
NEUROROBOTICS
ORIGINAL RESEARCH ARTICLE

published: 12 May 2010
doi: 10.3389/fnbot.2010.00002

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 1

learning procedure applied to the visual input of a behaving robot.
In these studies the weights between units in a hierarchical neural
network are adjusted, such that the fi ring rate changes as slowly
as possible with time. The resulting activity patterns thus form an
optimally stable representation of the sensory input. The results
of learning in these hierarchical networks match the experimental
observations of place cells as found in rodent hippocampus (O’Keefe
and Dostrovsky, 1971). These neurons fi re only when the animal is
located in a certain region of the environment, defi ning the cell’s
place fi eld. Although the contribution of these cells to the animal’s
behavior has still not been fully understood, it is assumed that these
cells constitute a cognitive map of the environment (O’Keefe and
Nadel, 1978) and serve as the basis of navigation. The work of
Wyss et al. (2006) implies that unsupervised learning of the sensory
input results in a reorganization of the sensory space, originally
spanned by its visual input to a spatial interpretation. We built on
this research by using place cells to represent the location a robot in
its environment. Thus the place fi elds constitute a discretization of
the navigational state space spanned by the robot’s position. They
correspond to the robot’s internal states and represent the positions
it can differentiate. In summary, in order to enable the cognitive
model controlling the robot to navigate, we chose place cells as a
biologically plausible and theoretically founded representation of
the environment.

An important aspect of the proposed model is the division of
the architecture of the agent into central and distal processing.
Both processes learn the sensory outcome of the robot’s actions
in the agent’s state space, spanned by the place fi elds. The central
processing component captures the sensory outcomes of the agent’s
actions. It is defi ned by the state (place fi eld), where the robot is
located after the execution of the action. Exploratory behavior leads

INTRODUCTION
An increasing number of studies model animal behavior using
robots. While many of these studies investigate how individual com-
ponents, such as sensory processing, contribute to the generation
of behavior (Lungarella et al., 2003), most are limited to modeling
one particular behavioral domain (Alexander and Sporns, 2002;
Edelman, 2007). It is becoming more and more obvious that the
fl exibility of human behavior is still out of reach of modeling stud-
ies (Flash and Sejnowski, 2001; Todorov, 2004). Recently in the
neurosciences, different approaches have delineated behavior in
a unifi ed theory, independent of any specifi c paradigm (Wolpert
and Ghahramani, 2000; Schaal and Schweighofer, 2005). Here we
develop a model based on general principles that we propose to
generalize over a broad variety of behavioral domains.

For the present study we apply and test the cognitive model in
the domain of a navigational task. Navigation refers to the practice
and skill of animals as well as humans in fi nding their way and in
moving from one place to another by any means (Wilson and Keil,
1999). Hence, a navigational task can be described computationally
by referring to the position and orientation of the agent as a func-
tion of time. Furthermore, the ability of animals to navigate in 2D
environments like the four-arm maze has been studied extensively
(Olton and Samuelson, 1976; Morris, 1984). To test the cognitive
architecture we thus chose an easily determinable navigational task
based in the standard environment of a four-arm maze.

To perform a planned behavior, a robot has to predict the sensory
outcome of its actions. In order to do so, it is useful to reorganize
the high-dimensional sensory input into a low dimensional repre-
sentation consisting only of behaviorally relevant aspects. Several
studies (Wyss et al., 2006; Franzius et al., 2007) have recently shown
that place cells can be understood as the result of an unsupervised

Unsupervised learning of refl exive and action-based
affordances to model adaptive navigational behavior

Daniel Weiller1*, Leonhard Läer1, Andreas K. Engel2 and Peter König1

1 Institute of Cognitive Science, Department of Neurobiopsychology, University of Osnabrück, Osnabrück, Germany
2 Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Here we introduce a cognitive model capable to model a variety of behavioral domains and
apply it to a navigational task. We used place cells as sensory representation, such that the
cells’ place fi elds divided the environment into discrete states. The robot learns knowledge of
the environment by memorizing the sensory outcome of its motor actions. This is composed
of a central process, learning the probability of state-to-state transitions by motor actions and
a distal processing routine, learning the extent to which these state-to-state transitions are
caused by sensory-driven refl ex behavior (obstacle avoidance). Navigational decision making
integrates central and distal learned environmental knowledge to select an action that leads
to a goal state. Differentiating distal and central processing increases the behavioral accuracy
of the selected actions and the ability of behavioral adaptation to a changed environment. We
propose that the system can canonically be expanded to model other behaviors, using alternative
defi nitions of states and actions. The emphasis of this paper is to test this general cognitive
model on a robot in a real-world environment.

Keywords: place cells, navigation, refl exes, four-arm-maze, unsupervised learning, adaptive behavior

Edited by:

Max Lungarella,
University of Zurich, Switzerland

Reviewed by:

Poramate Manoonpong,
University of Goettingen, Germany
Verena V. Hafner,
Humboldt-Universität zu Berlin,
Germany

*Correspondence:

Daniel Weiller, Institut fur
Kognitionswissenschaft,
Neurobiopsychologie, Universtat
Osnabrück, Albrechtstrasse 28, 49069
Osnabrück, Germany.
e-mail: dweiller@uos.de

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 2

Weiller et al. Refl exive and action-based affordances

to learning which action leads to a specifi c outcome. The agent
stores experienced state transitions as transition probabilities. In
contrast, the distal component is based on infrared sensors and
accounts for refl exive behavior. Triggered refl exes are memorized as
so-called refl ex factors. These facilitate obstacle avoidance only, and
are not used to constitute the robot’s state. Combined, transition
probabilities and refl ex factors refl ect the environmental properties
in relation to the robot’s actions.

Based on exploratory behavior the robot learns an approxima-
tion of the environmental affordances (Gibson, 1977) for naviga-
tion, defi ned as the navigational action possibilities afforded by the
environment. The cognitive model plans goal-directed actions by
integrating the information gained by central and distal process-
ing into a local decision-making process. This integration results
in a quantitative measure of how reliably each executable action
leads towards the goal. Hence, the key components of our cogni-
tive model are (i) a high-level representation (place fi elds) of sen-
sory input space, (ii) the knowledge of environmental properties
acquired by active exploration of local state transitions by means
of distal and central processing and (iii) a decision-making process
driven by this knowledge.

Here we show that using the described cognitive model the
agent latently learned the environmental affordances and let a robot
successfully navigate to different goals within a four-arm-maze
environment. Importantly, the differentiation between central
and distal processing reduces the negative effect of the obstacle-
 avoidance behavior on navigational performance, and enables the
robot to quickly adapt to changes in the environment. We propose
that by redefi ning the states and actions, the introduced model can
be expanded to model other types of behavior.

MATERIALS AND METHODS
OVERVIEW OF THE ARCHITECTURE
Our cognitive model allows the robot to explore the environment
and navigate to different targets based on a state space represented
by the spatial representation of place fi elds. This state space was
obtained by dividing the four-arm-maze environment (Figure 1A)
into compact, discrete states (Figure 1B), similar to the place fi elds
that can be acquired by unsupervised learning (Wyss et al., 2006).
The central component of the model processed every one of the
robot’s state transitions, while the distal component dealt only with
transitions that coincided with refl exive behavior (obstacle avoid-
ance). Together, the transitions induced by the robot’s actions and
those transitions associated with refl exive behavior represent the
environmental properties locally learned by the exploring robot.
During each stage of the decision-making process, the model chose
the action that maximally increased the probability of reaching a
desired target within the environment, thus allowing the robot to
successfully navigate.

PLACE FIELD REPRESENTATION
We chose place cells as a representation of the environment. A study
by Wyss et al. (2006) showed that such place cell properties can be
acquired by mobile robots by means of unsupervised learning in
a hierarchical network. Although it would be possible to replicate
this work, our main purpose here was to model behavior, so we
deliberately used predefi ned place cells, similar in type to those

observed in the previous study, to focus on the behavioral aspect.
We approximated the fi ring properties of place cells as a function of
the robot’s position by 2D Gaussian functions (standard deviation:
0.04 m). To cover the whole four-arm-maze environment we ran-
domly distributed 72 of these Gaussian functions (Figure 1B). For
each of the robot’s possible positions within the maze, we obtained
the activity of each of these place cells. A winner-takes-all process
then extracted the robot’s position in state space from the population
activity of the place cells – the cell that was maximally active thus
defi ned the current state of the agent. In order to calculate the place
cell activity, we fi rst needed to extract its position in the environ-
ment. The robot was tracked by an Analog Camera (Color Cmos
Camera 905C) which was attached above the environment as shown
in Figure 1A. The analog camera signal was digitized by a TV card
(Hauppauge WinTV Express). The position and orientation of the
robot were then calculated using the camera image and the color
code attached on top of the robot. Thus, the population of place cells
represented a mapping from the position space in which the robot
was navigating, to the state space of the agent controlling the robot.
To secure generalizability, no reference was made to the 2D structure
of the environment. The only information used by the agent to infer
the robot’s position was the activation of each place cell.

