
), we have 𝜇𝑅

𝑍𝑙
(𝑥) ⩾ 0.5. That is,

𝜇
𝑅

𝑍𝑙
(𝑥) =

󵄨󵄨󵄨󵄨[𝑥]𝑅 ∩ 𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝑅
󵄨󵄨󵄨󵄨

⩾ 0.5. (11)

Because 𝑅 is an equivalence relation on 𝑈, the classifica-
tions induced by 𝑅 can be denoted as [𝑥

1
]
𝑅
, [𝑥
2
]
𝑅
, . . . , [𝑥

𝑛
]
𝑅
.

Then, 𝑅
0.5
(𝑍
𝑙
) = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) ⩾ 0.5} = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} ∪ {𝑥 |

0.5 ⩽ 𝜇
𝑅

𝑋
(𝑥) < 1}. Obviously, {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} = 𝑅(𝑍

𝑙
), and

then let {𝑥 | 0.5 ⩽ 𝜇𝑅
𝑍𝑙
(𝑥) < 1} = [𝑥

𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑘
]
𝑅
.

So, 𝑍
𝑙
∩𝑅
0.5
(𝑍
𝑙
) = 𝑍
𝑙
∩ (𝑅(𝑍

𝑙
) ∪ [𝑥
𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑘
]
𝑅
).

Because the intersection sets between any two elements in
𝑅(𝑍
𝑙
), [𝑥
𝑖1
]
𝑅
, [𝑥
𝑖2
]
𝑅
, . . . , [𝑥

𝑖𝑘
]
𝑅
are empty sets, we can get that

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
.

(12)
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Because 𝑍
𝑙
∪ 𝑅
0.5
(𝑍
𝑙
) = 𝑍

𝑙
∪ ([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
) ∪ ([𝑥

𝑖2
]
𝑅
− 𝑍
𝑙
) ∪

⋅ ⋅ ⋅ ∪ ([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑙
) and the intersection set between any two

elements in 𝑍
𝑙
, ([𝑥
𝑖1
]
𝑅
−𝑍
𝑙
), ([𝑥
𝑖2
]
𝑅
−𝑍
𝑙
), . . . , ([𝑥

𝑖𝑘
]
𝑅
−𝑍
𝑙
) is

empty, we have that |𝑍
𝑙
∪ 𝑅
0.5
(𝑍
𝑙
)| = |𝑍

𝑙
| + |([𝑥

𝑖1
]
𝑅
− 𝑍
𝑙
)| +

|([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)| + ⋅ ⋅ ⋅ + |([𝑥

𝑖𝑘
]
𝑅
− 𝑍
𝑙
)|. So,

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
)
−1

.

(13)

Because

𝜇
𝑅

𝑍𝑙
(𝑥
𝑖1
) =

󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖1
]
𝑅
− 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

⩾ 0.5,

(14)

we have |[𝑥
𝑖1
]
𝑅
∩𝑍
𝑙
| ⩾ |[𝑥

𝑖1
]
𝑅
−𝑍
𝑙
|. In the sameway, according

to |[𝑥
𝑖2
]
𝑅
∩𝑍
𝑙
| ⩾ |[𝑥

𝑖2
]
𝑅
−𝑍
𝑙
|, . . . , |[𝑥

𝑖𝑘
]
𝑅
∩𝑍
𝑙
| ⩾ |[𝑥

𝑖𝑘
]
𝑅
−𝑍
𝑙
|

and Lemma 10, we can easily get
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
)
−1

⩾

󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

.

(15)

Therefore,
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨

. (16)

(2) In a similar way with (1), we can have the inequality
󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨

. (17)

From (1) and (2), we have 𝑆(Z, 𝑅
0.5
(Z)) ⩾ 𝑆(Z, 𝑅(Z)). So,

Theorem 12 has been proved completely.

Theorem 12 shows that the similarity degree between an
interval setZ and its approximation set 𝑅

0.5
(Z) is better than

the similarity degree between Z and its lower approximation
set 𝑅(Z).

Theorem 13. Let 𝑈 be a finite domain, letZ be an interval set
on 𝑈, and let 𝑅 be an equivalence relation on 𝑈. If

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
) − 𝑅
0.5
(𝑍
𝑙
) − 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑢 − 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
) − 𝑅
0.5
(𝑍
𝑢
) − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

,

(18)

then S(Z, 𝑅
0.5
(Z)) ⩾ S(Z, 𝑅(Z)).

For example, let 𝑈/𝑅 = {{𝑥
1
}, {𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, {𝑥
7
, 𝑥
8
,

𝑥
9
, 𝑥
10
}}, 𝑍
𝑢
= {𝑥
1
, 𝑥
2
, 𝑥
7
}, 𝑍
𝑙
= {𝑥
1
, 𝑥
2
}. Then, 𝑅(𝑍

𝑢
) = {𝑥

1
,

𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
}, 𝑅(𝑍

𝑢
) = {𝑥

1
}, 𝑅
0.5
(𝑍
𝑢
) =

{𝑥
1
}, 𝑅(𝑍

𝑙
) = {𝑥

1
}, 𝑅(𝑍

𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅
0.5
(𝑍
𝑙
) =

{𝑥
1
},

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

=
2

6
=
1

3
>

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
) − 𝑍
𝑙
− 𝑅
0.5
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

=
1

4
,

󵄨󵄨󵄨󵄨𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

=
3

10
>

󵄨󵄨󵄨󵄨𝑍𝑢 − 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
) − 𝑍
𝑢
− 𝑅
0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

=
2

7
.

