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Abstract: Superelastic shape memory alloy (SMA) wires exhibit superb hysteretic energy dissipation
and deformation capabilities. Therefore, they are increasingly used for the vibration control of civil
engineering structures. The efficient design of SMA-based control devices requires accurate material
models. However, the thermodynamically coupled SMA behavior is highly sensitive to strain rate. For
an accurate modelling of the material behavior, a wide range of parameters needs to be determined
by experiments, where the identification of thermodynamic parameters is particularly challenging
due to required technical instruments and expert knowledge. For an efficient identification of
thermodynamic parameters, this study proposes a machine-learning-based approach, which was
specifically designed considering the dynamic SMA behavior. For this purpose, a feedforward
artificial neural network (ANN) architecture was developed. For the generation of training data, a
macroscopic constitutive SMA model was adapted considering strain rate effects. After training, the
ANN can identify the searched model parameters from cyclic tensile stress–strain tests. The proposed
approach is applied on superelastic SMA wires and validated by experiments.

Keywords: machine learning; artificial neural networks; shape memory alloys; superelastic; parame-
ter identification; constitutive model; thermodynamic parameters

1. Introduction

Shape memory alloys (SMAs) are superelastic two-phase polycrystal metals. During
dynamic loading, repeated forward- and reverse-phase transitions occur allowing the
material to dissipate energy. Besides this key property, SMAs exhibit also other unique
characteristics, such as large deformation recovery, corrosion resistance, and low fatigue.
Therefore, SMA-based vibration control devices have been a particular research field in
civil engineering. Qiu and Zhu [1] presented a self-centering steel frame, which utilizes
superelastic Ni-Ti wires within a SMA-based damper. Moreover, Liu et al. [2] proposed
a base isolation system by incorporating springs made of superelastic SMA wires. Apart
from this, Liang et al. [3] used cables composed of SMA wires to enhance the effectiveness
of a friction sliding bearing. A review and detailed summary of the related applications
can be found in [4–6]. SMAs are also being used in other dynamic systems, such as in
aeronautic [7] and automotive [8] engineering.

For the design of SMA-based control devices, accurate constitutive models are required,
whereas due to their numerical efficiency, macroscopic models are generally preferred.
Furthermore, for an efficient heat transfer, most control devices incorporate SMAs as wires,
due to which uniaxial models are particularly necessary. Brinson [9] and Auricchio and
Sacco [10], among others, developed fundamental one-dimensional macroscopic models.
Since then, several one-dimensional thermomechanically coupled constitutive models were
designed, such as in [11,12]. Improved versions of these models are also proposed in [13,14].
For a detailed review on other modelling techniques, we refer the interested readers also
to [15] and references therein.
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A common characteristic of constitutive SMA models is that their accuracy relies on the
utilized material parameters, which need to be identified by experiments. In case of SMA
wires, uniaxial tensile tests are sufficient to obtain stress–strain relations. The parameter
identification (PI) process of thermodynamic properties requires specific instruments and
an expert knowledge-based data processing, such as thermomechanical analysis or more
specifically the differential scanning calorimetry (DSC) [16,17]. A more important aspect
is the fact that even with perfectly identified parameters, constitutive models require a
supplementary tuning step for accurate response computations. Machine learning (ML)
methods, particularly artificial neural networks (ANNs), provide efficient and versatile
solutions, which can circumvent these challenges.

ANNs are capable of predicting highly nonlinear relations with any desired degree of
accuracy according to the universal approximation theorem [18] and have already been
used as black-box models for the mapping of constitutive relations, such as in [19,20].
In the field of SMAs, in their pioneering study, Ozbulut and Hurlebaus [21] proposed a
neurofuzzy model, which predicts SMA responses from strain, strain rate, and temperature
inputs. Although black-box models are efficient, they generally require a large set of
representative experimental data.

In the context of PI, Huber and Tsakmakis [22] successfully implemented a feedforward
ANN, which determines the parameters of a finite deformation viscoplasticity model.
Furthermore, for superelastic SMAs exposed to quasistatic loading, Helm [23] developed a
constitutive model and proposed a three-layered feedforward ANN architecture to identify
the required model parameters from stress inputs. In this approach, similar to Huber
and Tsakmakis, the ANN is trained by data, which are numerically generated by the
model using parameters that are randomly sampled within a predefined space. Similarly,
Henrickson et al. [24] trained an ANN to identify transformation temperatures of SMAs by
using strain–temperature curves as inputs.