FIGURE 1 | (A) A four-arm-maze environment was chosen to test the model.
A Khepra robot was controlled by an agent implemented in the MicroPsi
framework, running on a computer. The inputs to the program were the
orientation and the position of the robot, as well as the data from the
proximity sensors. (B) shows the distributions of states used. The white lines
within the environment represent the boundaries of these states. (C) shows
these proximity sensors on the robot. These sensors emit infrared light and
measure the refl ection. The agent used the activation of the place cells which
corresponded to its current position, the orientation of the robot, and the
proximity sensors to perform the robot’s behavior.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 3

Weiller et al. Refl exive and action-based affordances

ACTION EXECUTION
In order to limit the number of transitions needed to learn the
environmental properties to a manageable number, in each state
the robot was restricted to executing eight different actions. Each
of these actions consisted of a static rotation to a certain global
orientation followed by a straight-line movement of the robot.
The corresponding orientations were equally spaced from 0 to
325°. As a result of executing such an action when in a given state
(source), the robot will reach a different state (endstate), with the
action thus resulting in a transition between states. An endstate was
reached when the winner-take-all process calculating the current
state returns a new state index. A transition was defi ned as complete
when a local maximum of the endstate’s activity was reached. A
local maximum occurred when the derivative of the current state’s
activity becomes negative. The frequencies of the transitions result-
ing from action i, executed in source state j and ending in endstate
k were stored in the experience matrix EM

i,j,k.
.

DISTAL PROCESSING
To prevent the robot hitting one of the maze’s boundary walls, a
refl exive obstacle avoidance behavior was implemented. The prox-
imity sensors (Figure 1C) were used to perform this behavior, such
that we directly mapped the inverse activities of the sensors to the
motor activity. The sensors at the side of the robot reduced the motor
activity, sent to the wheel located at the same side and reduced it for
the wheel at the opposite side. The frontal sensors both reduced the
motor activity sent to both wheels. In both cases a negative motor
activation was possible such that the wheel rotated in the opposite
direction compared to a positive motor activation. The frequencies
of occurrence of the refl exive event characterized by the particular
state (i) – action (j) combination was stored in the refl ex matrix
RM

i,j
. Whenever the robot used its obstacle avoidance behavior, the

system associated the current state and action with the occurrence
of a refl ex event and updates the refl ex matrix accordingly.

DECISION MAKING
Here we addressed the problem of decision-making – choosing the
action that is most likely and quickest to lead towards the goal. As
the obstacle avoidance behavior introduced additional variability
in state transitions (see Results), the agent should also minimize
the usage of this behavior during his movement to the goal. In this
section we developed a measure for each action on each state result-
ing from an iterative reverse fl ooding procedures Figure 2 defi ning
the actions likeliness and quickness to lead to the goal.

The reverse fl ooding procedure integrated the transition prob-
abilities experienced by the agent to evaluate the probability to end
up at the goal state. The transition probabilities were learned by the
central component of the model and were stored in a transition matrix
(Figure 3A). The transition probability defi ned by source j, endstate
k and action i was stored in the transition matrix TM

i,j,k
 shown in

Figure 3A. The sum of the transition matrix over the endstates k
(rows) was normalized to one for each action and source and thus rep-
resented a probability distribution. The 3D transition matrix consisted
of eight 2D matrices, each for one action i TM

i
. These eight transition

matrices TM
i
 shared some similarity with a directed graph. The verti-

ces of this graph corresponded to the states, the edges corresponded
to the transitions, and the edge weights to the transition probabilities.

This results in eight directed graphs equivalent to the eight possible
actions. In each of the iteration steps of reverse fl ooding, the activa-
tion of the state corresponding to the goal state was set to one. State
activation was propagated through the graph by passing the activity
– weighted by the corresponding transition probability – to connected
states in the reverse direction of the directed edges. Technically speak-
ing, the activation was propagated from endstates to sources, weighted
by the transition probability of the action’s transfer from the source to
the endstate, hence the name reverse fl ooding. Applying this process
to each action’s graph gave rise to eight different activity values for
each state. These activity values were proportional to the probability
to reach the goal by executing the corresponding action on each state.
Up to this point, only the learned environmental properties resulting
from central processing were considered during fl ooding.

Further to minimize the number of refl exive events during
navigation to the goal, we integrated the distal component in the
fl ooding procedure. This was done by introducing refl ex factors.
The refl ex factor was proportional to the percentage of actions i at
source j that induced refl exive event:

rf
RM

EMi j
i j

i j k
k

,
,

, ,

= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⋅
∑

1
5

6

During each iteration step, the eight activations of state j cor-
responding each to one of the eight actions i were multiplied by
the corresponding refl ex factor rf

i,j
. The maximum of the eight

activations of a state was used as the state’s activation for the next
iteration step. These eight activations were generated by multiply-
ing the activity by the transition probabilities and the refl ex factor,
both smaller or equal to one. Thus each of those eight activation
was smaller or equal to one. Applying the maximum operation to
these eight activation of a state to defi ne the state’s activation for

FIGURE 2 | Description of the reverse fl ooding algorithm.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 4

Weiller et al. Refl exive and action-based affordances

the next iteration step, restricted the activity of a state to be smaller
or equal to one. Thus, for the fl ooding procedure we did not apply
any additive process to the activation propagation, which restricted
the state’s activity to be equal or smaller than one. Further, by
injecting in each of the iteration steps an activity of one at the goal
state, the fl ooding procedure resulted in a steady-state of state’s
activity. Thus, this iterative fl ooding process was continued until
the states’ activities converged. In order to select the action most
likely to move the robot towards the goal, we considered the eight
incoming activation values on each state, which resulted from the
activation propagation of the eight actions. The robot then chose
the action corresponding to the highest incoming activation of
the current state to move to the goal (Figure 3B).

For the refl ex factors we introduced a weighting factor of 5/6 to
prevent a refl ex factor of zero in the case of an action, which was com-
bined only with obstacle avoidance behavior. Thus, non-zero refl ex
factors did not neglect the information of the environment gained
by the transition probabilities during the fl ooding process.

Furthermore, to reduce the number of transitions to move to
the goal, we introduced a decay factor df, which was here set to 0.9.
After each iteration step, the activation of each state was multiplied
by this factor. The more transitions that were needed to reach the
goal states, the more the decay factor was taken into account and
decreases the states’ activities. Hence, the decay factor penalized
longer trajectories to the goal state.

The fl ooding algorithm defi ned above was implemented with
the help of matrices.

act
j m

j mj()0
0

1
=

≠
=

⎧
⎨
⎩

represented the activation at the 0’th activation propagation, where
the goal was located at state m.

act t TM act t rf df acti i

� ��� � ��� � ���
+() = ⋅ ⋅()⋅()⋅ +1 0max () ()

where act t
� ���

() was the vector of activation values for the states after t
iteration steps. rf represented the refl ex factor and df the decay fac-
tor. After the convergence of the activities, the index i with maximal
activity of a state defi ne the action that is chosen by the agent to
navigate to the goal. The convergence of the activities was defi ned
by the absolute difference between previous and current activities
being smaller than 10−5.

ROBOT SETUP
To test the model in a real-world environment we used Khepera II
robots (K-Team, Lausanne, Switzerland). The robot was equipped
with eight proximity sensors, which emitted infrared light and
measured the strength of its refl ection. Propulsion is achieved by
two wheels, each controlled by a separate motor (Figure 1C). For
implementation and fl exible programming, we used MicroPsi (Bach,
2003; Bach and Vuine, 2003), an Eclipse-based Java programming
environment, as an interface to the robot. The agent that control-
led the robot’s behavior was implemented in this framework. The
particular cognitive model was implemented with the help of the
Colt framework, allowing matrix calculation in Java. The real-world
environment was a four-arm maze with boundaries built from white
wooden pieces (Figure 1B). Each arm had a width of 0.21 m and a
length of 0.28 m. The four-arm maze environment fi tted into an
area of 1 m2.

FIGURE 3 | (A) Learning of the properties of the environment. The robot is on a
certain state, defi ned here as Source J (yellow labeled) and randomly chooses
an action (Action 1). The execution of the action results in another state, defi ned
as endstate K (red labeled). This transition was stored in a 3D matrix, called the
experience matrix, with the dimensions sources, endpoints and actions. The

number of action executions combined with obstacle avoidance from a source
was stored separately. (B) The robot moving to a goal (the “cheese” for the
artifi cal “rodent”). His choice is a consequence of the fl ooding of the transition
matrix, resulting in an activation of the different actions, shown as colored
arrows. The action with the strongest activation was chosen.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 5

Weiller et al. Refl exive and action-based affordances

ANALYSIS
As a means of comparison, a simulated robot was implemented
in MATLAB (Version 7.0 (R14), Mathworks, Natick, MA, USA)
using the same algorithms described above. Obstacle avoidance
behavior of the physical robot was approximated setting the angle
of refl ection equal to the angle of incidence to the boundary, with
a random scatter of 10 to −10 degrees added.

To compare the navigational behavior and the transition prob-
abilities learned by the robot, we introduced the geometrical transition
matrix. This matrix took into account only the topographical prop-
erties of states in the environment and was created by allowing the
simulated robot to execute every action on every position within each
state, using the resolution of the camera tracking system. Because the
real-world robot chose a new action only at a local maximum of its
current place cell activity, each transition occurrence in the simu-
lated agent was weighted by the probability of the robot executing
an action given the current place cell activity. In an ideal world and
given a very long exploration time the real transition matrix was
expected to converge to the geometrical transition matrix. In the
real-world setup, due to the fi nite robot size, slip and friction and a
limited exploration time, the geometrical transition matrix might
deviate considerable from the real transition matrix.