(19)

And thenwe can haveS(Z, 𝑅
0.5
(Z)) = (1/(2×2))+(1/(2×

3)) = 5/12,S(Z, 𝑅(Z)) = (1/(2 × 6)) + (3/(2 × 10)) = 7/30,
S(Z, 𝑅

0.5
(Z)) ⩾ S(Z, 𝑅(Z)).

Proof. According to Definition 6,

S (Z, 𝑅
0.5
(Z)) =

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

,

S (Z, 𝑅 (Z)) =

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∪ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

.

(20)

(1) Let 𝑅(𝑍
𝑙
) − 𝑅
0.5
(𝑍
𝑙
) = [𝑥

𝑗1
]
𝑅
∪ [𝑥
𝑗2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑗𝑠
]
𝑅
,

and the intersection sets between any two elements in [𝑥
𝑗1
]
𝑅
,

[𝑥
𝑗2
]
𝑅
, . . . , [𝑥

𝑗𝑠
]
𝑅
are empty sets. Because

0 < 𝜇
𝑅

𝑍𝑙
(𝑥
𝑗1
) =

󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑗1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑗1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

< 0.5, (21)

it is obvious that [𝑥
𝑗1
]
𝑅
∩ 𝑍
𝑙

̸= 𝜙. In the same way, we
have [𝑥

𝑗2
]
𝑅
∩ 𝑍
𝑙

̸= 𝜙, . . . , [𝑥
𝑗𝑠
]
𝑅
∩ 𝑍
𝑙

̸= 𝜙. Then we
have 𝑍

𝑙
∩ 𝑅
0.5
(𝑍
𝑙
) = 𝑍

𝑙
− ([𝑥

𝑗1
]
𝑅
∩ 𝑍
𝑙
) − ([𝑥

𝑗2
]
𝑅
∩

𝑍
𝑙
) − ⋅ ⋅ ⋅ − ([𝑥

𝑗𝑠
]
𝑅
∩ 𝑍
𝑙
) = 𝑍

𝑙
− (𝑍
𝑙
− 𝑅
0.5
(𝑍
𝑙
)). Because

the intersection sets between any two elements in [𝑥
𝑗1
]
𝑅
∩

𝑍
𝑙
, [𝑥
𝑗2
]
𝑅
∩ 𝑍
𝑙
, . . . , [𝑥

𝑗𝑠
]
𝑅
∩ 𝑍
𝑙
are empty sets, we have 𝑍

𝑙
∩

𝑅
0.5
(𝑍
𝑙
) = 𝑍

𝑙
− (𝑍
𝑙
− 𝑅
0.5
(𝑍
𝑙
)), |𝑍
𝑙
∩ 𝑅
0.5
(𝑍
𝑙
)| = |𝑍

𝑙
| − |𝑍

𝑙
−

𝑅
0.5
(𝑍
𝑙
)|, and𝑍

𝑙
∪𝑅
0.5
(𝑍
𝑙
) = 𝑅(𝑍

𝑙
)− (([𝑥

𝑗1
]
𝑅
−𝑍
𝑙
)∪ ([𝑥

𝑗2
]
𝑅
−

𝑍
𝑙
)∪⋅ ⋅ ⋅∪([𝑥

𝑗𝑠
]
𝑅
−𝑍
𝑙
)). Because the intersection sets between

any two elements in ([𝑥
𝑗1
]
𝑅
−𝑍
𝑙
), ([𝑥
𝑗2
]
𝑅
−𝑍
𝑙
), . . . , ([𝑥

𝑗𝑠
]
𝑅
−𝑍
𝑙
)

are empty sets,𝑍
𝑙
∪𝑅
0.5
(𝑍
𝑙
) = 𝑅(𝑍

𝑙
) − (𝑅(𝑍

𝑙
) −𝑅
0.5
(𝑍
𝑙
) −𝑍
𝑙
)
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and |𝑍
𝑙
∪ 𝑅
0.5
(𝑍
𝑙
)| = |𝑅(𝑍

𝑙
)| − |(𝑅(𝑍

𝑙
) − 𝑅
0.5
(𝑍
𝑙
) − 𝑍
𝑙
)| are

held. So,
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
(𝑅 (𝑍

𝑙
) − 𝑅
0.5
(𝑍
𝑙
) − 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

.

(22)

For
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
) − 𝑅
0.5
(𝑍
𝑙
) − 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

, (23)

according to Lemma 11, we have
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
(𝑅 (𝑍

𝑙
) − 𝑅
0.5
(𝑍
𝑙
) − 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

; (24)

that is to say,
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

. (25)

Therefore, we have
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅 (𝑍

𝑙
)
󵄨󵄨󵄨󵄨󵄨

. (26)

(2) In a similar way with (1), we can easily obtain the
conclusion that

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∪ 𝑅 (𝑍

𝑢
)
󵄨󵄨󵄨󵄨󵄨

(27)

when
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑢 − 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
) − 𝑅
0.5
(𝑍
𝑢
) − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

. (28)

According to (1) and (2), the inequality S(Z, 𝑅
0.5
(Z)) ⩾

S(Z, 𝑅(Z)) is held. So, Theorem 13 has been proved success-
fully.