This paper proposes particularly for dynamic applications of superelastic SMA wires
an ANN-based PI methodology, which considers the strain rate dependency of the material
and focuses on the identification of thermodynamic parameters from stress–strain responses.
Within the PI methodology, the identified parameters are already being tuned considering
the constitutive model to allow accurate response computations.

The remainder of the paper is organized as follows: In Section 2, the approach is pre-
sented and implemented within the macroscopic modelling frame of Zhu and Zhang [12].
In Section 3, the approach is applied to SMA wires and validated by experiments. Finally,
the conclusions of the study are drawn in Section 4.

2. Methodology
2.1. Superelastic SMA Response

SMAs are characterized by austenite (A) and martensite (M) phase states. Above the
austenite transformation finish temperature A f , the parent phase is austenite, and SMAs
exhibit superelastic behavior. Hence, high mechanical stresses induce a forward-phase
transformation (AM), and the SMA crystals reorient their atomic grid from body centered
(B2) to a monoclinic (B19) lattice, which is more stable for high stress levels. Upon unload-
ing, a reverse-phase transformation (MA) occurs, and the material returns to its original
shape without residual deformation. During both forward- and reverse-phase transfor-
mations, SMAs exhibit a pseudoplastic deformation, which can be observed by stress
plateaus in the stress–strain response. The AM transformation is an exothermic process.
The lattice rearrangement causes internal heating, which is released to the environment
via heat convection and conduction. By contrast, the MA transformation is a strongly
endothermic reaction, in which the austenite formation is accompanied by a reduction in
material temperature.

Dynamic loading patterns generally involve high strain rates, which impair the release
of the heat generated within the forward transformation. This affects the material, such
that the stress plateau slope increases since the austenite phase is energetically more stable
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for the increased temperature. Consequently, the reverse transformation is also initiated on
higher critical stress levels affecting the stress–strain curve and the associated hysteretic
energy dissipation.

To illustrate the strain rate effects, experimentally determined stress–strain responses
of an SMA wire are depicted in Figure 1. The alloy composition of the wire is Ni-
55.8%-Ti-43.95%. The wire length and diameter are l = 150 and d = 0.2 mm, respec-
tively. A pre-stress of σ0 = 134.9 MPa is applied. The ambient temperature is around
Tinit = 296.2 K (23.05 ◦C), whereas the austenite transformation finish temperature of
the wire is A f = 285.2 K (12.05 ◦C). Accordingly, the SMA is expected to response su-
perelastically. Two cyclic loading patterns are applied with the strain rate amplitudes
of ε̇a = 1.26% s−1 and ε̇b = 50.27% s−1. The AM transformation plateau changes from
horizontal to a steeper slope with the increasing strain rate as the generated heat cannot be
released directly. High strain rates also reshape the MA transformation, which starts at a
higher stress with a steeper slope.

Figure 1. Cyclic tensile tests on an SMA wire. Strain rate amplitudes: (a) quasistatic ε̇a = 1.26% s−1

and (b) dynamic ε̇b = 50.27% s−1.

2.2. Machine-Learning-Based Parameter Identification

Macroscopic models of superelastic SMA wires generally compute the stress response
σ, temperature T, and martensite volume fraction ξ from strain ε and strain rate ε̇. Accord-
ingly, such models can be represented asM((ε, ε̇), p), where the vectors ε and ε̇ are time
histories of strain and strain rate, respectively. The vector p contains model parameters,
which need to be determined from experiments. Conventionally, as shown in Figure 2a,
the stress–strain (σ-ε) experiments are conducted to investigate the cyclic tensile stress and
strain response characteristics. Furthermore, thermodynamic experiments are required
to investigate the model parameters representing the thermodynamic characteristics. Al-
ternatively, in this study, as shown in Figure 2b, to reduce the experimental effort, an
ML-based procedure is proposed for the identification of the thermodynamic parameters
from stress–strain experiments by using an ANN. Different types of ML models could real-
ize a better performance as well. However, in this study, ANNs are preferred considering
their capability and efficiency in representing the extreme nonlinearities of SMAs.

