
Introduction

Acute kidney injury (AKI) supplanted the older term 
acute renal failure and is defined as sudden (within hours 
to days) decline in the glomerular filtration rate, resulting 

in the retention of nitrogenous wastes, such as urea and 
creatinine in plasma. In 2007, the Acute Kidney Injury 
Network (AKIN) classification was introduced as a modi-
fied diagnostic criteria for AKI from the Risk, Injury, and 
Failure; and Loss, and End-stage kidney disease criteria 
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to increase the sensitivity and specificity of AKI detection 
[1,2]. The AKIN criteria define AKI as “an abrupt (within 
48 hours) reduction in kidney function, currently defined 
as an absolute increase in serum creatinine of either ≥ 0.3 
mg/dL (≥ 26.4 mmol/L), a percentage increase of ≥ 50% 
(1.5 fold from baseline), or a reduction in urine output 
(documented oliguria of < 0.5 mL/kg/hour for > 6 hours)” 
[2]. Before AKIN criteria were established, > 20 different 
definitions for AKI have been used in published studies. 
AKI remains a critical problem without any effective ther-
apy or preventive methods despite attempts to standard-
ize the definition for early diagnosis and staging, the de-
velopment of several novel biomarkers, and progress in 
understanding the pathophysiological mechanisms. The 
incidence of AKI is approximately 5% to 20% and 20% to 
50% in hospitalized and intensive care unit patients, re-
spectively [3,4]. Patients with dialysis-requiring AKI have 
> 50% mortality [5]. Epidemiologic studies have demon-
strated that AKI frequently develops into chronic kidney 
disease and is a major risk factor of end-stage renal dis-
ease [6]. In the United States, the estimated inpatient cost 
related to AKI is > $10 billion annually [7].

Renal ischemia reperfusion (IR) injury is a leading 
cause of perioperative AKI [8]. In various clinical settings, 
such as major vascular, cardiac and hepatic surgeries, 
shock, sepsis, trauma, and kidney transplantation, re-
nal IR injury occurs because of the interruption of renal 
blood flow (ischemia), followed by the subsequent reper-
fusion [8]. A mismatch in local tissue oxygen and nutrient 
supply and demand together with the accumulation of 
toxic byproducts from injured renal cells (e.g., pro-in-
flammatory cytokines and damage associated molecular 
patterns [DAMPs]) initiates kidney tubular and endothe-
lial cell injury and consecutive renal dysfunction [9,10]. 
Various pathophysiological mechanisms, including renal 
tubular apoptosis, necrosis, and inflammation, contrib-
ute to ischemic AKI. In this review, we summarize cel-
lular and molecular components in the pathophysiology 
of ischemic AKI and several promising novel therapies 
currently under investigation.

Mechanism of cell death in ischemic AKI

The fate of the tubular cells after ischemic AKI de-
pends on the extent of the injury. Mild (sublethal) injury 
induces loss of cell polarity, such as mislocalization of 

adhesion molecules/membrane proteins and disruption 
of cytoskeletal integrity, and cells could recover if the 
insult is interrupted, whereas more severe (lethal) injury 
induces irreversible renal tubular cell death by apoptosis 
or necrosis, resulting in renal dysfunction observed in 
AKI. In this section, we provide an overview of candidate 
pathways of cell death after renal IR injury and summa-
rize the emerging evidence for the relative contribution 
of these pathways to ischemic AKI.

Apoptosis and renal IR injury

Apoptosis is a programmed cell death characterized by 
energy-dependent biochemical mechanisms and mor-
phologic changes, including shrinkage of the cell and 
nucleus, chromatin condensation, and deoxyribonucleic 
acid (DNA) fragmentation, followed by rapid engulfment 
of the cellular corpse by macrophages and neighboring 
viable epithelial cells. Apoptotic cell death occurs via 
several pathways, including the intrinsic pathway (mito-
chondrial permeability transition [MPT] pore, Bcl-2 fam-
ily, cytochrome c, caspase-9), extrinsic pathway (death 
receptor, Fas, FADD, caspase-8), and crosstalk between 
the intrinsic and extrinsic pathways during ischemic AKI 
[11,12]. In the intrinsic pathway, cellular stress induces 
cytochrome c release from the mitochondria through 
Bax/Bak oligomerization-mediated mitochondrial 
outer membrane permeabilization, and the released 
cytochrome c binds with Apaf-1 to recruit and activate 
caspase-9, which initiates the final enzymatic cascades 
of apoptosis by caspase-3. In the extrinsic apoptotic 
pathway, ligands, such as Fas, bind to death receptors 
(Fas receptors) and lead to adapter protein (FADD) re-
cruitment and subsequent caspase-8 activation, which 
further activates caspase-3. Active caspase-8 also in-
duces the intrinsic pathway by cleaving Bid to truncated 
Bid, which translocates to the mitochondria to activate 
the intrinsic pathway to amplify the apoptotic cascade. 
Therefore, the mitochondrial integrity is a key mediator 
linking the intrinsic and extrinsic apoptosis signal path-
ways, and Bcl-2 family proteins are the key regulators 
of mitochondrial integrity. The balance between pro-
apoptotic Bcl-2 (multi-BH domain proteins, such as Bax 
and Bak, and BH3-only proteins, such as Bid and PUMA) 
and anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-