Next we evaluated the properties of the experienced and geo-
metrical transition matrices. First we investigated the similarity of
action outcomes by comparing the corresponding transition prob-
abilities. We correlated the transition probabilities represented by
a row vector of the Transition matrix of action i, TM

i
, with the

same row vector of the Transition matrix of action j TM
j
. Before

calculating the correlation coeffi cients between the two vectors
we reduced the transition probabilities in the row vector by the
average of these transition probabilities to the topographical next
neighbors. Thus two actions led to equivalent outcomes when their
correlation coeffi cient is 1.0; they are linearly uncorrelated when
the correlation coeffi cient is 0.0.

We characterized the predictability of an actions’ transition to
a state by defi ning a second measure: The predictability of action
i in state j is given by the maximum transition probability stored
in the row vector j of the Transition Matrix TM

i
. This maximum

transition probability was reduced by the probability of transferring
to one of the connected states by chance.

pr TM
conni j k i j k

i j
, , ,

,

max= () − 1

Here, Pr
i,j
 corresponded to the predictability of action i in state

j, and conn
i,j
 is the number of states the robot was able to reach by

executing action i on state j.
In order to evaluate the decision-making process, we analyzed

the activation of each action after the fl ooding process had con-
verged. We chose the normalized activity as an appropriate measure
to characterize the quality of selection of an action during naviga-
tion to a goal. This normalized activity is defi ned as the activation
of the chosen action j for the state, normalized by the sum of all
incoming activity and by the decay factor.

NormActj =
⋅ ⋅ ⋅ +()⋅∑

act

TM act act

j

i i jt rf df

� ����
� �� � ��

([()]) () (0 11−df)

with act
j
 representing the maximum converged activity of state j

after fl ooding. The denominator corresponded to the sum of all
converged incoming activations of state j for all actions. In order to
reduce the dependency of the normalized activation on the decay
factor, we included the decay factor in the denominator. As a result
of its inclusion, the normalized activity ranged from 0 to 10. The
value of 10 is reached when only action j has an activity and thus
all other actions are not activated. This indicated, that only action
j is leading the robot reliable to the goal. While smaller values of
the normalized activity represented similar activation of all actions,
and thus executing one of the other action could lead the robot to
the goal with a similar navigational performance. Thus, as smaller
the normalized activity values as similar are the activations and
thus any action will lead the robot to the goal.

BATCH AND ONLINE LEARNING
We investigated the plasticity of the introduced navigational sys-
tem by examining the robot’s navigational adaptation to changes
in the environment. The robot’s navigational performance was
evaluated by measuring its navigational performance to a target.
We examined the robot’s adaptation process by comparison of the
two different types of learning we introduced: batch and online
learning. These approaches differed in the timing of the transi-
tion matrix and refl ex update and in the way in which the robot
explored the environment. Batch learning involved interleaved
experience stages of random action execution, during which the
existing transition and refl ex matrices were updated, and evalu-
ation stages, during which navigation took place and the transi-
tion and refl ex matrices were not updated. This is similar to the
way the agent experienced the environment as described above.
In comparison, online learning involved updating the robot’s
transition probabilities and refl exes after each action execution,
and instead of moving randomly, the decision-making process
was always at work.

RESULTS
Here we investigated the robot’s navigational performance and
how the central processes – namely the transition probabilities
– as well as the distal processes defi ned by the refl ex factors, con-
tributed to the decision-making process. We also examined the
adaptation of the robot’s navigational behavior to changes in the
environment.

NAVIGATION BEHAVIOR
Navigational performance
The navigation performance of the robot was evaluated by repeat-
edly measuring its path to a number of different target sites in
the environment. In each of the 20 trials, the robot was placed
on one of fi ve possible starting positions and given one of four
target locations. In order to directly compare different start-target
combinations, we normalized the length of the robot’s path by the
direct path, which represented the shortest traversable distance
from the robot’s starting point to the goal state. Figure 4 shows
a path traveled by the robot (yellow line) and the corresponding
direct path (light gray line). Overall, the robot’s median path length
across 20 trials was 1.71, with a standard deviation of 0.47. This
represents an increase of 71% (±47%) compared to the direct path

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 6

Weiller et al. Refl exive and action-based affordances

length. For all confi gurations of start positions and targets, the
robot was able to reach the target in a reasonably short amount
of time.

Impact of states and learned properties on navigational performance
The increased length of the robot’s paths could be a consequence
of any of the following: the division of the environment into dis-
crete states (place fi elds), the environmental properties learned by
the robot (transitions and refl ex factors), and the robot’s behavior
while navigating through the environment. Each of these factors
was investigated in turn. To provide a fi rst approximation of the
increase due to the discretization of the environment, we simu-
lated the robot’s behavior using the same navigational algorithm
as described in the Section “Materials and Methods”. The simula-
tion used the geometrical transition matrix, which takes only the
topography of states into account (see Materials and Methods), to
navigate from the same start positions to the same goal states as
the real robot. The red line in Figure 4 shows a sample path of the
simulated robot. This simulation resulted in a median increase of
19% (±9%) compared to the direct path. Thus, the introduction
of discrete states did not greatly contribute to the lengthening of
the robot’s path to a goal.

Additionally we investigated the infl uence of the size of the states
on the navigational performance. Because of the spatial extension
of states, the robot chose an action in order to navigate to the goal
at from different positions within a state. Thus, the robot was able
to chose at an action in order to move to the goal at different posi-
tions within a state at different positions than the robot experienced
the transition probabilities. Do these different positions have an
impact on the robot’s navigational performance? In order to solve
this question we let the simulated robot start from different position
within a state and let him navigate to a certain goal by utilizing the
real robot’s experience matrix and refl ex matrix. This procedure was
done for 12 start states to each of 12 goal states within the arena.

We hereby distributed the start position equally over the spatial
extension of the state and measure the length of the path from the
start position to one of the goal states. This length of the path was
normalized by the length of the path from the center of the Gaussian
activity function of the corresponding state (place fi eld) to the
goal state. In case the simulated robot had not to navigate around
the corner, the mean ratio of the traveled path to the one from the
center of a Gaussian activity was 1.016 (±0.123), while for cases
the robot had to navigate around the corner a mean normalized
path of 1.138 (±0.137) was measured. Thus only a small variation
of the navigational performance caused by the spatial extension
of states was obtained. In case the robot has to navigate around
the corner, the spatial extension of states has a higher impact of
the navigational performance. Further, as described in the Section
“Materials and Methods”, the robot only chose an action at posi-
tions within a state, which are associated with the fi rst occurrence
of a negative activity gradient on the robot’s path. This region of
possible positions was defi ned by analyzing the positions the real
robot chose an action. By distributing the start position in each of
the 12 start states equally in this regions of possible positions we
evaluated the navigational performance of the simulated robot to
each of 12 goal states. The mean ratio of the robots path to the one
from the center of the Gaussian activity was 1.022 (±0.065) with
the robot navigating around the corner, while without a corner a
mean normalized path was 1.017 (±0.055). In case the robot has
to navigate around the corner, the state’s spatial extension has a
higher impact on the navigational performance. In both cases of
navigation, the impact on the navigational performance is small.
In summary, the spatial extension of states has only a small impact
on the navigational performance.

Next we investigated the contribution of the robot’s learned
environmental properties. To do so, we again used the simulated
robot with the same start-target combinations, but this time used
the robot’s learned transition matrix and refl ex factors to perform
the task. Figure 4 shows an example of such a simulated path (green
line). The median increase in path length was 37% (±23%). As 19%
of the path increase is caused by discrete states, approximately 18%
is due to differences between the geometrical properties of the
environment and those properties learned by the robot. Thus, the
difference between the geometric and learned transition matrices
and refl exes explains a further quarter of the lengthening of the path
of the real robot while navigating to a goal. Again, this is a small
contribution to the overall increase of the path length.

Summary
How can we interpret the robot’s navigational behavior?
Approximately a quarter of the increase of the robot’s path to a goal
was due to the representation of the environment by discrete states
of fi nite size. Another quarter of the lengthening was explained by
the differences between the geometrical properties of the environ-
ment and those learned by the robot. We also analyzed the effect of
obstacle avoidance on the robot’s performance. The agent engaged
its obstacle avoidance behavior in 60% of the trials, independent
of the particular combination of start and goal states. Analyzing
only the trials in which the agent did not engage obstacle avoid-
ance, we obtained a median path length of 1.36 (±0.23), which was
similar to the length measured in simulation with the transition

FIGURE 4 | Navigational behavior of the robot was investigated by

measuring the length of the path to different goals. The direct path,
defi ned as the shortest traversable path from the start point to the goal state
(shown as the gray line in the upper part), was used to normalize the length of
the robot’s path (yellow line) to the goal. The red line corresponds to the length
of a path of a simulated robot by taking the topographical distribution of states
(geometric transition matrix) into account. The bars represent the median
length between different starting and goal states and their standard deviation.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 7

Weiller et al. Refl exive and action-based affordances

matrix learned by the real-world robot. This was due to operational
 differences – particularly in obstacle avoidance behavior – between
the robot and the simulation (see Materials and Methods). Thus
the median path length given by the robot’s learned transitions
represented an approximation of the contribution of obstacle-free
navigation. Consequently, the largest share of the lengthening of the
robot’s path compared to the direct path was due to the obstacle
avoidance behavior, which was usually triggered when the robot
moved through the narrow arms of the maze. In all confi gurations
of goal states and start positions, the robot was able to fi nd its goal
in a reasonably short amount of time, with the main increase in
path length arising from obstacle avoidance behavior.

