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Purpose: To develop and test an artificial intelligence (AI) model to aid in differentiating pediatric pseudo-
papilledema from true papilledema on fundus photographs.

Design: Multicenter retrospective study.
Subjects: A total of 851 fundus photographs from 235 children (age < 18 years) with pseudopapilledema and

true papilledema.
Methods: Four pediatric neuro-ophthalmologists at 4 different institutions contributed fundus photographs

of children with confirmed diagnoses of papilledema or pseudopapilledema. An AI model to classify fundus
photographs as papilledema or pseudopapilledema was developed using a DenseNet backbone and a tribranch
convolutional neural network. We performed 10-fold cross-validation and separately analyzed an external test set.
The AI model’s performance was compared with 2 masked human expert pediatric neuro-ophthalmologists, who
performed the same classification task.

Main Outcome Measures: Accuracy, sensitivity, and specificity of the AI model compared with human
experts.

Results: The area under receiver operating curve of the AI model was 0.77 for the cross-validation set and
0.81 for the external test set. The accuracy of the AI model was 70.0% for the cross-validation set and 73.9% for
the external test set. The sensitivity of the AI model was 73.4% for the cross-validation set and 90.4% for the
external test set. The AI model’s accuracy was significantly higher than human experts on the cross validation set
(P < 0.002), and the model’s sensitivity was significantly higher on the external test set (P ¼ 0.0002). The
specificity of the AI model and human experts was similar (56.4%e67.3%). Moreover, the AI model was signif-
icantly more sensitive at detecting mild papilledema than human experts, whereas AI and humans performed
similarly on photographs of moderate-to-severe papilledema. On review of the external test set, only 1 child (with
nearly resolved pseudotumor cerebri) had both eyes with papilledema incorrectly classified as
pseudopapilledema.

Conclusions: When classifying fundus photographs of pediatric papilledema and pseudopapilledema, our AI
model achieved > 90% sensitivity at detecting papilledema, superior to human experts. Due to the high sensitivity
and low false negative rate, AI may be useful to triage children with suspected papilledema requiring work-up to
evaluate for serious underlying neurologic conditions.
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Ophthalmologists are frequently called upon to "rule out
papilledema" or differentiate papilledema from pseudopa-
pilledema. In children, this task is particularly difficult
because optic disc drusen, the most common cause of
pseudopapilledema, are frequently buried and noncalcified
early in life.1,2 Distinguishing between papilledema and
pseudopapilledema is particularly important in children,
since the work-up for papilledema involves neuroimaging
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
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and lumbar puncture, both of which require sedation in
uncooperative patients (including most young children).
Misdiagnosing pseudopapilledema as papilledema may lead
to an unnecessary and invasive systemic work-up. However,
misdiagnosing papilledema as pseudopapilledema may
result in failure to identify and treat a serious neurologic
diagnosis such as a brain tumor or meningitis. Though
several investigators have published on imaging techniques
1https://doi.org/10.1016/j.xops.2024.100496
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to identify papilledema and pseudopapilledema in child-
ren,2e7 a recent literature review on this topic concluded that
no single ophthalmic imaging technique accurately differ-
entiates the 2 diagnostic entities.8 In some cases,
longitudinal follow-up may be required to clarify the
diagnosis.

Given the limitations of current ophthalmic imaging
techniques interpreted by humans, the Pediatric Optic Nerve
Investigator Group was formed to identify new methods of
differentiating pediatric papilledema from pseudopapille-
dema. The group’s first task was to determine whether
artificial intelligence (AI) techniques could be leveraged to
aid in clinical decision making. The Brain and Optic Nerve
Study with Artificial Intelligence (BONSAI) group has
previously shown that a deep learning model can achieve
high accuracy in classifying fundus photographs as papil-
ledema versus normal or nonpapilledema optic nerve ab-
normality.9 However, the BONSAI model primarily
included data from adults and the comparison group
included a heterogeneous set of diagnoses, including
normal optic nerves.