XL) can determine cellular fate. Anti-apoptotic Bcl-2 pro-
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teins protect cells from apoptotic cell death by preserving 
mitochondrial integrity, whereas pro-apoptotic proteins 
induce apoptotic cell death by permeabilizing the mito-
chondrial membrane. Renal IR injury increases Bax and 
decreases Bcl-2 by markedly altering the Bax/Bcl-2 ratio 
in a pro-apoptotic direction in human [13], murine [14] 
and rat [15] kidneys. Recently, Wei et al [16] reported the 
critical role of Bax and Bak in tubular cell apoptosis in 
ischemic AKI by using Bax or Bak knockout mice. They 
found that the proximal tubule-specific Bax deletion or 
global Bak knockout protected mice from ischemic AKI.

Necrosis and renal IR injury

Necrosis is passive non-energy-dependent cell death 
and is distinguished from apoptosis by cellular swell-
ing and breakdown of plasma membrane integrity that 
causes release of DAMPs, such as high mobility group 
box 1 (HMGB1), adenosine triphosphate (ATP), DNA, 
and ribonucleic acid (RNA). The ischemic insult induces 
severe and rapid ATP depletion, resulting in mitochon-
drial injury preferentially with subsequent breakdown 
of oxidative phosphorylation, further energy depletion, 
and massive formation of reactive oxidative species (ROS) 
during reperfusion, which mediates further cellular in-
jury. Necrosis is not dependent on caspase activation but 
rather on combined results from intracellular calcium 
accumulation and protease activation. Many studies 
have shown that ATP depletion induces impairment of 
calcium ATPase and Na+-K+-ATPase, resulting in intracel-
lular calcium accumulation. Elevated cytosolic calcium 
levels cause further mitochondrial injury, cytoskeletal 
alteration, and protease activation, such as calpain and 
phospholipases, which induce plasma membrane per-
meability and cytoskeleton protein degradation.

Necroptosis and renal IR injury

Until recently, necrosis has been considered as an ac-
cidental and non-regulated cell death rather than the 
results of defined signaling events. However, recent 
studies changed this dogma, and necrosis can clearly oc-
cur in a regulated manner by MPT-mediated regulated 
necrosis, necroptosis, ferroptosis, pyroptosis, and poly 
(ADP-ribose)-polymerase 1 (PARP1)-mediated regu-
lated necrosis [17]. Among regulated necrosis pathways, 

necroptosis is the most studied pathway in kidney diseas-
es, including renal IR, cisplatin-, contrast- and folic acid-
induced AKI [18]. The necroptosis pathway is mainly me-
diated by cytoplasmic receptor-interacting protein kinase 
3 (RIPK3), RIPK1, and mixed lineage kinase domain-like 
protein (MLKL). Tumor necrosis factor-α (TNF-α) is the 
best studied ligand that initiates the necroptosis pathway; 
however, necroptosis is also initiated by other ligands, 
such as Fas ligand, Toll-like receptors (TLR3 and TLR4), 
and interferons [18]. Several studies have suggested the 
role of necroptosis in renal IR injury using knockout mice 
or pharmacological inhibitors for these necroptosis ma-
jor mediators (RIPK1, RIPK3, and MLKL). von Mässen-
hausen et al [19] reported that RIPK3 or MLKL knockout 
mice have been protected from renal ischemic injury, 
and Linkermann et al [20] found that RIPK3 deficiency in 
mouse improved the survival rate after severe ischemia 
(43-minute ischemia), and they also determined that pre-
treatment of Nec-1, a kinase activity inhibitor of RIPK1, 
prevents renal IR injury in mice. Unlike necroptosis, the 
contribution of other regulated necrosis is incompletely 
understood.