ANALYSIS OF THE CENTRAL COMPONENT
The robot’s performance in this navigation task was a direct result of
the underlying decision-making process. This process was based on
the learned transition and refl ex factors, which represent the learned
environmental properties. Here we investigated the characteristics
of the robot’s learned transitions by looking at: (i) the differences
between the transitions of different actions on a state, (ii) the infl u-
ence of the used topographical distribution of states on the learned
transitions of, (iii) the number of different states reachable by the
different actions, (iv) the predictability of the state reachable by
a single action execution, and (v) the effect of the robot’s limited
learning time on the learned transition probabilities. For the most
part, we analyzed the characteristics of the transition matrices by
comparison to the simulation based on the geometrical transition

matrix (see Materials and Methods), which only took the used
topographical distribution of states into account. This comparison
allowed us to investigate the extent to which the topographical
distribution of states gave rise to the investigated characteristics
of the transition matrix.

Properties of learned transition probabilities
Here we analyzed the similarity between the transitions of dif-
ferent actions, defi ned as the redundancy of the robot’s possible
actions on a state, by comparing the transition probabilities asso-
ciated with these actions. For this purpose we computed correla-
tion coeffi cients (see Materials and Methods and Figures 5A,D)
between the transition probabilities of the different actions on each
state. Higher correlation coeffi cients (>0.5) were more frequently
observed in the experienced transition matrix (44%) than in the
geometrical case (25%), (Figure 5A). Thus, the robot’s real-world
action execution resulted in more similar outcomes and a higher
redundancy of the actions, as compared to the geometrical case.
Most (93%) of the highly correlated actions in the experienced case
were obtained for states at the boundaries of the environment, and
so were primarily due to the obstacle avoidance behavior elicited
by wall contact. Overall, the robot’s action execution resulted in
more similar transitions compared to the transitions based only
on the topographical distribution of states.

Next we investigated the infl uence of the topographical distribu-
tion of states on the robot’s learned state transitions. Because the
topographical properties of the states we used are fully represented

FIGURE 5 | (A) Occurrence of correlation coeffi cients of the different actions. In
order to do so we correlated the transition probabilities to the neighboring states
of the actions as shown in the example. (B) The occurrence of the action’s
highest transition probability, defi ned as the actions predictability. (C) The actions

connectivity, defi ned by the number of non-zero transition probabilities for each
action and state. (D) An exemplary calculation of the correlation coeffi cients (in
A), actions predictability (in B) and the number of non-zero transition probabilities
(in C), based on the transition probabilities of 2 possible actions.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 8

Weiller et al. Refl exive and action-based affordances

by the geometrical transition matrix (see Materials and Methods),
we took each state and action and calculated the correlation coef-
fi cient between the transition probabilities stored in the geometrical
matrix and those stored in the robot’s experienced matrix. Across
all actions and states, a mean correlation coeffi cient of 0.56 (±0.52)
was obtained. Although these correlation coeffi cients were low, they
should be considered as a conservative estimate of the similarity
of action outcomes. This is because the calculation of these coef-
fi cients was based only on the transition probabilities to directly
neighboring states. However, the transition probabilities to more
distant states were mostly zero for all actions, and if these transition
probabilities were also included in the correlation calculation, the
similarity of different action outcomes would increase. In summary,
while the different actions executed by the robot resulted in similar
transitions more often than expected when only the topographical
properties of the states were taken into account, the topographi-
cal state distribution nevertheless had an infl uence on the robot’s
learned transitions.

How many different states can possibly be reached by means of a
single action? To answer this question we examined the connectiv-
ity of the actions, by counting the number of non-zero transition
probabilities. Figure 5C shows the occurrence of this connectivity
in the geometric and experienced transition matrices. The experi-
enced transition matrix was characterized by a higher connectivity,
with more than half (51%) of all actions showing a connectivity
larger than four in the experienced case compared to less than a
fi fth (19%) in the geometric case. In the experienced case the mean
connectivity was higher (3.60) than in the geometrical case (2.75).
The higher connectivity in the experienced case was due to the
obstacle avoidance behavior – in 79% of the experienced actions
which led to more than four connected states, the robot had to use
the obstacle avoidance behavior at least once. More states can be
reached by executing a single action in the experienced case.

We then analyzed the predictability of action outcomes.
Predictability defi nes the ability to predict the state that will be reached
by a given action execution, and is thus useful for action planning to
perceive a certain sensory outcome. In order to evaluate the actions’
predictability we introduced predictability values (see Materials and
Methods) proportional to the maximum transition probability of an
action. Although there are alternative ways of measuring predictability
(e.g. as the sparseness of transition probabilities), these are similar to
the measure used here, because of the normalization of transition
probabilities to one. Figure 5B shows the occurrence of predictability
values for the experienced and geometric transition matrices. Lower
predictability values (<0.3) of the actions occurred more often in the
experienced case (37%) compared to the geometric one (13%). Thus
in general, the robot’s actions were equally likely to reach a number of
spatially adjacent states. This was due to the actions’ transition prob-
abilities being characterized by a non-sparse probability distribution.
Furthermore we investigated the infl uence of the obstacle avoidance
behavior on the action predictability of the experienced transition
matrix. Most (84%) of the low predictability values were due to actions
for which the robot had to use its obstacle avoidance at least once.
In other words, obstacle avoidance reduced the predictability of the
action result. In most cases we obtained a lower predictability of the
robot’s resultant state than we would have expected from the topo-
graphical distribution of place fi elds.

Impact of refl exive behavior on transition probabilities
Next we investigated the infl uence of the obstacle avoidance behav-
ior on the robot’s learned transitions. The above investigations of
the robot’s transitions revealed a reduction in the predictability of
the robot’s actions, and an increase in the similarity between the
robot’s action outcomes when compared to the transitions based
on the topographical state distribution. These effects on the transi-
tions were due to the robot’s engagement of the refl exive obstacle
avoidance during these transitions. In other words, the obstacle
avoidance behavior acted upon the robot’s experience-gathering
behavior, thwarting the actions the robot intended to do. Here we
investigated the characteristics of the transitions infl uenced by the
refl exive behavior. The obstacle avoidance behavior was guided
by proximity sensors, whose activation was highly dependent on
the angle of the sensors to an obstacle. These angles can change
between different trials, resulting in different sensor activations
and thus in different movements of the robot. Thus the outcome
of the actions combined with obstacle avoidance had a low repro-
ducibility. A direct result of this low reproducibility was that the
transition probability associated with this action would be low,
given a high number of experiences. In contrast, a low number
of experiences could mean that the transition probabilities of
these interrupted actions was high, and would thus have a high
infl uence on the navigational behavior. In order to analyze these
effects on the transition probabilities we introduced the notion of
a bad connection, defi ned as a low correlation between the robot’s
intended actions and the transition that was learned, namely the
action’s outcome. In order to quantify this relation we calculated
the line between the points within a certain state at which the robot
chose an action to the point within another state, at which the
subsequent action was chosen. This line was compared with the
direction of the action the robot intended to take. The executed
action was defi ned as a bad connection if the angle between the
line representing the robot’s traversed path and the direction of the
intended action exceeded 135°. We chose this threshold because the
actions with this difference in orientation had a mean correlation
of 0.19 (±0.51). Figure 6A shows the mean transition probabilities
of these bad connections in the experienced transition matrix as a
function of the overall number of gathered experiences. At a low
amount (some hundred) of exploration steps, the average transition
probability for these transitions was 0.69. With increasing explora-
tion time, these average probabilities decayed to 0.16. The analyzed
connections amounted to 29% of all connections associated with
obstacle avoidance behavior. Thus, the infl uence on the transition
matrix of obstacle avoidance resulting in a low correlation between
intended and executed action reduced with an increasing number
of experiences.