The procedure consists of forward and reverse steps. As shown in Figure 3a, in the
forward step, a constitutive SMA model generates training data for the ANN. In this study,
due to its robustness and accuracy, the constitutive model by Zhu and Zhang [12] is chosen
and adapted considering dynamic effects, as described in Section 2.3. Other models, such
as by Auricchio and Sacco [11], could be implemented as well.
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Figure 2. (a) Conventional experimental identification and (b) proposed machine-learning-based
identification of thermodynamic parameters for use in constitutive modelling. The constitutive model
is driven by the strain ε and strain rate ε̇ time histories. Stress σ, temperature T, and the martensite
volume fraction ξ time histories are computed as model outputs.

The searched thermodynamic parameters pi, ∀i ∈ {1 : N} are sampled from a prede-
fined parameter space by the Latin hypercube sampling (LHS) method [25], where N is the
number of samples. In Figure 3, as an example, three parameter types (p>i = [p1 p2 p3]i)
are searched. Accordingly, the parameter sampling space is three-dimensional here. At
this point, it should be noted that, besides material parameters, during PI process, one
should particularly consider those parameters as variable, which directly affect the reverse
transformation, cf. Figure 1 and As,d in Section 3.2. Each sampled parameter set pi is then
fed separately into the constitutive model, such that the corresponding SMA stress response
vector σi is generated as the training data set D = {(σi, pi), ∀i ∈ {1 : N}}. Each computa-
tion is conducted for one load cycle, which is represented by the strain εi ∈ Rn×1 and strain
rate ε̇i ∈ Rn×1 time histories, where n is the number of time instants. Accordingly, each
generated stress time history σi ∈ Rn×1 consists of loading σAM

i and unloading σMA
i paths.

As shown in Figure 3b, the reverse step is built as a feedforward ANN, in which the
output p(1) of the first hidden layer and the output p(l) of the final layer read

p(1) = f (1)(W(1)>σ + b(1)), p(l) = p̂ = f (l)(W(l)>y(l−1) + b(l)), (1)

where l − 1 is the number of hidden layers, which depends on the complexity of the
material model. Theoretically, one layer is enough according to the universal approximation
theorem [18]. For constitutive models using a limited number of parameter types, shallow
ANNs with 2–3 layers are suggested, as shown later in Section 3. In Equation (1), f is the
activation function, W is the weight matrix, σ is the stress input vector, and b is the bias
vector. The vector p̂ contains thermodynamic parameters, which are predicted by the ANN.
For the training, the mean squared error function is applied, which is optimized within
the backpropagation algorithm by the Adam optimizer [26]. In total, 10% of the generated
data D is spared for validation. The hyperbolic tangent activation function is used in the
hidden layers, whereas the sigmoid function is used in the final layer to scale the outputs
between 0 and 1. To avoid vanishing gradients, a batch normalization algorithm [27] is
applied. Additionally, the dropout algorithm [28] is used after activation of the hidden
layers to prevent the overfitting of the training data.
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Figure 3. (a) Forward step of the proposed parameter identification procedure: Thermodynamic
parameter samples pi are fed into the material model to produce n stress outputs. (b) Reverse step of
the proposed parameter identification procedure: Trained ANN estimates searched thermodynamic
parameters p̂ from experimental stress–strain response.

2.3. Constitutive Modelling of Superelastic SMA Wire Response

The constitutive material model by Zhu and Zhang [12] is based on the first and
second law of thermodynamics. Similar to the work of Tanaka [29], the material model is
strain-driven and uses the state variables temperature T and martensitic volume fraction
ξ to compute the one-dimensional tensile stress behavior of SMA wires. In analogy to
Sadjadpour and Bhattacharya [30], the Helmholtz free energy is computed per unit mass by

ψ =
E
2ρ

ε2
el +

L
Tcr

(T − Tcr)ξ − CT ln
(

T
Tinit

)
, (2)

where ρ is the density, εel is the elastic strain, Tcr and Tinit are the transformation and
initial (ambient) temperatures, E is the Young’s modulus, L is the latent heat of the phase
transition and C represents the specific heat. Here, the Young’s modulus is expressed
according to Liang [31] and Sato and Tanaka [32] as a function of the martensite volume
fraction to allow for a transition between the two phases as