Inflammation and ischemia AKI

Contribution of endothelial and tubular cells to 
inflammation after renal IR injury

Increasing evidence indicates that both innate and 
adaptive inflammatory responses play major roles in the 
pathogenesis of ischemic AKI, and inflammatory cas-
cades are initiated by a combination of endothelial cell 
injury, and activation and interaction with leukocytes via 
adhesion molecules [21]. During the extension phase, 
renal IR injury causes disruptions of the perivascular ma-
trix, such as the glycocalyx and endothelial monolayer, 
resulting in increased endothelial barrier permeability. 
Breakdown of the endothelial barrier might be caused by 
activation of matrix metalloproteinase (MMP)-2 or MMP-
9 [22]. Treatment with minocycline, a broad-spectrum 
inhibitor of MMPs, or MMP-2-specific gene deletion 
ameliorates the increase in microvascular permeabil-
ity and kidney injury in rat [23] or mouse [24] models 
of ischemic AKI. In addition to endothelial cell injury, 
IR injury causes endothelial cell activation through up-
regulation of adhesion molecules, such as E-selectin, P-
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selectin, vascular cell adhesion protein-1, and intercellu-
lar adhesion molecule-1 (ICAM-1). Activated leukocytes 
infiltrate into the interstitial compartment by binding 
to endothelial cells through these adhesion molecules. 
Many studies reported that blocking or genetic deletion 
of these adhesion molecules protect against kidney injury 
in animal models of renal ischemia [25-27]. Activated 
leukocytes can also lead to further endothelial cell injury 
and dysregulation of the endothelial barrier permeability 
[28]. Renal tubular epithelial cells can also contribute to 
the inflammatory response in kidney IR injury by produc-
ing pro-inflammatory cytokines (e.g., TNF-α, interleukin 
[IL]-6, IL-1β, transforming growth factor [TGF]-β) and 
chemokines (e.g., monocyte chemoattractant protein-1 
[MCP-1], IL-8, regulated on activation, normal T cell 
expressed and secreted [RANTES]) [29]. In addition to 
generating pro-inflammatory cytokines and chemokines, 
tubular cells also express TLRs, complement and com-
plement receptors, and costimulatory molecules, such as 
B7-1 and B7-2 that interact with CD28 on T lymphocytes 
and facilitate cytokine production [30].

Neutrophils and inflammation after renal IR injury

Neutrophils are the earliest leukocytes to accumulate 
in the kidney after ischemic injury in animal models and 
human AKI and are the major contributors to additional 
renal injury after reperfusion through release of ROS, 
proteinases, elastases, myeloperoxidase, and cationic 
peptides [31]. Neutrophils secrete pro-inflammatory 
cytokines and chemokines to create a positive feedback 
loop of neutrophil recruitment and activation, as well as 
other inflammatory leukocytes, including natural killer 
cells, monocytes, and macrophages, mediating kidney 
injury via synergistic interaction [32-34]. Resident den-
dritic cells also initiate a potent chemotactic gradient for 
neutrophil recruitment by releasing TNF-α, IL-6, MCP-
1, RANTES, macrophage inflammatory protein-2 (MIP-
2) and keratinocyte chemoattractant (KC) (the mouse 
analog of human IL-8), which plays a critical role in 
neutrophil recruitment particularly in the kidney [31,34]. 
Stimulated neutrophils are the most intense physiologi-
cal producers of superoxide anions through the activa-
tion of the NADPH oxidase 2 upon adhesion or by pro-
inflammatory cytokines. The superoxide subsequently 
dismutates to hydrogen peroxide (H2O2) by superoxide 

dismutase. In addition, superoxide anions can be con-
verted to other ROS, such as hypochlorous acid (HOCl) 
and hydroxyl radical (OH-) by myeloperoxidase (MPO) 
[9,10,31]. Studies on therapeutic targeting neutrophils 
have been conflicting since some reported that inhibiting 
neutrophil infiltration ameliorates kidney injury in ani-
mal model of ischemic AKI [25,35], whereas other stud-
ies failed to observe the protective effect of neutrophil 
blockade or depletion on ischemic AKI [36,37]. Despite 
discrepancies in conclusions of those studies, blocking 
several adhesion molecules involved in neutrophil and 
other leukocyte infiltration, such as ICAM-1 [25], selec-
tins [27,38], and CD11a/11b [39], has shown a protective 
effect in rodent ischemic AKI models, indicating that 
neutrophils are not the only leukocytes that contribute to 
renal IR injury, and other leukocytes together with neu-
trophils contribute to ischemic kidney injury via syner-
gistic interaction.