Theorem 13 shows that, under some conditions, the simi-
larity degree between an interval setZ and its approximation
set 𝑅
0.5
(Z) is better than the similarity degree betweenZ and

its lower approximation set 𝑅(Z).

Theorem 14. Let 𝑈 be a finite domain, Z an interval set on
𝑈, and 𝑅 an equivalence relation on 𝑈. If 1 ⩾ 𝜆 > 0.5, then
S(Z, 𝑅

0.5
(Z)) ⩾ S(Z, 𝑅

𝜆
(Z)) ⩾ 𝑆(Z, 𝑅(Z)).

For example, let 𝑈/𝑅 = {{𝑥
1
}, {𝑥
2
, 𝑥
3
}, {𝑥
4
, 𝑥
5
, 𝑥
6
}}, 𝑍
𝑢
=

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}, 𝑍
𝑙

= {𝑥
1
, 𝑥
2
, 𝑥
3
}. Then, 𝑅(𝑍

𝑢
) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅
0.5
(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
},

𝑅(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}, 𝑅
0.75

(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}, 𝑅(𝑍

𝑙
) = {𝑥

1
,

𝑥
2
, 𝑥
3
}, 𝑅(𝑍

𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}, and 𝑅

0.5
(𝑍
𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
},

𝑅
0.75

(𝑍
𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}.

And then we can have S(Z, 𝑅
0.5
(Z)) = (3/(2 × 3)) +

(5/(2 × 6)) = 11/12, S(Z, 𝑅
0.75

(Z)) = (3/(2 × 3)) + (3/(2 ×

5)) = 4/5, S(Z, 𝑅(Z)) = (3/(2 × 3)) + (3/(2 × 6)) = 3/4,
S(Z, 𝑅(Z)) < S(Z, 𝑅

0.75
(Z)) < S(Z, 𝑅

0.5
(Z)). This example

is in accordance with the theorem.

Proof. (1) For all𝑥 ∈ 𝑅
0.5
(𝑍
𝑙
), then𝜇𝑅

𝑍𝑙
(𝑥) ⩾ 0.5, whichmeans

𝜇
𝑅

𝑍𝑙
(𝑥) =

󵄨󵄨󵄨󵄨[𝑥]𝑅 ∩ 𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝑅
󵄨󵄨󵄨󵄨

⩾ 0.5. (29)

Because 𝑅
0.5
(𝑍
𝑙
) = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) ⩾ 0.5} = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} ∪

{𝑥 | 0.5 ⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1}, we can easily get {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} =

𝑅(𝑍
𝑙
). Let {𝑥 | 0.5 ⩽ 𝜇𝑅

𝑍𝑙
(𝑥) < 1} = [𝑥

𝑖1
]
𝑅
∪[𝑥
𝑖2
]
𝑅
∪⋅ ⋅ ⋅∪[𝑥

𝑖𝑘
]
𝑅

and 𝑅
𝜆
(𝑍
𝑙
) = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) ⩾ 𝜆 > 0.5} = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} ∪ {𝑥 |

0.5 < 𝜆 ⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1}, and then we can get 𝑅

𝜆
(𝑍
𝑙
) ⊆ 𝑅
0.5
(𝑍
𝑙
).

To simplify the proof, let {𝑥 | 0.5 < 𝜆 ⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1} =

[𝑥
𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑞
]
𝑅
and 𝑞 ⩽ 𝑘 in this paper. So,

𝑍
𝑙
∩ 𝑅
𝜆
(𝑍
𝑙
) = 𝑍

𝑙
∩ (𝑅(𝑍

𝑙
) ∪ [𝑥

𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑞
]
𝑅
).

Because the intersection sets between any two elements in
𝑅(𝑍
𝑙
), [𝑥
𝑖1
]
𝑅
, [𝑥
𝑖2
]
𝑅
, . . . , [𝑥

𝑖𝑘
]
𝑅
are empty sets, we can easily

get that |𝑍
𝑙
∩ 𝑅
0.5
(𝑍
𝑙
)| = |𝑍

𝑙
∩ 𝑅(𝑍

𝑙
)| + |𝑍

𝑙
∩ [𝑥
𝑖1
]
𝑅
| +

|𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅
| + ⋅ ⋅ ⋅ + |𝑍

𝑙
∩ [𝑥
𝑖𝑘
]
𝑅
| = |𝑅(𝑍

𝑙
)| + |𝑍

𝑙
∩ [𝑥
𝑖1
]
𝑅
|

+ |𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅
| + ⋅ ⋅ ⋅ + |𝑍

𝑙
∩ [𝑥
𝑖𝑘
]
𝑅
|. And

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑞
]
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑞+1
]
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑞
]
𝑅

− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑞+1
]
𝑅

− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
)

−1

,

(30)

and we have
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅𝜆 (𝑍𝑙)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅𝜆 (𝑍𝑙)

󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑞
]
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑞
]
𝑅

− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨
)

−1

.