E(ξ) = EA + ξ(EM − EA), (3)

where EA and EM are constants representing the corresponding elastic moduli of austenite
and martensite phases, respectively. The elastic εel and inelastic εin strains are expressed
according to Brinson [9] and Auricchio and Sacco [10] as

εel = ε− εin, εin = ε lξ, (4)
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where ε l is the maximum strain after a complete AM transformation with the martensite
portion ξ = 1. Furthermore, the heat equation is derived from the first law of thermody-
namics as

CṪ = −∂ψ

∂ξ
ξ̇ + T

∂2ψ

∂ε∂T
ε̇ + T

∂2ψ

∂T∂ξ
ξ̇ − k

Vρ
(T − Tinit)

=
σ

ρ
ε l ξ̇ + Lξ̇ − k

Vρ
(T − Tinit), (5)

where k and V are the heat-transfer coefficient and the specimen volume, respectively. The
stress response of the SMA wire is then computed by

σ = ρ
∂ψ

∂ε
= Eεel (6)

Moreover, four critical stress levels are defined to indicate the start and finish stresses
of the phase transformations:

σAM
s = cM(T −Ms), σAM

f = cM

(
T −M f

)
,

σMA
s,d = cA(T − As,d), σMA

f = cA

(
T − A f

)
,

(7)

where Ms/ f and As/ f refer to the start/finish temperatures of martensite and austenite
transformation, respectively, as shown in Figure 4. Here, cM/A are material constants
indicating the critical stress–temperature slopes.

Figure 4. (a) The relation between the critical stress levels σcrit and the material temperature T.
The austenite transformation start temperature As is strain rate dependent. Here, As,0 and As,d
denote the austenite transformation start temperature for quasistatic and dynamic cases, respectively.
(b) The corresponding stress–strain response of both quasistatic (solid line) and dynamic (dashed
line) loading.

To model the dynamic response more accurately, in the formulation above, we use T as
the material temperature and not as the environmental temperature, which was originally
proposed by Zhu and Zhang, cf. [12]. In this way, the material model is able to consider
both the quasistatic and dynamic cases, such that the critical stress levels are increased for
high strain rates with increasing material temperatures. However, experiments show that
a change in material temperature solely is not enough to initiate the MA transformation
accurately. Hence, As,d and σMA

s,d are introduced, where the subscript d represents the
modelling of the austenite transformation start temperature and the corresponding critical
stress level with respect to dynamic effects.

This adaptation is also shown in Figure 4. Here, T0 denotes the material temperature
for the quasistatic load case. For dynamic load cases, the material temperature increases,
such that a supplementary upward shift in the critical stress level is necessary to replicate
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the SMA response accurately. This behavior is achieved in the model by decreasing the
austenite transformation start temperature from As,0 to As,d.

In the model, the evolution of the martensite fraction ξ is based on the Liang–Rogers
model [33]. Its rate form is computed by

A→ M: ξ̇ = (1− ξ0)

(
aMṪ − aM

cM
σ̇

)
g
[

aM

(
T − TM −

σ

cM

)]
, (8)

M→ A: ξ̇ = ξ0

(
aAṪ − aA

cA
σ̇

)
g
[

aA

(
T − TA −

σ

cA

)]
, (9)

where g = −ex(1 + ex)−2 and

TM =
Ms + M f

2
, TA =

As + A f

2
, aM =

ln(10,000)
Ms −M f

, aA =
ln(10,000)
A f − As

(10)

Here, ξ0 refers to the initial martensite fraction at the beginning of the current trans-
formation. In the model of Zhu and Zhang [12], the outputs σ, T, ξ as well as their time
derivatives, are solved simultaneously from the heat equation (Equation (5)), mechanical
stress equation (Equation (6)), and the kinetic rules (Equations (8) and (9)) by time inte-
gration algorithms, such as the fourth-order Runge–Kutta method. Figure 5 illustrates the
input and output parameters of the material model.

Figure 5. Input and output parameters of the material model. The constitutive model is driven by the
strain ε and strain rate ε̇ time histories. Stress σ, temperature T, and the martensite volume fraction ξ

time histories are computed as model outputs.