Macrophage and inflammation after renal IR injury

Macrophages are also critical participants in the innate 
immune response during the initial period of renal IR 
injury but are also promoters of tubular repair and long-
term kidney fibrosis after ischemic injury. The distinct 
function of macrophages is due to its heterogeneity (M1 
and M2 macrophage). In mouse ischemic kidney, mac-
rophage infiltration starts increasing significantly at 1 
hour, peaking at 24 hours, and persisting over 7 days fol-
lowing reperfusion [40]. C-C motif chemokine receptor 2 
and fractalkine receptor (CX3CR1) are key mediators for 
infiltration of inflamed/inflammatory monocytes into in-
jured kidneys following renal IR injury [40,41]. Infiltrated 
and activated macrophages (M1) after renal IR injury 
induce kidney tissue injury by producing abundant ROS, 
nitrogen intermediates, and pro-inflammatory cytokines 
(including IL-1β and TNF-α) that can stimulate the ac-
tivity of other leukocytes and drive a polarized Th1 im-
mune response [42]. In mice, Day et al [43] have shown 
that depletion of kidney and spleen macrophages using 
liposomal clodronate before renal IR prevented AKI, 
whereas adoptive transfer of macrophages (RAW 264.7 
cells) reconstituted ischemic AKI. However macrophage 
depletion during the recovery phase of renal IR injury 
diminished tubular cell proliferation and delayed tubular 
repair [44], indicating that macrophages (M2) are also 
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critical mediators for kidney repair after renal IR injury. 
If the tubular cell proliferation and repair process is well 
established, pro-repair M2 macrophages predominate in 
the tissue [44] and can provoke a Th2 cell activation [42].

Dendritic cells and inflammation after renal IR injury

Dendritic cells expressing CD11c and MHC class II are 
abundant in the interstitium in normal mouse kidneys 
[45] and have an important role in linking between in-
nate and adaptive immunity [42]. Dendritic cells are key 
initiators and potentiators of the innate immune system 
by releasing pro-inflammatory cytokines/chemokines 
(TNF, IL-6, MCP-1, and RANTES) [46], interacting with 
natural killer T (NKT) cells via presenting glycolipids via 
the CD1d molecule to activate invariant NKT (iNKT) cells 
[47]. Furthermore, direct cellular contact between den-
dritic and iNKT cells by binding CD40/CD40L induces 
a strong feed-forward signal of IL-12 production, which 
triggers Stat4 phosphorylation and consecutive inter-
feron (IFN)-γ secretion in iNKT cells [47]. In addition, ac-
tivation of CD1d-restricted NKT cells contributed to renal 
IR injury by promoting IFN-γ producing infiltration [48].

Potential therapeutic targets

The pathophysiological mechanism of ischemic AKI on 
a cellular and molecular level, including cell death, cell 
injury, inflammation, and systemic immune dysregul-
a tion have been previously discussed. The pharmaco-
logical targeting of these injury mediators and corre-
sponding signal pathway could provide new therapeutic 
opportunities. Endogenous DAMPs released by dying 
cells activate cellular receptors leading to downstream 
inflammation and cell death after renal IR injury. Here, 
we focus on novel signaling mediators, including DAMPs 
and their putative receptors in the pathogenesis of isch-
emic AKI. In addition, we will provide pathophysiological 
mechanisms involved in remote organ injury during AKI 
because recent clinical data suggest that AKI also con-
tributes to the development and exacerbation of multi-
organ dysfunction, including the liver and gastrointesti-
nal (GI) tract, leading to severe complications associated 
with high mortality.