(31)

And because |𝑍
𝑙
∩ [𝑥
𝑖𝑞+1
]
𝑅
| + ⋅ ⋅ ⋅ + |𝑍

𝑙
∩ [𝑥
𝑖𝑘
]
𝑅
| ⩾

|([𝑥
𝑖𝑞+1
]
𝑅
−𝑍
𝑙
)| + ⋅ ⋅ ⋅ + |([𝑥

𝑖𝑘
]
𝑅
−𝑍
𝑙
)|, according to Lemma 10,

the inequality
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅𝜆 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅𝜆 (𝑍𝑙)
󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

(32)

is held. Therefore, we have
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅𝜆 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅𝜆 (𝑍𝑙)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨

.

(33)
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(2) The inequality

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅𝜆 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅𝜆 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅 (𝑍𝑢)
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨

(34)

can be easily proved in a similar way to (1).
According to (1) and (2), the inequality S(Z, 𝑅

0.5
(Z)) ⩾

S(Z, 𝑅
𝜆
(Z)) ⩾ 𝑆(Z, 𝑅(Z)) is held.

Based on Theorems 13 and 14, Corollary 15 can be
obtained easily as follows.

Corollary 15. Let 𝑈 be a finite domain, Z an interval set on
𝑈, and 𝑅 an equivalence relation on 𝑈. Z ⊆ 2

𝑈. If

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑙 − 𝑅𝜆 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑙
) − 𝑅
𝜆
(𝑍
𝑙
) − 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝑍𝑢 − 𝑅𝜆 (𝑍𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑍
𝑢
) − 𝑅
𝜆
(𝑍
𝑢
) − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

,

(35)

then S(Z, 𝑅
0.5
(Z)) ⩾ 𝑆(Z, 𝑅

𝜆
(Z)) ⩾ 𝑆(Z, 𝑅(Z)).

Theorem 16. Let𝑈 be a finite domain,Z an interval set on𝑈,
and 𝑅 an equivalence relation on 𝑈. if 0.5 ⩽ 𝜆

1
< 𝜆
2
⩽ 1,

then S(Z, 𝑅
𝜆1
(Z)) ⩾ S(Z, 𝑅

𝜆2
(Z)).

For example, 𝑈/𝑅 = {{𝑥
1
}, {𝑥
2
, 𝑥
3
}, {𝑥
4
, 𝑥
5
, 𝑥
6
}, {𝑥
7
,

𝑥
8
, 𝑥
9
, 𝑥
10
}}, 𝑍
𝑢
= {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
5
, 𝑥
6
, 𝑥
7
}, 𝑍
𝑙
= {𝑥
1
, 𝑥
2
, 𝑥
3
,

𝑥
5
, 𝑥
6
}. Then, 𝑅(𝑍

𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
},

𝑅(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}, 𝑅
0.6
(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
},

𝑅
0.8
(𝑍
𝑢
) = {𝑥

1
, 𝑥
2
, 𝑥
3
}, 𝑅(𝑍

𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅(𝑍

𝑙
)

= {𝑥
1
, 𝑥
2
, 𝑥
3
}, 𝑅
0.6
(𝑍
𝑙
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝑅
0.8
(𝑍
𝑙
) =

{𝑥
1
, 𝑥
2
, 𝑥
3
}.

And thenwe can haveS(Z, 𝑅
0.6
(Z)) = (5/(2×6))+(5/(2×

7)) = 65/84,S(Z, 𝑅
0.8
(Z)) = (3/(2×5))+(3/(2×7)) = 18/35,

S(Z, 𝑅
0.6
(Z)) > S(Z, 𝑅

0.8
(Z)). This example is in accordance

with the theorem.

Proof. (1) For any 𝑥 ∈ 𝑅
𝜆1
(𝑍
𝑙
), we have

𝜇
𝑅

𝑍𝑙
(𝑥) =

󵄨󵄨󵄨󵄨[𝑥]𝑅 ∩ 𝑍𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨[𝑥]𝑅
󵄨󵄨󵄨󵄨

⩾ 𝜆
1
⩾ 0.5. (36)

Because 𝑅 is an equivalence relation on 𝑈, all the classifica-
tions induced by 𝑅 can be denoted by [𝑥

1
]
𝑅
, [𝑥
2
]
𝑅
, . . . , [𝑥

𝑛
]
𝑅
.

We have 𝑅
𝜆1
(𝑍
𝑙
) = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) ⩾ 𝜆

1
} = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} ∪ {𝑥 |

𝜆
1
⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1} and {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1} = 𝑅(𝑍

𝑙
) as well as

{𝑥 | 𝜆
1
⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1} = [𝑥

𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑢
]
𝑅
. We can

also get 𝑅
𝜆2
(𝑍
𝑙
) = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) ⩾ 𝜆

2
} = {𝑥 | 𝜇

𝑅

𝑍𝑙
(𝑥) = 1}

∪{𝑥 | 𝜆
2
⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1}. Let {𝑥 | 𝜆

2
⩽ 𝜇
𝑅

𝑍𝑙
(𝑥) < 1} =

[𝑥
𝑖1
]
𝑅
∪[𝑥
𝑖2
]
𝑅
∪⋅ ⋅ ⋅∪[𝑥

𝑖V
]
𝑅
, where 0.5 ⩽ 𝜆

1
< 𝜆
2
⩽ 1 and V ⩽ 𝑢.