Impact of the limited experiences
Were the differences between the geometrical properties and those
learned by the robot due to the robot’s limited experience time? As
outlined in the Section “Materials and Methods”, the geometrical
transition matrix was generated by simulating the execution of each
action on each position within a state. In order for the real-world
robot to learn its environment to this extent simply by executing
actions at random, it would have to experience the environment
for an infi nite time. In contrast, the robot’s experienced transition

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 9

Weiller et al. Refl exive and action-based affordances

matrix is based on executing each action on each state 11.54 times
on average (executing actions on 1.8% over all possible positions
within a state; 97% overall action execution was executed only once
on a position). Here we investigated the infl uence of this limited
experience on the robot’s reduction in action predictability and
the increase in the similarity between the outcomes of different
executed actions. To do so, we compared the action predictability
and action similarity of generated geometrical transition matrices
to the geometrical transition matrix. The generated geometrical
transition matrices were calculated in the same way as the geometri-
cal transition matrix; however, the number of actions executed
on each state was restricted to that of the real-world robot. We
simulated 300 generated transition matrices. In order to investi-
gate the infl uence of fi nite experience on action predictability, we
calculated the action predictability values for each action of the
300 generated transition matrices. We correlated each of these 300
distributions of predictability values with that of the geometrical
transition matrix and found a mean correlation of 0.89 (±0.02).
In contrast, we obtained a lower similarity (r = 0.48) between the
distribution of the predictability values of the robot’s experienced
transition matrix and the geometrical transition matrix. The same
approach was used to correlate the distributions of action similar-
ity values of the generated transition matrices with that of the
geometric transition matrix, yielding a high mean correlation
of 0.93 (±0.02). In contrast, a low correlation coeffi cient (0.42)
was found between the experienced and geometrical transition
matrices. Thus, restricting the amount of experience to that of the
robot had a minor effect on the generated geometric transition
matrices. Finally, to directly compare the geometrical and generated
transition matrices we correlated the transition probabilities for
each action and state of the generated matrices with the geometric
one. Averaging these correlation coeffi cients for each generated
transition matrix yielded a distribution with a mean value of 0.86
(±0.01). A lower mean correlation coeffi cient (0.56) was obtained

for the same correlation between the robot’s experienced and the
geometric transition matrix. The difference between the transition
matrix constructed from the robot’s experience and the geometrical
transition matrix was thus dominated by the behavior of the robot
and was not due to limited knowledge of its world.

Summary
Here we investigated the properties of the transition probabilities
learned by the robot. In comparison to the transition probabili-
ties given by the topographical distribution of states, we obtained
in general a lower predictability of the outcome of the robot’s
actions, as well as a higher similarity between the outcomes of
different actions. These effects were mainly due to the real-world
robot’s obstacle avoidance. However, despite the differences
observed between the geometrical and experienced transition
matrix, an infl uence of the topography of states on the robot’s
experiences was nonetheless observed. These properties of the
transitions were due to the robot’s behavior and not to the time-
limited experience of the environment. Another infl uence of the
obstacle avoidance behavior on the learned properties of the envi-
ronment was given by the low correlation between the intended
action and the executed action. This infl uence decreases as the
robot increases its experience of the environment. Neglecting
the refl ex factors (obstacle avoidance behavior) occurring during
the decision-making process, which navigational behavior would
result by taking only the learned transitions into account? We
would expect that it was not important for the robot to choose
a precise action when moving towards a goal, due to the low
action predictability as well as the high similarity between the
transition probabilities of different actions. Nevertheless, the
transition matrix was infl uenced by the geometrical distribution
of the place fi elds, while the obstacle avoidance behavior caused
a similarity between the actions and a low predictability of an
action’s resultant state.

FIGURE 6 | (A) Mean contribution to the transition probabilities of the bad decisions. Bad decision is defi ned as a low correlation between actions outcome and the
direction of the intended action. (B) Occurrence of normalized activity in the decision-making process. (C) Ratio of executed actions which resulted in
refl exive behavior.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 10

Weiller et al. Refl exive and action-based affordances

DECISION-MAKING PROCESS
The decision-making process involved the selection of actions
in order to move to a goal, and integrates the centrally learned
 properties – namely the transition probabilities – and the distal
learned properties – namely the refl ex factors. Here we investigated
the impact of distal processing on the agent’s decision- making proc-
ess: fi rst in terms of the frequency of obstacle avoidance behavior
engaged in by the robot; and second by investigating the infl uence
of the refl ex values on the decision-making process. The frequency
of obstacle avoidance behavior was quantifi ed as the ratio of transi-
tions combined with refl exive events to the total number of tran-
sitions. Figure 6C shows the percentages of occurrence of these
refl ex values for the geometric and experienced case. Higher values
of these ratios occurred more often in the experienced case, with
a mean value of 0.42, than in the geometrical case, refl ected by a
mean of 0.17. This difference in means was caused by operational
differences between the robot and the simulation, such as the spatial
extension of the robot (see Materials and Methods), which meant
that the robot-based agent used the obstacle avoidance behavior
more frequently.

Next we investigated the impact of the refl ex factors on the
 decision-making process by analyzing the normalized activity. After
fl ooding (see Materials and Methods), the normalized activity of a
state is defi ned as the ratio of the maximum action activation to the
sum of all actions’ activations. During the decision- making process,
the agent selected the action most highly activated at the robot’s cur-
rent location, which meant that a low normalized activity describes
a situation where all actions would result in a similar navigational
performance. In contrast, high values defi ne a decision-making
process in which the agent chose a precise action in order to move
to the goal. In general, this normalized activity was higher for the
experienced than for the geometric transition matrix (Figure 6B).
This implies that the robot chose a precise action in order to move to
a goal, and underwent a stable decision-making process. However,
as discussed above, we actually expected a lower normalized activity
considering only the transition probabilities. In contrast the lower
refl ex factors in the experienced case were due to an increase of
normalized activities for the experienced transition matrix. Thus
taking the refl exes into account reduced the effects of the obstacle
avoidance behavior on the decision-making process, and resulted
in a more precise action selection.

How did the different components of the algorithm infl u-
ence the behavior of the robot? Taking only the central processes,
namely the state transitions, for the decision-making into account,
different action executions would result in similar navigational
performances; although navigation in the narrow arms required
precise actions in order to reduce wall collisions and thus reduced
the path length to the goal. Integrating the distal learned envi-
ronmental properties, namely refl exes, into the decision-making
process, the robot now executed one precise action to navigate
towards the goal. Thus as we expected, taking the distal process-
ing into account reduces the effects of refl exive behavior and
allowed the robot to successfully navigate in the environment.
As mentioned above, another infl uence of the refl exive behavior
on the transition matrix was a low correlation between intended
and executed actions. This infl uence depended on the extent of
the robot’s experience in the environment. Taking the refl exes into

account reduced the number of experiences needed to neglect this
effect on the navigational behavior, as the probabilities combined
with obstacle avoidance behavior were reduced by the refl ex factor.
Thus the precise selection of an action in the decision-making
process and the reduction of the number of experiences needed
to navigate in the environment were due to the differentiation
between a distal processing represented by the refl ex values,
and the central processing represented by the transition prob-
abilities between the states, which were both integrated in the
decision-making process. Differentiating between refl exive and
central processing allowed the robot to successfully navigate in
the environment.

LEARNING BEHAVIOR
Next we analyzed the plasticity of the navigation system by examin-
ing the adaptation of the robot’s navigational behavior to changes
in the environment. In order to do so we inserted an obstacle into
the previously learned four-arm-maze environment, as shown
in Figure 7A. We implemented and compared two different
approaches to allow the robot to adapt to this change: batch and
online learning (see Materials and Methods).

Online learning
First we investigated the adaptation process with the help of online
learning by analyzing the robot’s path passing the added obstacle.
In each trial the robot navigated from one start state within one
of the three arms to a target site, as shown in Figure 7A. In order
to evaluate these trials we calculated the robot’s normalized path
in a certain area surrounding the wall shown in Figure 7A. Here
the normalized path was given by the robot’s path in a certain area
surrounding the wall, normalized by the direct path, which was the
shortest traversable path between the robot’s entry and exit point of
this area. The lengths of the robot’s paths are shown in Figure 7B as
a function of trial number. After a few trials (8) the path length of
the robot reached values comparable to the navigational perform-
ance reported earlier. After 20 trials the selection of actions during
decision-making on the different states is stabilized, and thus the
changed environmental properties are fully integrated. The vari-
ation of the path length in later trials is due to the different start
positions of the robot within the different arms (see Figure 7B).
Thus, online learning enabled the agent to quickly adapt to envi-
ronmental changes.

As already mentioned, the navigational behavior of the system was
based on two different environmental properties, stored as transition
probabilities and refl exes. In order to analyze their contributions to
the environmental adaptation, we compared the decision-making
process based on transition probabilities and refl exes to that uti-
lizing the transition probabilities alone. Thus we ran the fl ooding
algorithm (as described in the Section Materials and Methods) fi rst
using the transition matrix and refl exes, and second utilizing only
the transition matrix. In order to analyze the integration of the
changed environmental properties into the transition matrix, we
compared the action selection based only on the transition matrix
before learning and after all trials of online learning. As seen in
Figure 8A, we found no difference but on two states between the
best action of each state, selected only on the basis of the transition
matrix, before (blue arrows) and after online learning (red arrows).

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 11

Weiller et al. Refl exive and action-based affordances

Thus experience with the added obstacle was not fully integrated
into the transition probabilities. In contrast, the action selection
process based on both the transition matrix and the refl exes (yellow
arrows) did show integration of the new environmental features.
Thus, during online learning, the refl exes were responsible for the
integration of the new obstacle into the decision-making process.