Toll-like receptors and renal IR injury

TLRs are transmembrane pattern recognition recep-
tors expressed in leukocyte and other cell types, includ-
ing renal tubular epithelial cells. TLRs have a central 
role in activating the innate immune responses upon 
recognition of exogenous microbial ligands (pathogen-
associated molecular patterns [PAMPs]) [49]. Humans 
and mice have 10 (TLR1-10) and 12 (TLR1-9, 11-13), 
respectively [50,51]. Different types of TLRs recognize 
specific PAMPs. TLRs on the cell surface (TLR1/2/4/5/6) 
or in intracellular endosomes (TLR3/7/8/9) recognize 
potential pathogens by ligating PAMPs, such as lipopoly-
saccharide (TLR4), flagellin (TLR5), bacterial cell wall 
components (TLR1/2/6), and viral/bacterial nucleic ac-
ids (TLR3/7/8/9) [52]. In a setting of AKI, TLRs also detect 
endogenous ligand DAMPs, including histones, high-
mobility group box 1, heat shock proteins, hyaluronan, 
fibronectin, and mitochondrial DNA [52]. Mainly, TLR2 
and TLR4 have been implicated in mediating renal IR 
injury and are constitutively expressed in kidney tubular 
cells, including the proximal and distal tubules, thin limb 
of the loop of Henle, and collecting ducts [53], and both 
expressions of TLR2 and TLR4 are increased in these 
tubules after renal IR injury [53]. Numerous studies us-
ing TLR2 and/or TLR4 knockout mice demonstrated that 
TLR2 and TLR4 play a crucial role in kidney IR injury. 
Shigeoka et al [54] found that both TLR2- or myeloid dif-
ferentiation factor 88 (MyD88, the central TLR signaling 
adaptor)-knockout mice were protected from renal IR 
injury, and TLR2 deficiency has a more protective effect 
on renal IR injury, suggesting that TLR2 contributes to 
renal IR injury through MyD88-dependent and MyD88-
independent pathways. Wu et al [55] have shown that 
sublethal renal IR injury induced upregulation of en-
dogenous ligands for TLR2 and TLR4, such as HMGB1, 
biglycan, and hyaluronan, and they found that TLR4 sig-
naling in intrinsic kidney cells rather than bone marrow-
derived cells plays the dominant role in mediating renal 
IR injury by generating chimeric mice using bone mar-
row transplantation. In a clinical setting, a phase II clini-
cal trial was conducted to evaluate the safety, tolerabil-
ity, and efficacy of OPN-305, a humanized monoclonal 
antibody that blocks TLR2, in renal transplant patients 
at high risk for delayed graft function (ClinicalTrials.gov 
Identifier:NCT01794663). TLR9 is also suggested as a po-
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tential mediator for ischemic AKI because several stud-
ies reported that TLR9 activation plays a critical role in 
hepatic [56,57], cardiac [58], and cerebral [59] IR injury, 
and renal IR injury induces plasma mitochondrial DNA 
release, which is an endogenous ligand for TLR9 [60]. 
However, two previous studies reported that global TLR9 
deletion had no effect on kidney IR injury [61,62]. We 
also confirmed that mice globally deficient in TLR9 were 
not protected against ischemic AKI [63], whereas renal 
proximal tubular TLR9 deletion protects ischemic AKI by 
ameliorating necrosis, apoptosis, and inflammation after 
IR by suppressing nuclear factor (NF)κB-mediated pro-
inflammatory pathway and caspase-3/8 apoptosis path-
way (Fig. 1) [63]. These differences suggest divergent ef-
fects of TLR9 activation, depending on the cell and tissue 
types. Indeed, intestinal TLR9 deletion exacerbates renal 
IR injury [60].

Adenosine receptors and renal IR injury

Adenosine is an endogenous compound produced by 
all mammalian cells and is present in the intra- or ex-
tracellular space. Extracellular adenosine binds to cell 
surface receptors to mediate various physiological and 
pathological activities [64]. Recent evidence suggests that 
extracellular adenosine controls cellular adaptation to 
hypoxia [64,65]. Extracellular adenosine production is 

mainly derived from the phosphohydrolysis of adenos-
ine monophosphate (AMP) and ATP via serial enzymatic 
actions of ecto-nucleoside-triphosphate-diphosphohy-
drolase1 (E-NTPDase1 or CD39), which converts ATP 
to AMP, which is converted to adenosine by ecto-5’-
nucleotidase (CD73) [66]. Numerous studies suggest 
that adenosine is protective during renal IR injury [65]. 
To date, four adenosine receptor subtypes (A1AR, A2AAR, 
A2BAR, and A3AR) have been identified and classified 
based on their differential coupling to adenylyl cyclase to 
regulate cyclic AMP levels. All four adenosine receptors 
are implicated in ischemic AKI. Using pharmacological 
and deletion of A1AR in mice, the role of A1ARs in isch-
emic AKI induced by renal IR injury was investigated. 
A1AR knockout mice or selective A1AR antagonist-treated 
mice exhibited significantly higher plasma creatinine lev-
els and worsened renal histology with increased markers 
of renal inflammation (neutrophil infiltration and pro-
inflammatory cytokine mRNA expressions). Conversely, 
selective A1AR agonist treatment protect against renal 
IR injury [67]. In another study, A1AR activation protects 
against both acute and delayed renal IR injury via dis-
tinct signaling pathways. Acute A1AR-mediated protec-
tion is mediated via phosphorylation of extracellular-
signal-regulated kinase (ERK) mitogen-activated protein 
kinase (MAPK), Akt, and heat shock protein 27 (HSP27), 
whereas delayed A1AR-mediated protection is mainly by 

Figure 1. Schematic of proposed mech-
a nisms for renal proximal tubular Toll-
like receptor 9 (TLR9)-mediated exacer-
bation of ischemic acute kidney injury 
(AKI). After renal ischemia reper fusion 
(IR) injury, endogenous TLR9 is activated 
by TLR9 ligand (presumably mitochon-
drial deoxyribonucleic acid [DNA] prod-
ucts), and TLR9 activation leads to NFκB-
mediated induction of pro-inflammatory 
chemokines and cytokines and caspase 
3/8-mediated renal tubular apoptosis.
IκB, inhibitor of κB; MyD88, myeloid dif-
fer entiation factor 88; NFκB, nuclear 
fac tor kappa-light-chain-enhancer of acti-
vated B cells.
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a dramatic induction of HSP27 [68]. Moreover, intrarenal 
injection of lentivirus encoding human-A1AR in both 
wild-type or A1AR-knockout mice have been confirmed 
to show dramatic improvements in renal function with 
reduced inflammatory infiltrates and increased HSP27 
levels compared with controls [69].