Parameter Influence on Stress–Strain Response

The parameters introduced in Section 2.3 have to be determined accurately as each of
them affects the material model response. It is obvious that the Young’s moduli, EM and
EA, have a major influence on the stress–strain behavior. This effect can be easily seen in
the elastic parts of the stress–strain response, where an unsuitable parameter would lead to
inaccurate slopes in the σ-ε diagram. Furthermore, ε l denotes the maximum strain at ξ = 1,
such that it directly affects the strain level, where the phase transformation from austenite to
martensite is finished, cf. Equation (4). In this study, purely superelastic material behavior
is assumed since the ambient temperature is above the austenite transformation finish
temperature (Tinit > A f ). As a result, ξ0 is assumed to be 0 in the initial austenite state.
Nevertheless, this parameter is variable and changes as the martensite transformation
proceeds. The ambient temperature Tinit has only a minor influence on the model response
since the material temperature is used to compute the critical stress levels, cf. Equation (7).
From Equation (6), it is obvious that the stress response increases for high specimen
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densities ρ. In addition, from Equation (5), it follows that greater specimen volumes V,
or diameters d, lead to higher temperature evolutions. By contrast, high heat-transfer
coefficients k result in greater heat transfer and thus in lower temperature evolutions. A
major impact on the stress–strain response results from the critical stress levels given in
Equation (7). These stress levels are influenced by the parameters cM and cA, as well as M f ,
Ms, As,d, and A f . With increasing cM and cA, stress levels also increase. Whereas greater
transformation temperatures (M f , Ms, As,d, A f ) lead to lower stress levels.

For the modelling of dynamic SMA response, particularly, the introduced dynamic
austenite transformation start temperature As,d has a high influence as with it an earlier
reverse transformation can be started, cf. Figure 4. Furthermore, in case of high strain rates,
the material temperature is increased due to self-heating effects. These effects are modelled
by the specific and latent heat (C and L), which have the greatest influence on the dynamic
model response as they are directly linked to the temperature evolution, cf. Equation (5).
For the dynamic load case, finally, k is also important, which controls, as mentioned above,
directly the heat transfer of the SMA.

3. Results and Discussion
3.1. Stress–Strain Experiments

For the generation of test data, cyclic tensile tests are conducted by a uniaxial shaking
table, as schematically depicted in Figure 6. A pre-stress of σ0 = 134.9 MPa was applied.
The wire stress response was measured by a load cell. The applied strain was determined
by a laser position sensor. Both sensors were sampled at 1000 Hz. The ambient temperature
was around Tinit = 296.2 K (23.05 ◦C). In this study, a Ni-55.8%-Ti-43.95% SMA wire with
l = 150 mm length and d = 0.2 mm diameter was investigated. For further information
on the test setup, the reader is referred to [34]. All material parameters are reported
in Table 1. Here, EM, EA, and ε l are determined via the stress–strain relation obtained under
quasistatic load. Furthermore, ρ, M f , Ms, As,0, and A f are provided by the manufacturer,
whereas cM and cA are determined using Equation (7) from the provided parameters.
Ambient temperature and geometric parameters (diameter and wire length) are measured
before testing.

Figure 6. (a) Schematic representation of stress–strain experiments. The wire of diameter d and
length l is fixed on one side and elongated by ∆l. The resulting tensions and the applied strains are
measured by a load cell and a laser position sensor, respectively. The ambient temperature is above
the austenite transformation start temperature (T > A f ). (b) Applied displacement with respect
to time.

3.2. Identification of Thermodynamic Parameters

As introduced in Section 2.3, the constitutive SMA model of Zhu and Zhang relies on
three thermodynamic parameters: the specific heat C, the latent heat L, and the heat-transfer
coefficient k. All other thermodynamic parameters (M f , Ms, A f , cM, and cA) are generally
provided by manufacturers (cf. Table 1) and can also be used in constitutive models with a
sufficient accuracy for dynamic applications. Furthermore, As,0 is also provided, which is
accurate enough for the quasistatic case and is now tuned as As,d to model the dynamic
response more accurately.
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Accordingly, the searched parameter set reads:

p>i =
[
C, L, k, As,d

]
i (11)

where the parameter space of C, L, and k is determined based on their influence on the
response of the constitutive model. For this purpose, the cyclic stress response of the
SMA wire is computed by the material model for the strain amplitude ε = 4% and the
strain rate amplitude ε̇ = 50.27% s−1. The parameters are alternated around the reference
setting C = 800 J(kgK) −1, L = 8000 J kg−1, and k = 0.021 W K−1, where the works of
Kato [35] and Zhu and Zhang [12] are taken as reference. The chosen parameter space is
listed in Table 2. The remaining material parameters that are used for this study, including
As,d = As,0, correspond to Table 1.