We further investigated this integration of the changed envi-
ronmental properties into the refl exes rather than the transition
probabilities. The adaptation processes of the transition matrix
and refl exes were dependent on the amount of actions already
executed before the environment was changed (see Materials and
Methods). As shown previously, without taking the refl exes into
account, actions shared a similar activation value after the fl ood-
ing process. In order for the transition matrix to adapt to envi-
ronmental changes, the connectivity among neighboring states
must change. However, we know that connected states share a
similar activation due to the similarity and low predictability of
the respective action outcomes, which means that any change
in transition probability must be reasonably large in order to
allow another action to be selected during the decision-making
process. Before we added the obstacle to the four-arm-maze, the
robot had experienced its environment by executing each action
on each state 11.54 times on average. Thus, the robot would had
to experience the changed environment for a long time before
the change in transition probabilities could trigger an alternative
action selection during the decision-making process. In contrast,
the refl exive processing acted as a penalty on the action’s activa-
tion. Thus, the infl uence of the transition probabilities on the
decision-making process depended directly on the activation of
the neighboring states. In contrast to the infl uence of the refl ex
factors, which depended on the sum of the incoming activation
for each action and thus conveniently required fewer experiences

FIGURE 7 | (A) A new obstacle (construction side) is added in an already learned
environment. To test the adaptation process we evaluated the robots path
through the construction side to the target side starting from three different
start states, each located in one of the three different arms. (B) The adaptation
process was done with online learning. This type of learning corresponds to an
Exploration and Navigation stage at the same time, as shown in the lower part
of the fi gure. The pictures in the upper part show the robot’s path in an area
around the added obstacle, while the robot navigated to the target. The robot’s
path length in this area is plotted in the center of this fi gure. The different colors

correspond to the robot’s start position in the different arms as shown in (A). The
brown line corresponds to the best approximation of the path length of all runs
by an exponential combined with a constant. (C) The adaptation process using
batch learning. After some action executions done in one of the 22 states
surrounding the construction side the path of the robot from three different start
states to one target side was evaluated. The robots path is shown in the upper
part of the fi gure, for different number of experiences. In the lower part the best
decision in order to move to the goal is shown for each state for a different
number of experiences.

FIGURE 8 | The best decision in order to move to the target side. The
different colored arrows correspond to the different conditions. Before the
robot experiences the changed environment we executed the decision-
making process based only on the transition matrix without the refl ex factors
(Blue arrow). After the adaptation process (online learning: 45 runs/batch
learning: 2500 decisions see Figure 7) the decision process was calculated
also without refl ex factors based on the transition matrix (red arrow). The
yellow arrows correspond to the condition of the integrated changes of the
environment combined with the transition matrix and the refl exes.
(A) represents the online learning while (B) batch learning.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 12

Weiller et al. Refl exive and action-based affordances

to integrate any environmental changes. As soon as the refl exes
adapted to the changes in the environment, the action which led
to a refl exive behavior was no longer executed during the online
learning process. As a result, the adaptation process stopped. In
summary, during online learning it is the refl exive processing that
enabled a fast integration of the environmental changes.

Batch learning
Next we investigated the adaptation process involved in batch
learning and compared it to online learning. Each of the expe-
rience stages was specifi ed by the number of action execution
done on each of the 22 states surrounding the added obstacle.
In order to evaluate the robots navigational performance, the
robot navigated in each navigation stage two times from three
different start positions within one arm to the target site. The
average normalized path within a certain area around the added
obstacle, for each start position is shown in Figure 7C. After an
experience stage containing around 500 experiences, the path
length of the robot reached a length comparable to the robot’s
best navigational performance reported earlier. A slight increase
in the path length can be seen after 800 experiences. This was due
to some new learned features of the environment. As the obsta-
cle was located in the middle of a state, actions were executed
which results in a refl exive behavior on one side of the obsta-
cle and on the other side not. Thus in this case batch learning
could result in some instability in the decision-making process,
according to some confl icting experiences learned in the envi-
ronment. After 1500 randomly executed actions the navigational
performance did not change much anymore and in general the
best actions in order move to the target did not change anymore.
Thus after a short amount of time the changed environmental
features were integrated in the navigational performance by batch
learning. Here, the robot needed more time to experience the
environment compared to online learning. This was due to the
difference types of learning, as online learning integrated only
the environmental features in order to move to the goal while
batch learning was latent learning and thus could integrate any
changed features. However after a short amount of time online
and batch learning integrated the environmental changes in their
navigational behavior.

Also here we analyzed the contribution of the transition prob-
abilities and the refl ex factors to the navigational adaptation. As
done for online learning we analyzed the decision-making proc-
ess by comparison of the decision-making process based on the
transition matrix and refl exes with the one based on only the
transition matrix. We concluded from Figure 8B that also the
transition probabilities adapted to the changes in the environ-
ment. Thus in contrast to online learning, during batch learning
the transition probabilities were able to integrate the changed
environmental features.

Differentiating between refl exive and central processing allowed
the robot to successfully navigate in the environment. This differ-
entiation also resulted in a fast integration of the environmental
changes and thus navigational adaptation to the changes in the
environment. The presented architecture was able to successfully
model navigational behavior and kept its plasticity in an already
learned environment.

DISCUSSION
We have introduced a cognitive model capable of generalizing over
a broad variety of behavioral domains, and applied it to a naviga-
tional task. Here, behavior was modeled as state transitions in the
state space spanned by place cells. Furthermore, the architecture
of this model differentiated between central processing and dis-
tal processing. Distal processing was defi ned by the state transi-
tions where the refl exive behavior of the sensory-driven obstacle
avoidance was triggered. Central processing acted on all learned
transitions between states. The refl exive behavior acted upon the
robot’s learned transitions, resulting in uniformly distributed and
less predictable action outcomes than expected from inspection
of the topographical distribution of place fi elds used. However, as
expected, the integration of the information gained by refl exive
and central processing in the decision-making process reduced the
impact of sensory-driven obstacle avoidance behavior on the navi-
gational performance. In addition the introduced model quickly
adapted to changes in the environment. Consequently, the robot
was able to successfully navigate in the real-world environment
after only a short amount of time.

Here we used eight different discrete actions in order to limit
the robot’s experience time. The outcome of these different actions
resulted in redundancies, which would increase by increasing the
number of actions. Consequently the robot would not gain more
information about the environment by more action possibilities.
In addition using discrete actions allows the cognitive architecture
to be easily expandable. Without a change of concepts it might be
applied to a robot equipped with a grabber to lift object. In order
to capture such a behavior the state space has to be expanded, such
that each sensory state is defi ned by a spatial state (place fi elds)
and the position of an object, either at the bottom or at the top
lifted by the grabber. This state space representation could not be
embedded in a 2D space, but necessitates a high-dimensional rep-
resentation. However, learning transition probabilities and refl ex
factors does not refer to the dimensionality of state space and the
same algorithms might be applied. The agent has to experience the
transition probabilities of this new sensory state space by execut-
ing its action, consisting of the movement of the grabber and the
eight different directions. In order to let the robot lift an object
the corresponding sensory state has to be activated an this activity
has to be back propagated as described in the Section Materials
and Methods. Thus the discretization of the action makes it easy
to apply the cognitive model to different behaviors and expand
the action repertoire with different unrelated actions, like lifting
objects. Admittedly, in a very high-dimensional state space new
problems due to very sparse data arise. This, however, is a general
problem of large non-hierarchical state spaces and beyond the scope
of the present work. In this cognitive architecture the limitation
on modeling different behaviors is given by the robot’s experience
time, which increases with the number of states and actions and
thus with the complexity of the behavior to be modeled.

The decision-making process involves two parameters, the
decay factor and a parameter in the refl ex value (see Decision
making). The decay factor is also known as discounting factor
(Sutton and Barto, 1998) and was introduced to reduce the number
of transitions needed to move to the goal. In case of a small decay
factor, the agent preferred to make fewer transitions to move to

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 13

Weiller et al. Refl exive and action-based affordances

Next we discuss the computational complexity involved in the
application of the cognitive architecture in a context other than
navigation. Under natural conditions simple cells in primary visual
cortex display sparse activity. Indeed, recent studies propose that
sensory representations of natural stimuli optimize specifi c statisti-
cal properties like sparseness (Olshausen and Field, 1996), temporal
coherence (Körding et al., 2004; Wyss et al., 2006) and predictability
(König and Krüger, 2006; Sprekeler et al., 2007). In line with this
research, we suggest that sensory states in general are optimal for
predicting the action induced state transitions (Weiller et al., sub-
mitted). This implies that the transition matrix of such highly pre-
dictable sensory representations contain either rather high or low
and few mid-level probabilities, i.e. they are sparse. This property,
as argued above, leads to benign scaling behavior. We like to point
out that this is not a worst-case analysis. To the contrary, it is based
on the assumption that the properties of sensory representations
are optimized with respect to the available behavioral repertoire.
Hence we hypothesize, that the presented cognitive architecture
has tractable computational complexity exactly for the relevant
scenarios, but not necessarily in general.