Other studies suggest that A2AAR is also implicated in 
kidney tissue protection from renal IR injury. Using chi-
meric mice, with transfer of bone marrow from A2AAR 
knockout to wild-type mice and vice versa, Day et al 
[70] demonstrated that A2AAR present on bone marrow-
derived cells but not on kidney tissues mediates renal 
protection against renal IR injury, and they showed that 
A2AR activation on bone marrow-derived cells reduces 
induction of pro-inflammatory IL-6, IL-1β, and IL-1ra 
and TGF-β mRNAs in the kidneys after renal IR injury. 
In a further study by the same group, A2AAR signaling on 
CD4+ cells Treg cells mediated renal protection against 

renal IR injury using chimeric mice, with transfer of bone 
marrow from A2AAR knockout to mice lacking T and B 
cells (Rag-1-/-) and vice versa [71]. A2BAR is also shown to 
be beneficial in renal IR injury. Grenz et al [72] examined 
the role of different adenosine receptors in ischemic pre-
condition (IP)-mediated protection against renal IR in-
jury. Of the four ARs, only A2BAR gene deletion or A2BAR-
antagonist PSB1115 treatment abolished IP-mediated 
protection after renal ischemia, and this protection was 
associated with corresponding changes in tissue inflam-
mation and NO production. They also found that unlike 
A2AAR, A2BARs on renal parenchymal (endothelial and/or 
tubular epithelia) rather than on leukocytes conferred re-
nal protection against IR injury because A2BAR knockout 
mice with wild-type bone marrow show IP-mediated or 
A2BAR activator (BAY 60-6583)-mediated renal protection 
against renal IR injury similar to that of wild-type mice 
[72]. A3AR gene deletion or pharmacological inhibition of 

Figure 2. Schematic of proposed mechanisms for A1AR-mediated protection against renal ischemia reperfusion (IR) injury. A1AR 
activation by adenosine binding to A1AR induces synthesis of a cytoprotective cytokine interleukin (IL)-11 via extracellular-signal-regulated 
kinase (ERK) and hypoxia inducible factor 1-alpha (HIF-1α) activation, and IL-11 subsequently induces sphingosine kinase-1 synthesis, which 
phosphorylates sphingosine to another cytoprotective molecule sphingosine-1-phosphate (S1P). A1AR also phosphorylates and induces cyto-
protective heat shock protein 27 (HSP27) synthesis via p38 MAPK activation, resulting in decreased renal tubular apoptosis and inflamma-
tion. A2AAR and A2BAR increase cyclic adenosine monophosphate (cAMP) levels by stimulating adenylate cyclase and activating protein kinase 
A, which causes translocation of cAMP response-element binding protein into nuclear to produce cytoprotection. A3AR activation seems to 
stimulate apoptosis and calcium overload, leading to enhanced renal injury after ischemia and reperfusion. 
AR, adenosine receptor.
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A3AR in mice has renal protective effect against ischemia- 
and myoglobin-induced renal injury [73]. Moreover, se-
lective A3AR activation has been shown to worsen renal 
IR injury, whereas A3AR inhibition protected against re-
nal IR injury in rats [74]. In contrast, we and others found 
that A3AR-activation protects tissue injury in septic AKI 
[75], hepatic IR injury [76], or myocardial infarction [77], 
suggesting that A3AR differentially modulates tissue in-
jury, depending on tissues or the type of renal injury. We 
summarize the proposed mechanisms for AR-mediated 
regulation of renal IR injury in Fig. 2.

Peptidylarginine deiminase 4 and ischemic AKI-induced 
inflammation

ATP is released by wide range of stimuli, such as hypox-
ia, mechanical stress, cell membrane damage, inflamma-
tion [64]. Recently, extracellular ATP has been recognized 
as a danger signal and implicated in ischemia-driven 
inflammatory response and tissue injuries [64]. Extracel-
lular ATP promotes inflammatory responses by binding 
to purinergic receptors, such as P2X7 receptor. Indeed, 
several studies reported that pharmacological and/or 
genetic blockade of P2X7 receptors protects against isch-