So,𝑍
𝑙
∩𝑅
𝜆1
(𝑍
𝑙
) = 𝑍
𝑙
∩(𝑅(𝑍

𝑙
)∪[𝑥
𝑖1
]
𝑅
∪[𝑥
𝑖2
]
𝑅
∪⋅ ⋅ ⋅∪[𝑥

𝑖V
]
𝑅
∪⋅ ⋅ ⋅∪

[𝑥
𝑖𝑢
]
𝑅
),𝑍
𝑙
∩𝑅
𝜆2
(𝑍
𝑙
) = 𝑍
𝑙
∩(𝑅(𝑍

𝑙
)∪[𝑥
𝑖1
]
𝑅
∪[𝑥
𝑖2
]
𝑅
∪⋅ ⋅ ⋅∪[𝑥

𝑖V
]
𝑅
).

And because the intersection sets between any two elements
in 𝑅(𝑍

𝑙
), [𝑥
𝑖1
]
𝑅
, [𝑥
𝑖2
]
𝑅
, . . . , [𝑥

𝑖𝑢
]
𝑅
are empty sets, we have

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑢
]
𝑅

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑢
]
𝑅

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨
.

(37)

According to 𝑍
𝑙
∪ 𝑅
𝜆1
(𝑍
𝑙
) = 𝑍

𝑙
∪ ([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
) ∪ ([𝑥

𝑖2
]
𝑅
−

𝑍
𝑙
) ∪ ⋅ ⋅ ⋅ ∪ ([𝑥

𝑖V
]
𝑅
− 𝑍
𝑙
) ∪ ⋅ ⋅ ⋅ ∪ ([𝑥

𝑖𝑢
]
𝑅
− 𝑍
𝑙
) and because the

intersection sets between any two elements in𝑍
𝑙
, ([𝑥
𝑖1
]
𝑅
−𝑍
𝑙
),

([𝑥
𝑖2
]
𝑅
−𝑍
𝑙
), . . . , ([𝑥

𝑖V
]
𝑅
−𝑍
𝑙
), . . . , ([𝑥

𝑖𝑢
]
𝑅
−𝑍
𝑙
) are empty sets,

we easily have

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑢
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
.

(38)

Therefore,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V+1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑢
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V+1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑢
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
)
−1

,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

.

(39)
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According to

𝜇
𝑅

𝑍𝑙
(𝑥
𝑖V+1
) =

󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖V+1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖V+1
]
𝑅

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖V+1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖V+1
]
𝑅
∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖V+1
]
𝑅
− 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

⩾ 𝜆
1
⩾ 0.5,

(40)

we have |[𝑥
𝑖V+1
]
𝑅
∩𝑍
𝑙
| ⩾ |[𝑥

𝑖V+1
]
𝑅
−𝑍
𝑙
|. According to |[𝑥

𝑖V+2
]
𝑅
∩

𝑍
𝑙
| ⩾ |[𝑥

𝑖V+2
]
𝑅
− 𝑍
𝑙
|, . . . , |[𝑥

𝑖𝑢
]
𝑅
∩ 𝑍
𝑙
| ⩾ |[𝑥

𝑖𝑢
]
𝑅
− 𝑍
𝑙
|, we have

|𝑍
𝑙
∩ [𝑥
𝑖V+1
]
𝑅
| + ⋅ ⋅ ⋅ + |𝑍

𝑙
∩ [𝑥
𝑖𝑢
]
𝑅
| ⩾ |([𝑥

𝑖V+1
]
𝑅
− 𝑍
𝑙
)| + ⋅ ⋅ ⋅ +

|([𝑥
𝑖𝑢
]
𝑅
− 𝑍
𝑙
)|. And based on Lemma 10, we can easily have

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

⩽ (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑙)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖V+1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ [𝑥
𝑖𝑢
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑙
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖V+1
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑢
]
𝑅
− 𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨
)
−1

=

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

.

(41)

Therefore,
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆2
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∪ 𝑅
𝜆1
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

. (42)

(2) In the same way as (1), the inequality
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
𝜆2
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∪ 𝑅
𝜆2
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
𝜆1
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∪ 𝑅
𝜆1
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

(43)

is held.
According to (1) and (2), the inequality S(Z, 𝑅

𝜆1
(Z)) ⩾

S(Z, 𝑅
𝜆2
(Z)) is held. So, the proof of Theorem 16 has been

completed successfully.

Theorems 14 and 16 show that the similarity degree
between an interval set Z and its approximation set 𝑅

𝜆
(Z)

is a monotonically decreasing function with the parameter 𝜆,
and the similarity degree reaches its maximum value when
𝜆 = 0.5.

5. The Change Rules of Similarity in
Different Knowledge Granularity Spaces

In different Pawlak’s approximation spaces with different
knowledge granularities, the change rules of the uncertainty

of rough set are a key issue [21, 22]. Many researchers try to
discover the change rules of uncertainty in rough set model
[23, 24]. And we also find many change rules of uncertain
concept in different knowledge spaces in our other papers
[20]. In this paper, we continue to discuss the change rules of
the similarity degreeS(Z, 𝑅

0.5
(Z)) in Pawlak’s approximation

spaces with different knowledge granularities. In this paper,
we focus on discussing how the similarity degree between
Z and 𝑅

0.5
(Z) changes when the granules are divided into

more subgranules in Pawlak’s approximation space. In other
words, it is an important issue concerning how S(Z, 𝑅

0.5
(Z))

changes with different knowledge granularities in Pawlak’s
approximation space.