Different studies have modeled navigational behavior by using
place cells as a representation of the environment. These different
approaches can be characterized by the type of learning used:
Hebbian learning or reinforcement learning. The fi rst type of
learning exploits the fact that while moving in the environment,
more than one place cell is active at the rodent’s location, caused
by the overlapping place fi elds of the corresponding cells. This
allows the application of the biologically motivated principles
of LTP and LTD, resulting in a strengthening of the connec-
tions between place cells which were active in a certain time
interval. These cells and their connections between each other
represent a cognitive map (Blum and Abbott, 1996; Gerstner and
Abott, 1997; Gaussier et al., 2002). Other studies introduced a
cell type – goal cells – representing the goal of the navigational
task (Burgess et al., 1997; Trullier and Meyer, 2000). The connec-
tions between the current place and the goal cell encode the place
cell’s direction to the goal. The strength of connections between
these two cell types was also modulated by Hebbian learning. In
contrast to our model, the mentioned approaches rely on a global
orientation and a metric, measuring the direction and distance
to the goal from a given location within the environment. The
global orientation used by these studies is defi ned using the same
frame of reference over the whole environment. In contrast, we
wanted the robot to learn the topology of the environment and
thus did not introduce such global variables as orientation or a
metric. Furthermore, some of the mentioned studies (Burgess
et al., 1997; Gerstner and Abbott, 1997; Foster et al., 2000; Trullier
and Meyer, 2000; Strosslin et al., 2005) used population coding
to encode the position or direction to the goal. The population
vector approach is based on the assumption that place fi elds and
rodent’s orientations have separate topologies. Thus to decode
the robot’s position or orientation, the weighted average of
place cells or orientations has to be calculated. This incorpo-
rates knowledge of the topology in the decoding scheme and
impedes a generalization to other action repertoires. In contrast,
we defi ned the actions independently of each other so that the
action repertoire can easily be expanded, for example including

the goal and thus make also those transitions characterized by
low predictability, i.e. low reliability. In order to reduce unreli-
able transitions and thus the variation of pathlength to the goal
between different runs, we chose a decay value of 0.9, used in
most literature (Sutton and Barto, 1998). However a change of
the decay value between 0.6 and 0.95 did not affect the decision-
making process much. Further, to calculate the refl ex values we
weighted the ratio of transitions associated with a refl exive event
to all over transitions with a factor of 5/6. In case of a weighting
factor smaller than 5/6 the refl exive events would be less involved
in the decision-making process, such that the agent prevents less
transition associated with a refl exive event in order to move to
the goal. An increase of the weighting factor would result in an
opposite behavior, while at a value of one transitions would be
not considered in the decision-making process in case all transi-
tions are associated with an refl exive event, which are obtained
at the narrow arms. Thus, such a weighting factor would reduce
the agent’s navigability especially at the narrow arms. However,
a change of the weighting factors between 0.5 and 0.95 does not
have a huge impact on the decision-making process. Thus, in a
certain range the variation of the parameters have a small impact
on the agent’s navigational behavior.

Further we characterized the computational complexity of the
reverse fl ooding procedure. In each iteration the activity of each
state is propagated to all other states as defi ned by the transition
probabilities (see Action Execution). This implies a multiplication
of the transition matrix with the state vector, resulting in O(N2)
operations for N states. However, as the transition matrix is highly
sparse, the effective number non-zero transition probabilities is
much lower. Specifi cally, scaling behavior depends on the number
of connected states as a function of total number of states. In the
context of the present study, increasing the size of the arena at
constant spatial resolution lead to a linear scaling.

Complementary to the cost of each iteration, the number of ite-
rations was estimated. In the present implementation the number
of iterations is determined by a threshold criteria. When the sum
of absolute changes of state activation was smaller than 10−5 the
fl ooding procedure was terminated (Figure 2). Due to the sparse-
ness of the transition matrix the interaction of two states needs a
fi nite number of iterations, in the worst case limited by N, i.e. the
process is O(N). In the typical scenario, however, the reverse fl oo-
ding reaches the target state much faster on the scale of the length
of the fi nal trajectory. During this activity propagation the decay
factor affects the activity such that it exponentially decays with the
number of iterations (Figure 2). This punishes long trajectories,
and for practical purposes, the winning trajectory was always of
a length comparable to the one leading to the fastest interaction.
In the context of the present experiments this leads to a scaling
of O(N1/2). A strict upper bound is dependent on the topology of
the problem. Specifi cally, the sparser the transition matrix is, the
cheaper a single iteration can be computed, but the number of
necessary iterations increases. For a non-sparse transition matrix
a single iteration is more expensive, but the number of necessary
iterations is reduced. As an estimate of the computational expense
of the total computational costs of the algorithm presented above
we obtain a scaling of better than O(N3). This is not cheap, but
clearly computationally tractable.

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 14

Weiller et al. Refl exive and action-based affordances

the action of lifting an object. Cuperlier et al. (2007) suggested
a navigation algorithm based on learned transitions between
activity patterns of place cells. In this study only connections
between place cells with their neighbors were allowed, predefi n-
ing a topology to be learned. Further, in the mentioned work the
agent’s location within the environment is associated with an
activity pattern of place cells. In contrast we defi ned a state space
by applying a winner take all process on the place cells activity.
We can hypothesize that the transitions captured by Cuperlier
and colleagues are not as sparse as the one used here. This is due
to the possibility to establish transitions from place cells with
an activity value smaller than the maximum activity and larger
than zero. Other branches of studies (Arleo and Gerstner, 2000;
Foster et al., 2000; Arleo et al., 2004; Strosslin et al., 2005) used
reinforcement learning (Sutton and Barto, 1998) to perform a
navigational task. The concepts of Markov Decision Processes
and value iteration (Sutton and Barto, 1998) are commonali-
ties between reinforcement learning and our approach, while
in our model, value iteration was expanded by refl exes. A pure
reinforcement learning approach involves learning the properties
of the environment by using an explicit reinforcement signal,
given by a goal state; in the presented model these properties
are latently learned (Tolman, 1948), resulting in a global strategy
for navigation in this environment. In contrast to other studies,
here we have presented a cognitive model that is able to learn the
topology and properties of the environment in a latent manner
and can additionally be expanded to model other behaviors by
redefi ning the meaning of the actions and states.

In the introduced cognitive model we differentiated between
central and distal processing, the latter driven by the reactive
obstacle avoidance behavior. In order to control autonomous
robots, one approach tries to utilizes reactive controller, which
selects the next action as a function of the current sensor readings.
Millan’s (1996) approach tries to combine traditional reinforce-
ment learning with reactive learning procedure. Thus traditionally
reinforcement learning in a navigational paradigm evaluates the
quality of an action to reach a global goal. In this work a nega-
tive reinforcement is given when the robot facilitates its collision
sensors to do obstacle avoidance. While in the mentioned study,
environmental properties are learned for a particular goal, here
we learned the environmental properties in a latent way, such
that we are able navigate to different goals in the environment.
Similar to Millan our cognitive agent can easily adapt to changes
of the environment. In summary, by learning the environmental
properties in a latent way, the robot is able to navigate to different
goals in the environment, while differentiating between central
and distal components results in a fast adaptation to changes of
the environment.

The introduced cognitive model is based on a sensory rep-
resentation composed of discrete states. In this state space the
robot fi rst learned the sensory outcomes of its action’s execu-
tion, namely the state transition and the refl ex factors. Thus, the
robot learned the environmental properties in an unsupervised
fashion with respect to its actions. Based on these results, the
robot planned its action in order to move to the goal state. We
defi ned the states such that they are equivalent to the place fi elds
of place cells, providing a representation of body position within

the external space. Although the contribution of place cells to
the rodent’s navigational performance is not fully understood,
an involvement of these cells has been obtained (Morris et al.,
1982). These place cells can be understood as an optimally stable
sensory representation of the visual input to a robot moving in
an environment (Wyss et al., 2006). The unsupervised learning
resulted in a reorganization of the sensory space spanned by the
robot’s visual input, leading to a low-dimensional representation
of the sensory input with a spatial interpretation. In order to
determine the robot’s current state, we used a winner-takes-all
process over all place cells’ current activations. This process results
in a discrete division of the robot’s navigational space, spanned
by the robot’s possible positions. Since this navigational space
completely determines the navigational task, a discrete division
of this space corresponds to a discrete division of any sensory
space relevant for navigation (e.g. the sensory space spanned by
the proximity sensors, which measure distances to objects). In
this study we used predefi ned place cells and used a tracking
camera to determine the place cells activities. This complements
a previous study on unsupervised learning, using a frontal camera
of the robot, to form place cells at high levels of the sensory hier-
archy (Wyss et al., 2006). In ongoing work we combine these two
approaches to generate appropriate behavior in an autonomous
agent based on local sensory only. In addition, differentiating
between distal processes – namely the transitions infl uenced by
the sensory-driven behavior – and central processes – the state
transitions – is expected to result in a better performance of the
system. In order to extend our model to different behaviors, we
need only to divide the relevant sensory space into discrete states
and implement the actions that defi ne the behavior to be modeled.
By means of executing these actions, the sensory outcome in the
state space can be learned.

The number of actions infl uences the agent’s navigational per-
formance. Given a state space, increasing the number of action
possibilities, i.e. the behavioral repertoire, allows more appropri-
ate actions and is expected to lead to a small improvement of
navigational performance. Such an expansion of the behavioral
repertoire does not change the principles of the presented model,
but only increases the number of learned transitions, scaling linear
with the number of actions. However, increasing the action pos-
sibilities above a certain number would result in a high similarity
between the actions transition probabilities and thus does not
result in an increase of the navigational performance. Hence, the
discretization of the action space should be in a reasonable rela-
tion to noise level of actions, defi ned in this study by the robot’s
angular precision.