emic AKI mainly by inducing Treg cell expansion [78,79]. 
In our previous studies, we showed that P2X7R activa-
tion induces renal tubular peptidyl arginine deiminase 4 
(PAD4) in ischemic AKI. Renal IR injury induces protein 
and mRNA, as well as activity of renal tubular PAD4, and 
pharmacological inhibition or gene deletion of PAD4 
protects kidney from renal IR injury by reducing inflam-
matory response and apoptosis [80,81]. In additional 
studies, we demonstrated that ATP induces renal tubu-
lar PAD4 via protein kinase C signaling, and PAD4 is the 
critical mediator of P2X7-mediated kidney inflammation 
and injury after renal IR injury because the P2X7 recep-
tor failed to exacerbate ischemic AKI in PAD4 knockout 
mice [82]. Furthermore, we found that PAD4 preferen-
tially citrullinates inhibitor of κB (IκB) kinase-γ (IKK-γ, 
also known as NFκB essential modulator or NEMO) over 
other IKK subunits, IKK-α or IKK-β. Inhibition of NEMO 
by NEMO-binding peptide attenuated PAD4-mediated 
exacerbation of ischemic AKI, apoptosis, and inflam-
mation, suggesting that NEMO citrullination is a central 
mediator of both PAD4 and P2X7-mediated ischemic AKI 
[83]. We summarize our previous and current findings 
and proposed a detailed mechanism of PAD4-mediated 
renal tubular inflammation and exacerbation of ischemic 

Renal IR

A
T

P

N
e
c
ro

ti
c

c
e
ll

A
T

P

A
T

P

ATP

Danger
signal

P X R

Ca Ca Nucleus

p65 p50

PAD4

PAD4

NEMO-Arg

NEMO-Cit NEMO-Cit

IKK�

NEMO
binding
peptide

I B� I B�

p65 p50

p65 p50

IL-8
MIP-2

Cytosol

P P

Figure 3. Schematic of proposed mechanisms for peptidylarginine deiminase 4 (PAD4)-mediated inflammation via nuclear factor 
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AKI in Fig. 3.

Multiorgan dysfunction (gut–liver–kidney interaction) 
after ischemic AKI

Recent clinical data suggests that AKI also contributes 
to the development and exacerbation of multiorgan dys-
function, including the liver, heart, lung, brain, and GI 
tract, leading to severe complications associated with 
high mortality [84]. Therefore, understanding the spe-
cific pathophysiological mechanisms involved in remote 
organ injury during AKI is critical for therapeutic inter-
ventions to decrease mortality after AKI. Many factors, 
including leukocyte activation and trafficking, cytokines/
chemokine changes, oxidative stress, and uremic milieu, 
mediate AKI-induced remote organ dysfunction. Among 
them, activation of systemic inflammation is the primary 
pathophysiological mechanism mediating organ cross-
talk during AKI.

The liver and small intestines are interconnected by the 
portal circulation, and the crosstalk between the small in-
testine and liver is mainly attributable to multiorgan dys-
function after ischemic AKI. The intestines provide im-
portant immunologic barrier to prevent large amount of 
TLR ligands, pro-inflammatory cytokines, and bacterial 

pathogens from entering the systemic circulation via the 
portal circulation [85]. In the small intestine, Paneth cells 
residing at the bottom of the intestinal crypts are the key 
effectors of innate mucosal defense by releasing antimi-
crobial peptides, such as lysozyme and α-defensins, and 
they also release pro-inflammatory cytokines, includ-
ing TNF-α and IL-17A. In a previous study, Paneth cells 
play a critical role in organ crosstalk among the kidneys, 
intestines, and liver during ischemic AKI. AKI induced 
by renal IR injury or bilateral nephrectomy increased IL-
17A production by Paneth cells, and IL-17A levels in sys-
temic circulation and portal vein were elevated after AKI 
[86]. IL-17A generated in the intestines is delivered into 
the liver by macrophages and induces TNF-α and IL-6 
induction in liver, subsequently causing liver injury char-
acterized by inflammation, necrosis, and apoptosis [86]. 
Moreover, we determined that hepatic and intestinal IR 
injury also increased IL-17A production by Paneth cells, 
and Paneth cell depletion or IL-17A neutralization by 
antibody treatment reduced hepatic, intestinal, and renal 
injury [87,88], suggesting that IL-17A production by small 
intestinal Paneth cells may be a major player in multiple 
organ failure induced by IR injury (Fig. 4). Emerging evi-
dence also suggests the implication of gut microbiome in 
AKI. Germ-free mice have been initially suggested to be 