Let [𝑥
1
]
𝑅
, [𝑥
2
]
𝑅
, . . . , [𝑥

𝑛
]
𝑅
be classifications of 𝑈 under

equivalence relation 𝑅. Let [𝑥
1
]
𝑅
󸀠 , [𝑥
2
]
𝑅
󸀠 , . . . , [𝑥

𝑛
]
𝑅
󸀠 be clas-

sifications of 𝑈 under equivalence relation 𝑅
󸀠. If 𝑅󸀠 ⊆ 𝑅,

then [𝑥
𝑖
]
𝑅
󸀠 ⊆ [𝑥

𝑖
]
𝑅
(1 ≤ 𝑖 ≤ 𝑛). And then, 𝑈/𝑅󸀠 is called a

refinement of 𝑈/𝑅, which is written as 𝑈/𝑅󸀠≺𝑈/𝑅. If ∃𝑥
𝑗
∈

𝑈, then [𝑥
𝑗
]
𝑅
󸀠 ⊂ [𝑥

𝑗
]
𝑅
. And then, 𝑈/𝑅󸀠 is called a strict

refinement of 𝑈/𝑅, which is written as 𝑈/𝑅󸀠 ≺ 𝑈/𝑅.
Next, we will analyze the relationship between

S(Z, 𝑅
0.5
(Z)) and S(Z, 𝑅󸀠

0.5
(Z)). Let 𝑈/𝑅󸀠 ≺ 𝑈/𝑅; in

other words, for all 𝑥 ∈ 𝑈, [𝑥]
𝑅
󸀠 ⊆ [𝑥]

𝑅
is always satisfied,

and ∃𝑦 ∈ 𝑈, [𝑦]
𝑅
󸀠 ⊂ [𝑦]

𝑅
. And then, there must be two or

more granules in 𝑈/𝑅󸀠 whose union is [𝑦]
𝑅
. To simplify the

proof, we suppose that there is just only one granule which is
divided into two subgranules, denoted by [𝑥1

𝑖𝑡
]
𝑅
󸀠 and [𝑥2

𝑖𝑡
]
𝑅
󸀠

in 𝑈/𝑅󸀠, and other granules keep unchanged.
There are 9 cases, and only 6 cases are possible.

Theorem 17. Let 𝑈 be a finite domain, Z an interval set on
𝑈, and 𝑅 and 𝑅󸀠 two equivalence relations on 𝑈. Let [𝑥

𝑖𝑡
]
𝑅
be

one granule which is divided into two subgranules marked as
[𝑥
1

𝑖𝑡
]
𝑅
󸀠 and [𝑥2

𝑖𝑡
]
𝑅
󸀠 . If

𝑆 (𝑍
𝑙
, 𝑅
0.5
(𝑍
𝑙
)) ⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

,

𝑆 (𝑍
𝑢
, 𝑅
0.5
(𝑍
𝑢
)) ⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

.

(44)

Then, S(Z, 𝑅
0.5
(Z)) ⩽ S(Z, 𝑅󸀠

0.5
(Z)).

Proof. There are 6 possible cases which will be discussed one
by one as follows.

(1) [𝑥
𝑖𝑡
]
𝑅

is contained in both positive region of 𝑍
𝑙

and positive region of 𝑍
𝑢
. In this case, obviously

S(Z, 𝑅
0.5
(Z)) = S(Z, 𝑅󸀠

0.5
(Z)) is held.

(2) [𝑥
𝑖𝑡
]
𝑅

is contained in both positive region of 𝑍
𝑙

and negative region of 𝑍
𝑢
. In this case, obviously,

S(Z, 𝑅
0.5
(Z)) = S(Z, 𝑅󸀠

0.5
(Z)) is held.

(3) [𝑥
𝑖𝑡
]
𝑅
is contained in both negative region of 𝑍

𝑙

and negative region of 𝑍
𝑢
. In this case, obviously,

S(Z, 𝑅
0.5
(Z)) = S(Z, 𝑅󸀠

0.5
(Z)) is held.
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(4) [𝑥
𝑖𝑡
]
𝑅
is contained in both negative region of 𝑍

𝑙
and

boundary region of 𝑍
𝑢
. In this case,

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑙) ∩ 𝑍𝑙
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑙) ∪ 𝑍𝑙

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑙
) ∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑙
) ∪ 𝑍
𝑙

󵄨󵄨󵄨󵄨

(45)

is held obviously. Next, we discuss the relationship between
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢

󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢

󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

.

(46)

Let 𝑅
0.5
(𝑍
𝑢
) = 𝑅(𝑍

𝑢
) ∪ [𝑥

𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑘
]
𝑅
. Let

BN
𝑅
(𝑍
𝑢
) = [𝑥

𝑖1
]
𝑅
∪ [𝑥
𝑖2
]
𝑅
∪ ⋅ ⋅ ⋅ ∪ [𝑥

𝑖𝑚
]
𝑅
where𝑚 ⩾ 𝑘. When

[𝑥
𝑖𝑡
]
𝑅
is in boundary region of 𝑍

𝑢
, we should further discuss

this situation. To simplify the proof, we suppose that there is
just only one granulemarked as [𝑥

𝑖𝑡
]
𝑅
in𝑈/𝑅which is divided

into two subgranules marked as [𝑥1
𝑖𝑡
]
𝑅
󸀠 and [𝑥2

𝑖𝑡
]
𝑅
󸀠 in 𝑈/𝑅󸀠.