Table 1. Constitutive model parameters of the SMA wires used in this study.

Parameter Value Unit

Young’s modulus of martensite EM 14,100 MPa
Young’s modulus of austenite EA 29,000 MPa
Critical stress–temperature slope of martensite cM 6.13 MPa K−1

Critical stress–temperature slope of austenite cA 6.57 MPa K−1

Maximum strain at ξ = 1 ε l 0.04 -
Martensite transformation finish temperature M f 231.4 K
Martensite transformation start temperature Ms 247.7 K
Austenite transformation start temperature As,0 263.2 K
Austenite transformation finish temperature A f 285.2 K
Ambient temperature Tinit 296.2 K
Density ρ 6500 kg m−3

Diameter d 0.0002 m
Wire length l 0.15 m

Table 2. Parameter space of the searched thermodynamic parameters pi.

Parameter min max Unit

Specific heat C 800 2000 J(kgK)−1

Latent heat L 400 40,000 J kg−1

Heat-transfer coefficient k 0.001 0.100 W K−1

Austenite transformation start temperature As,d 247.0 263.2 K

The results are depicted in Figure 7. The smaller the specific heat C, the less energy is
required to raise the material temperature. This results in greater temperature amplitudes
and consequently leads to steeper transformation plateaus, as shown in Figure 7a. On the
other hand, the latent heat provokes similar effects in the hysteresis of the stress–strain
curve, as shown in Figure 7b. In fact, the latent heat is included in Equation (5) and thus
directly linked to the temperature evolution. A high latent heat value results in an increase
in temperature during the austenite-to-martensite phase transformation. A higher material
temperature, in turn, leads to a more stable austenite phase, such that a higher mechanical
stress is needed to proceed the phase transformation. Accordingly, C and L affect the
model response oppositely and with different parameter combinations the same material
response can be replicated. Finally, the higher the heat-transfer coefficient k, the more heat
is transferred to the environment. Small k values thus lead to rising temperatures after
each cycle as there is less heat transferred from the wire to the environment, as shown
in Figure 7c.
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Figure 7. Influence of thermodynamic parameters on the model response: (a) Influence of specific
heat C, (b) influence of latent heat L, and (c) influence of heat-transfer coefficient k. The green dashed
line illustrates the linear elastic part of the unloading path.

Accordingly, the first three parameters of pi influence the slope of both forward- and
reverse-phase transformations. However, these parameters do not affect the critical stress
σMA directly, which initiates the reverse transformation. As illustrated in Figure 7 by the
green dashed lines, C, L, and k do not affect the length of the linear elastic martensite
unloading path. This effect can be efficiently covered by alternating As. Its parameter space
is also introduced in Table 2 and is determined similar to the prior ones considering the
influence on the response of the constitutive model. Accordingly, As,d is chosen, such that
it covers the temperature range below As,0 until Ms, as described previously in Figure 4.
It should be noted that the size of the parameter space does not have a major influence
on the neural network accuracy as the best-fitting parameter combination is identified. On
the other hand, with increasing parameter ranges, the required computational effort also
increases. In this study, the ranges are chosen based on both numerical and experimental
expertise from [12,34,35].

For the PI, a feedforward ANN is utilized with two hidden layers, where the first
and second layers contain 128 and 64 neurons, respectively. The learning rate is initialized
as 1× 10−3. Training is completed after 50 epochs and is conducted with a batch size
of 32. A Gaussian noise with zero mean and a variance of 1 × 10−4 is added to the
training input data to make the network more stable to measurement errors. For the
training of the ANN, i = 2000 sets are sampled from the parameter space. The network
architecture and its training parameters are determined after a parametric study by trial
and error. Deeper network architectures lead to slightly more accurate predictions but at
the cost of computational effort. Therefore, in this study, the simplest possible network
architecture is chosen, which provides sufficient results. The generated data correspond
to D = {(σi, pi), ∀i ∈ {1 : 2000}}, where 10% of them is used for validation. To consider
strain rate effects, the data set is generated using the material model repeatedly for five
different strain rate amplitudes of ε̇ ∈ [1.26, 2.51, 12.57, 25.13, 50.27]% s−1 with a constant
strain amplitude of ε = 4%. The generation of signal data and neural network training
take less than 30 min using an AMD Ryzen 9 5950× CPU and computing on an NVIDIA
GeForce RTX 3090, which is significantly lower than the experimental effort considering
the time required for the specimen preparation, tests, and data processing.