Figure 4. Schematic of proposed mech-
anisms of ischemic acute kidney injury 
(AKI)-induced liver, intestine, and kidney 
dysfunction and systemic inflamma-
tion. Acute renal ischemic injury causes 
small intestinal inflammation, intestinal 
barrier disruption via endothelial and 
epithelial cell injury, and release of pro-
inflammatory cytokines, such as interleu-
kin (IL)-17A and tumor necrosis factor-α 
(TNF-α), from Paneth cells. Portal delivery 
of IL-17A by macrophage leads to hepatic 
injury, including necrosis, apoptosis, and 
increased generation and systemic re-
lease of TNF-α and IL-6, propagating mul-
tiorgan injury and systemic inflammation. 
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more susceptible to renal IR injury with more CD8+ NKT 
cells, and conventionalizing germ-free mice with normal 
bacteria rescued the harmful effect of germ-free mice of 
IR injury [89]. Intestinal microbiota produces short-chain 
fatty acids (SCFAs), such as acetate (C2), propionate (C3), 
and butyrate (C4). SCFAs have anti-inflammatory effects. 
Andrade-Oliveira et al [90] determined that three main 
SCFAs (acetate, propionate, and butyrate) protect against 
renal IR injury with lower inflammation (decreasing den-
dritic cells maturation and CD4+ and CD8+ T cell prolif-
eration), oxidative stress, and apoptosis compared with 
control mice. In contrast to these findings, Emal et al [91] 
demonstrated that the depletion of gut microbiota with 
broad-spectrum antibiotics profoundly protects against 
renal IR injury by reducing maturation status of F4/80+ 
resident macrophages and bone-marrow derived mono-
cytes in the kidney. These discrepancies in renal IR injury 
between two main studies suggest the need for more de-
tailed mechanical studies.

Summary

In this review, we summarized some of the important 
mechanisms of ischemic AKI mainly focused on cell 
death, including apoptosis, necrosis and necroptosis, 
and inflammation mediated by endothelial cells, tu-
bular epithelial cells, and leukocytes, such as neutro-
phils, macrophages, and dendritic cells. In addition, we 
provided updated potential therapeutic targets, such 
as TLRs (TLR2/4/9), ARs, and PAD4 for the prevention 
or treatment of ischemic AKI. Moreover, we proposed 
mechanisms of ischemic AKI-induced liver, intestine, 
and kidney dysfunction and systemic inflammation 
mainly mediated by Paneth cell degranulation (Table 1) 
[54,55,63,67,69-74,78,79,82,83,86]. Although progress 
for this disease treatment and prevention is being made 
on multiple fronts, many hurdles have to be overcome 
because the mortality and morbidity of this disease only 
slightly improved after 4 decades. We hope this review 
helps the researcher and clinician to have a better under-
standing of the molecular and cellular pathophysiologi-

Table 1. Summary of therapeutic targets for ischemic AKI
Target Key findings Reference

TLRs TLR2 •  TLR2- or MyD88 (the central TLR signaling adaptor) -knockout mice were protected from renal IR injury. [54]
TLR4 •  TLR4 signaling in intrinsic kidney cells plays a dominant role in mediating renal IR injury. [55]
TLR9 •  Renal proximal tubular TLR9 gene deletion protects ischemic AKI by ameliorating necrosis, apoptosis, 

and inflammation.
[63]

Adenosine 
receptors

A1AR •  A1AR gene deletion or A1AR antagonist treatment exacerbated renal IR injury, whereas A1AR agonist 
treatment protected it.

[67]

•  Intrarenal injection of lentivirus encoding human-A1AR improved renal function with reduced 
inflammatory infiltrates and increased HSP27 levels.

[69]

A2AAR •  A2AAR present on bone marrow-derived cells but not on kidney tissues mediates renal protection 
against renal IR injury.

[70]

•  A2AAR signaling on CD4+ cells Treg cells mediated renal protection against renal IR injury. [71]
A2BAR •  A2BARs on renal parenchymal (endothelial and/or tubular epithelia) rather than on leukocytes 

conferred renal protection against IR injury.
[72]

A3AR •  A3AR gene deletion or pharmacological inhibition in mice have a renal protective effect against 
ischemia- and myoglobinuria-induced renal injury.

[73]

•  Selective A3AR activation worsened renal IR injury in rat. [74]
PAD4 •  Pharmacological and/or genetic blockade of P2X7 receptors protects against ischemic AKI mainly by 

inducing Treg cell expansion.
[78,79]

•  PAD4 is the critical mediator of P2X7-mediated kidney inflammation and injury after renal IR injury. [82]
•  NEMO citrullination is a central mediator of both PAD4- and P2X7-mediated ischemic AKI. [83]

Remote organ  
dysfunction

•  IL-17A production by small intestinal Paneth cells contributes to multiple organ failure induced by IR 
injury.

[86]

AKI, acute kidney injury; HSP27, heat shock protein 27; IL, interleukin; IR, ischemia reperfusion; MyD88, myeloid differentiation factor 88; NEMO, nuclear factor κB 
essential modulator; PAD4, peptidylarginine deiminase 4; P2X7, P2X purinoceptor 7; TLRs, Toll-like receptors.
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cal mechanisms underlying ischemic AKI and to provide 
more targeted approach to prevent and treat renal IR in-
jury.
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