And the other granules keep unchanged.
(a) If 𝑘 < 𝑡 ⩽ 𝑚, then [𝑥

𝑖𝑡
]
𝑅

̸⊂ 𝑅
0.5
(𝑍
𝑢
).

(1) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅

󸀠

0.5
(𝑍
𝑢
), [𝑥2
𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅

󸀠

0.5
(𝑍
𝑢
). From the

proof of Theorem 12, we know
󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

.

(47)

Because [𝑥1
𝑖𝑡
]
𝑅
󸀠 ∪ [𝑥

2

𝑖𝑡
]
𝑅
󸀠 = [𝑥

𝑖𝑡
]
𝑅
, [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅

󸀠

0.5
(𝑍
𝑢
), and

[𝑥
2

𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), we have

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

.

(48)

For [𝑥1
𝑖1
]
𝑅
󸀠 ⊆ 𝑅
󸀠

0.5
(𝑍
𝑢
), |[𝑥1
𝑖𝑡
]
𝑅
󸀠 ∩𝑍
𝑢
|/(|[𝑥
1

𝑖𝑡
]
𝑅
󸀠 ∩𝑍
𝑢
| + |[𝑥

1

𝑖𝑡
]
𝑅
󸀠 −

𝑍
𝑢
|) ⩾ 0.5, which means |[𝑥1

𝑖𝑡
]
𝑅
󸀠 ∩ 𝑍

𝑢
| ⩾ |[𝑥

1

𝑖𝑡
]
𝑅
󸀠 − 𝑍

𝑢
|.

According to Lemma 10, we have

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢

󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (49)

(2) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), [𝑥
2

𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), then

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (50)

Because [𝑥
𝑖𝑡
]
𝑅

̸⊂ 𝑅
0.5
(𝑍
𝑢
), the case that [𝑥1

𝑖1
]
𝑅
󸀠 ⊆ 𝑅

󸀠

0.5
(𝑍
𝑢
)

and [𝑥2
𝑖1
]
𝑅
󸀠 ⊆ 𝑅
󸀠

0.5
(𝑍
𝑢
) is impossible.

(b) If 1 ⩽ 𝑡 ⩽ 𝑘, then [𝑥
𝑖𝑡
]
𝑅
⊆ 𝑅
0.5
(𝑍
𝑢
).

(1) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅

󸀠

0.5
(𝑍
𝑢
) and [𝑥2

𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅

󸀠

0.5
(𝑍
𝑢
), then we

can easily have

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

2
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (51)

(2) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅
󸀠

0.5
(𝑍
𝑢
) and [𝑥2

𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), then

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢
󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

. (52)

Because [𝑥2
𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), we have the following.

(i) If [𝑥2
𝑖𝑡
]
𝑅
󸀠 ∩ 𝑍
𝑢
= 𝜙, then we have |𝑍

𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
| = |𝑍

𝑢
∩

[𝑥
𝑖𝑡
]
𝑅
| and |([𝑥1

𝑖𝑡
]
𝑅
󸀠 −𝑍
𝑢
)| < |([𝑥

𝑖𝑡
]
𝑅
−𝑍
𝑢
)|. Therefore,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑡
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)
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× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

> (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

=

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨

.

(53)

(ii) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑍
𝑢
, then |[𝑥1

𝑖𝑡
]
𝑅
󸀠∩𝑍
𝑢
| = |[𝑥

1

𝑖𝑡
]
𝑅
󸀠 |.Therefore,

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
[𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖𝑡−1
]
𝑅
− 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
[𝑥
𝑖𝑡+1
]
𝑅
− 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

=

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
]
𝑅
󸀠
∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨

.

(54)

Because
󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

, (55)

according to Lemma 11, we have

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢
󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (56)

(iii) If [𝑥1
𝑖𝑡
]
𝑅
󸀠 ⊆ BN

𝑅
󸀠(𝑍
𝑢
) and [𝑥2

𝑖𝑡
]
𝑅
󸀠 ⊆ BN

𝑅
󸀠(𝑍
𝑢
), because

[𝑥
1

𝑖𝑡
]
𝑅
󸀠 ⊆ 𝑅
󸀠

0.5
(𝑍
𝑢
) and [𝑥2

𝑖𝑡
]
𝑅
󸀠 ̸⊂ 𝑅
󸀠

0.5
(𝑍
𝑢
), we have

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅
󸀠

0.5
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠
(𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
([𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
󸀠
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

= (
󵄨󵄨󵄨󵄨𝑅 (𝑍𝑢)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖1
]
𝑅

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖2
]
𝑅

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
[𝑥
1

𝑖𝑡
]
𝑅
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑢
∩ [𝑥
𝑖𝑘
]
𝑅

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨𝑍𝑢

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖1
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖2
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨󵄨
[𝑥
1

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
([𝑥
𝑖𝑘
]
𝑅
− 𝑍
𝑢
)
󵄨󵄨󵄨󵄨󵄨
)
−1

=

󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
]
𝑅
󸀠
∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
]
𝑅
󸀠
− 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨

.