Also the number of discrete states infl uences the navigational
performance. Increasing the number of states would not only
increase the navigational performance but also the precision of
spatial navigation. An increase of the number of states allows the
agent to capture the navigational properties of the environment
more precisely in its transition probabilities. This would result in
a better navigational performance of the agent. Further, increas-
ing the number of states allows the agent to navigate to a more
precise position within the environment. But increasing the states
results raises the time needed to experience the environment, which
scales linearly with the number of states. Here, we chose a state

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 2 | 15

Weiller et al. Refl exive and action-based affordances

REFERENCES
Alexander, H. W., and Sporns, O. (2002).

An embodied model of learning, pla-
sticity and reward. Adapt. Behav. 10,
143–159.

Arleo, A., and Gerstner, W. (2000). Spatial
cognition and neuro-mimetic naviga-
tion: a model of hippocampal place cell
activity. Biol. Cybern. 83, 287–299.

Arleo, A., Smeraldi, F., and Gerstner, W.
(2004). Cognitive navigation based
on nonuniform gabor space sampling,
unsupervised growing networks, and
reinforcement learning. IEEE Trans.
Neural. Netw. 15, 639–652.

Bach, J. (2003). “The MicroPsi agent archi-
tecture,” in Proceedings of ICCM-5,
International Conference on Cognitive
Modeling. Bamberg, Germany.
15–20.

Bach, J., and Vuine, R. (2003). “Designing
agents with MicroPsi node nets,”
in Proceedings of KI 2003, (Berlin/
Heidelberg: Springer), 164–178.

Blum, K. I., and Abbott, L. F. (1996). A
model of spatial map formation in
the hippocampus of the rat. Neural.
Comput. 8, 85–93.

Burgess, N., Donnett, J. G., Jeffery, K. J.,
and O’Keefe, J. (1997). Robotic and
neuronal simulation of the hippo-
campus and rat navigation. Philos.
Trans. R. Soc. Lond., B, Biol. Sci. 29,
352, 1535–1543.

Cuperlier, N., Quoy, M., and Gaussier,
P. (2007). Neurobiological inspired
mobile robot navigation and plan-
ning. Front. Neurorobotics. 1, 24.
doi:10.3389/neuro.12.003.2007.

Edelman, G. M. (2007). Learning in and
from brain-based devices. Science 318,
1103–1105.

Flash, T., and Sejnowski, T. J. (2001).
Computational approaches to motor
control. Curr. Opin. Neurobiol. 11,
655–662.

Foster, D. J., Morris, R. G., and Dayan, P.
(2000). A model of hippocampally
dependent navigation, using the
temporal difference learning rule.
Hippocampus 10, 1–16.

Franzius, M., Sprekeler, H., and Wiskott, L.
(2007). Slowness leads to place, head-
direction, and spatial-view cells. PLoS
Comput. Biol. 3, e166. doi:10.1371/
journal.pcbi.0030166.

Gaussier, P., Revel, A., Banquet, J. P., and
Babeau, V. (2002). From view cells and
place cells to cognitive map learning:
processing stages of the hippocampal
system. Biol. Cybern. 86, 15–28.

Gerstner, W., and Abbott, L. F. (1997).
Learning navigational maps through
potentiation and modulation of
hippocampal place cells. J. Comput.
Neurosci. 4, 79–94.

Gibson, J. J. (1977). “The theory of
affordances,” in Perceiving, Acting,
and Knowing. Towards an Ecological
Psychology, eds R. Shaw and J.
Bransford (Hoboken, NJ: John Wiley
& Sons Inc.), 127–143.

Kaplan, F., and Oudeyer, P.-Y. (2007). In
search of the neural circuits of intrinsic
motivation. Front. Neurosci. 1, 225–236.
doi:10.3389/neuro.01.1.1.017.2007.

König, P., and Krüger, N. (2006). Symbols
as self-emergent entities in an optimi-
zation process of feature extraction
and predictions. Biol. Cybern. 94,
325–334.

Körding, K. P., Kayser, C., Einhäuser, W.,
and König, P. (2004). How are complex
cell properties adapted to the statistics
of natural stimuli? J. Neurophysiol. 91,
206–212.

Lungarella, M., Netta, G., Pfeiffer, R., and
Sandini, G. (2003). Developmental
robotics: a survey. Cogn. Sci. 14,
151–190.

McCallum, R. A. (1993). “Overcoming
incomplete perception with utile distin-
ction memory,” in Machine Learning:
Proceedings of the Tenth International
Conference, Amherst, MA, USA.

Millan, J. d. R. (1996). Rapid, safe, and
incremental learning of navigatio-
nal strategies. IEEE Trans. Syst. Man.
Cybern. 26, 408–420.

Moore, A. W. (1991). “Variable resolution
dynamic programming: efficiently
learning action maps in multivariate

representation, which is balanced between navigability and rep-
resentational parsimony, and thus restricted the agent’s time to
explore the environment.

We have introduced a cognitive architecture for the modeling
of animal-like behavior, and plan to use this model to obtain
further insights into the general principles of behavior, such as
action planning. The model is based on a discrete division of
sensory space into states, and here the state space was obtained
by randomly distributing place cells in the environment. The
topographical distribution of these states was shown to influ-
ence the transition probabilities, and thus to affect the robot’s

behavior. This raises the important question of how these states
should be organized to allow the robot to behave optimally. In
other words, how can we optimally reorganize the sensory space,
given only the sensory input and the robot’s action repertoire?
This corresponds to a reorganization of the somatosensory
space, which is recently highly discussed topic (Moore, 1991;
McCallum, 1993; Singh et al., 1995; Kaplan and Oudeyer, 2007;
Oudeyer et al., 2007). As our model can generalize over differ-
ent behavioral domains, we claim that it can be employed to
gain insights into different behavioral principles such as those
mentioned here.

real-valued state-spaces,” in Machine
Learning: Proceedings of the Eight
International Conference, Chicago,
IL, USA.

Morris, R. (1984). Developments of a
water-maze procedure for studying
spatial learning in the rat. J. Neurosci.
Methods 11, 47–60.

Morris, R. G., Garrud, P., Rawlins, J. N.,
and O’Keefe, J. (1982). Place naviga-
tion impaired in rats with hippocampal
lesions. Nature 297, 681–683.

O’Keefe, J., and Dostrovsky, J. (1971).
The hippocampus as a spatial map.
Preliminary evidence from unit acti-
vity in the freely-moving rat. Brain Res.
34, 171–175.

O’Keefe, J., and Nadel, L. (1978). The
Hippocampus as a Cognitive Map.
New York: Oxford University Press.

Olshausen, B. A., and Field, D. J. (1996).
Emergence of simple-cell receptive fi eld
properties by learning a sparse code for
natural images. Nature 381, 607–609.

Olton, D. S., and Samuelson, R. J. (1976).
Remembrance of places passed: Spatial
memory in rats. Exp. Psychol. Anim.
Behav. Process 2, 97–116.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V.
(2007). Intrinsic motivation systems
for autonomous mental develop-
ment. IEEE Trans. Evol. Comput. 11,
265–286.

Schaal, S., and Schweighofer, N. (2005).
Computational motor control in
humans and robots. Curr. Opin.
Neurobiol. 15, 675–682.

Singh, S. P., Jaakkola, T., and Jordan, M. I.
(1995). Reinforcement learning with
soft state aggregation. Nips 7.

Sprekeler, H., Michaelis, H., and Wiskott,
L. (2007). Slowness: an objective for
spike-time-dependent plasticity? PLoS
Comp Biol. 3, 112. doi: 10.1371/jour-
nal.pcbi.0030112.

Strosslin, T., Sheynikhovich, D.,
Chavarriaga, R., and Gerstner, W.
(2005). Robust self-localisation and
navigation based on hippocampal
place cells. Neural. Netw. 18,
1125–1140. [Epub 2005 Nov 2].

Sutton, R. S., and Barto, A. G. (1998).
Reinforcement Lear ning : An
Introduction. Cambridge, MA: MIT
Press.

Todorov, E. (2004). Optimality principles
in sensorimotor control. Nat. Neurosci.
7, 907–915.

Tolman, E. C. (1948). Cognitive maps
in rats and man. Psychol. Rev. 55,
189–208.

Trullier, O., and Meyer, J. A. (2000).
Animat navigation using a cognitive
graph. Biol. Cybern. 83, 271–285.

Wilson, R. A., and Keil, F. C. (1999). The
MIT Encyclopedia of the Cognitive
Sciences. Cambridge: MIT Press.

Wolpert, D. M., and Ghahramani, Z.
(2000). Conputational principles
of movement in neuroscience. Nat.
Neurosci. 2000, 1212–1217.

Wyss, R., König, P., and Verschure, P. F.
(2006). A model of the ventral visual
system based on temporal stability and
local memory. PLoS Biol. 4, e120. doi:
10.1371/josurnal.pbio.0040120.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial
or financial relationships that could
be construed as a potential conflict of
interest.

Received: 21 September 2009; paper pend-
ing published: 05 October 2009; accepted:
22 February 2010; published online: 12
May 2010.
Citation: Weiller D, Läer L, Engel AK
and König P (2010) Unsupervised
learning of reflexive and action-based
affordances to model adaptive naviga-
tional behavior. Front. Neurorobot. 4:2.
doi: 10.3389/fnbot.2010.00002
Copyright © 2010 Weiller, Läer, Engel and
König. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