After training the ANN, the σ-ε experiments are conducted, as described in Section 3.1
for the same strain rate and strain amplitudes. From the experimental stress–strain response,
the parameters Ĉ, L̂, k̂, and Âs,d are identified. Table 3 shows the estimated p̂ after training
with D. Here, the experimentally measured loading stress responses are divided into
200 equidistantly distributed points. The final values of the identified parameters are
determined from the mean over all investigated strain rate cases, except for As,d, where
only the dynamic load cases (ε̇ ∈ [12.57, 25.13, 50.27]% s−1) are considered.
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Table 3. Thermodynamic parameter set p̂ identified by the ANN after training with the data set D.

ε̇ [% s−1] ε [%] Ĉ [J(kgK) −1] L̂ [J kg−1] k̂ [W K−1] Âs,d [K]

1.26 4 1146 5404 0.084 As,0
2.51 4 1824 18,773 0.089 As,0

12.57 4 1827 18,583 0.090 247.3
25.13 4 1888 23,278 0.089 247.4
50.27 4 1896 25,108 0.089 248.0

Final result p̂: 1716 18,229 0.088 247.6

Figure 8 compares the experimental results with the numerical calculations, which
use the identified parameter set p̂, where for the quasistatic cases (ε̇ ∈ [1.26, 2.51]% s−1) the
manufacturer provided As,0 is used in numerical calculations. The numerical calculations
using p̂ accurately match both the loading and unloading paths of experimental results. It is
noteworthy that the accuracy of the numerical calculations is limited by the capability of the
constitutive model. Therefore, the effects, such as residual deformations and hardening, are
not replicated accurately. We observe from the experimental results that with an increasing
strain rate, the residual wire strain becomes significantly visible. This effect is currently not
replicated by the model. With these results, we would like to emphasize that the accuracy
of the proposed PI is limited by the constitutive model precision. The effects that are not
included in the basis material model cannot be considered in the PI process.

Figure 8. Comparison of the experimentally determined stress–strain responses (EXP) with numerical
calculations, which use the identified parameter set p̂.

From the results, the mean value of the relative cumulative stress error εn is computed as

εn =
5

∑
m

(
|∆σm,n|
σEXP,m,n

)
/5 (12)
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where ∆σm,n is the difference between the estimated and experimentally determined stress
σEXP,m,n of the corresponding strain intervals n ∈ [1, 2, 3, 4]% for both forward and reverse
transformations. Here, the mean is computed over m cases corresponding to the number
of investigated strain rate amplitudes. As shown in Figure 9, the error value is located
around 5%, neglecting the value for 1% strain on the reverse transformation. In this case,
the error value is high, which is due to the material model’s inability of modelling residual
deformations, cf. Figure 8.

Figure 9. Mean value of the relative cumulative stress error corresponding to the used parameter set
p̂ for both forward (a) and reverse (b) transformations.

4. Conclusions

In the present paper, for the identification of thermodynamic parameters of superelas-
tic SMA wires, an ANN-based PI methodology is presented. The proposed approach was
coupled with a macroscopic constitutive model. Here, to consider strain-rate-dependent
response effects more accurately, two austenite transformation start temperatures were de-
fined distinguishing between the quasistatic and dynamic cases. Furthermore, in the model,
the current material temperature was considered for a strain rate sensitive calculation of
critical stress levels. In an initial step, training data were generated by the constitutive
model. Here, the searched thermodynamic parameters were sampled from a parameter
space, and for each sampling, the stress responses were computed. After training, the ANN
estimated the searched parameters from conventional stress–strain experiments. Finally, to
validate the accuracy of the proposed method, numerical simulations were conducted, and
results were compared with experimental data.
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