(57)

Because
󵄨󵄨󵄨󵄨𝑍𝑢 ∩ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑍𝑢 ∪ 𝑅0.5 (𝑍𝑢)

󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

, (58)

according to Lemma 11, we have

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢
󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (59)

According to (a) and (b) above, we have S(Z, 𝑅
0.5
(Z)) ⩽

S(Z, 𝑅󸀠
0.5
(Z)) when

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢
󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨

. (60)

(5) [𝑥
𝑖𝑡
]
𝑅
is contained in boundary region of 𝑍

𝑙
and

positive region of 𝑍
𝑢
. In this case,

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∩ 𝑍𝑢
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑢) ∪ 𝑍𝑢
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑢
) ∩ 𝑍
𝑢

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑢
) ∪ 𝑍
𝑢

󵄨󵄨󵄨󵄨

. (61)

Next, we discuss the relationship between
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑙) ∩ 𝑍𝑙

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅0.5 (𝑍𝑙) ∪ 𝑍𝑙

󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨
𝑅
󸀠

0.5
(𝑍
𝑙
) ∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅
󸀠

0.5
(𝑍
𝑙
) ∪ 𝑍
𝑙

󵄨󵄨󵄨󵄨

.

(62)
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Similar to (a) and (b) in (4), when

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] ∩ 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
[𝑥
2

𝑖𝑡
] − 𝑍
𝑙

󵄨󵄨󵄨󵄨󵄨

, (63)

we can get

󵄨󵄨󵄨󵄨𝑍𝑙 ∩ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅0.5 (𝑍𝑙)
󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑙
∩ 𝑅
󸀠

0.5
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑍𝑙 ∪ 𝑅
󸀠

0.5
(𝑍
𝑙
)
󵄨󵄨󵄨󵄨

. (64)

So, in the condition, we can draw a conclusion that S(Z,
𝑅
0.5
(Z)) ⩽ S(Z, 𝑅󸀠

0.5
(Z)).

(6) [𝑥
𝑖𝑡
]
𝑅
is contained in boundary region of 𝑍

𝑙
and

boundary region of 𝑍
𝑢
.

According to the proofs of (4) and (5), if 𝑆(𝑍
𝑙
, 𝑅
0.5
(𝑍
𝑙
)) ⩾

|[𝑥
2

𝑖𝑡
]∩𝑍
𝑙
|/|[𝑥
2

𝑖𝑡
]−𝑍
𝑙
| and 𝑆(𝑍

𝑢
, 𝑅
0.5
(𝑍
𝑢
)) ⩾ |[𝑥

2

𝑖𝑡
]∩𝑍
𝑢
|/|[𝑥
2

𝑖𝑡
]−

𝑍
𝑢
|, we easily have S(Z, 𝑅

0.5
(Z)) ⩽ S(Z, 𝑅󸀠

0.5
(Z)).

From (1), (2), (3), (4), (5), and (6), Theorem 17 is proved
successfully.

Theorem 17 shows that, under some conditions, the simi-
larity degree between an interval setZ and its approximation
set 𝑅
0.5
(Z) is a monotonically increasing function when the

knowledge granules in 𝑈/𝑅 are divided into many finer
subgranules in 𝑈/𝑅󸀠, where 𝑈/𝑅󸀠 is a refinement of 𝑈/𝑅.

6. Conclusion

With the development of uncertain artificial intelligence, the
interval set theory attracts more and more researchers and
gradually develops into a complete theory system. The inter-
val set theory has been successfully applied to many fields,
such as machine learning, knowledge acquisition, decision-
making analysis, expert system, decision support system,
inductive inference, conflict resolution, pattern recognition,
fuzzy control, and medical diagnostics systems. It is an
important tool of granular computing as well as the rough set
which is one of the three main tools of granular computing
[25, 26]. In the interval set theory, the target concept is
approximately described by two certain sets, that is, the upper
bound and lower bound. In other words, the essence of this
theory is that we deal with the uncertain problems with crisp
set theory method. Many researches have been completed on
extended models of the interval set, but the theories nearly
cannot present better approximation set of the interval set
Z. In this paper, the approximation set 𝑅

0.5
(Z) of target

conceptZ in current knowledge space is proposed fromanew
viewpoint and related properties are analyzed in detail.

In this paper, the interval set is transformed into a fuzzy
set at first, and then the uncertain elements in boundary
region are classified by cut-set with some threshold. Next,
the approximation set 𝑅

0.5
(Z) of the interval set Z is defined

and the change rules of S(Z, 𝑅
0.5
(Z)) in different knowledge

granularity spaces are analyzed. These researches show that
𝑅
0.5
(Z) is a better approximation set ofZ than both𝑅(Z) and

𝑅(Z). Finally, a kind of crisp approximation set of interval
set is proposed in this paper. These researches present a

new method to describe uncertain concept from a special
viewpoint, and we hope these results can promote the devel-
opment of both uncertain artificial intelligence and granular
computing and extend the interval set model into more
application fields. It is an important research issue concerning
discovering more knowledge and rules from the uncertain
information [27]. The fuzzy set and the rough set have
been used widely [28–32]. Recently, the interval set theory
is applied to many important fields, such as software test-
ing [33], the case generation based on interval combination
[34], and incomplete information table [35–38]. In the future
research, we will focus on acquiring the approximation rules
fromuncertain information systems based on the approxima-
tion sets of an interval set.
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