The purpose of the present study is to report the accuracy
of a deep learning model in classifying fundus photographs
as pediatric papilledema or pseudopapilledema. We trained,
validated, and externally tested a deep learning model using
fundus photographs submitted from 4 separate institutions.
For comparison, the same set of fundus photographs was
reviewed and classified by 2 masked expert pediatric neuro-
ophthalmologists.
Methods

We performed a retrospective multicenter review of fundus pho-
tographs of children with papilledema and pseudopapilledema
submitted by 4 pediatric neuro-ophthalmologists (M.Y.C., S.L.P.,
G.H., and S.B.). This study was approved by the institutional re-
view board at each separate institution and adhered to the tenets of
the Declaration of Helsinki and the United States Health Insurance
Portability and Accountability Act of 1996. Informed consent was
waived by the institutional review board for this retrospective
study. Children with papilledema and pseudopapilledema were
identified either through an electronic medical records search using
International Classification of Diseases (ICD) codes (papilledema:
ICD-9377.0, 348.0, ICD-10 H47.11, G93.2; pseudopapilledema:
ICD-9377.24, 377.21, ICD-10 H47.33, H47.32) or by searching an
institutional database of patients with these diagnoses. Charts were
reviewed by the submitting neuro-ophthalmologist to determine if
patients met inclusion criteria for the study: age < 18 years at the
time of fundus photograph acquisition, in addition to the following
diagnostic criteria: children with papilledema were required to have
elevated optic nerves on fundoscopy and/or OCT as well as neu-
roimaging evidence of intracranial pathology causing increased
intracranial pressure (such as a brain tumor), or a lumbar puncture
with opening pressure > 28 cm H2O. Children with pseudopa-
pilledema were required to have either normal neuroimaging (with
normal brain parenchyma, no signs of hydrocephalus, mass, or
structural lesion, and no meningeal enhancement) and lumbar
puncture with normal opening pressure (< 28 cm H2O), or lon-
gitudinal follow-up for � 6 months demonstrating no change in
optic nerve appearance. Longitudinal follow-up was required even
in cases where optic disc drusen were demonstrated on ophthalmic
imaging. We excluded cases with papilledema superimposed on
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pseudopapilledema. We also excluded patients with resolved
papilledema/gliosis and optic atrophy, as well as fundus photo-
graphs that were taken using wide-field fundus cameras and pho-
tographs deemed by the submitting pediatric neuro-
ophthalmologist to be too poor in quality for accurate
classification.

Data Collection

After identifying patients with clinical characteristics and fundus
photographs that met inclusion and exclusion criteria, the pediatric
neuro-ophthalmologists collected all fundus photographs meeting
criteria for the study and uploaded them to a Health Insurance
Portability and Accountability Act-compliant REDCap electronic
data capture tool hosted at the University of Southern California.10

We included photographs of both eyes over multiple visits if
available. Photographs from subsequent visits were only included
if active papilledema was seen on fundoscopy and/or OCT. As
noted above, fundus photographs of resolved papilledema,
gliosis, and optic atrophy were excluded. Additional data entered
into the REDCap database included study site, patient
demographics, clinical characteristics (diagnosis, cause of
papilledema or pseudopapilledema, neuroimaging results, and
lumbar puncture results), duration of follow-up, and dates and
number of visits with fundus photographs. Data were deidentified
and patients were assigned a subject identification number by
REDCap.

Masked Classification of Fundus Photographs by
Human Experts

Two pediatric neuro-ophthalmologists who did not contribute
fundus photographs for this study were recruited to serve as
masked experts (E.D.G. and R.G.). Fundus photographs were
randomized in order and renamed in a deidentified manner, so that
photographs from the same patient (different eye or visit) would
not be adjacent to one another in the list of photographs. The
masked experts independently classified each photograph as pap-
illedema or pseudopapilledema, without any rules provided to
guide their decision-making. The performance of masked experts
was compared with the AI model (see Statistical Analysis, below).

Consensus Grading of Papilledema Severity

In order to determine whether the accuracy of the AI model
depended on the severity of papilledema, the 4 submitting pediatric
neuro-ophthalmologists performed Frisen grading of the papil-
ledema photographs. The original Frisen grading paper was
reviewed prior to independent grading.11 The fundus photographs
that received identical scores on � 3 out of 4 grades were
considered to have reached consensus (the majority score was
used as the grade). The remaining fundus photographs were
reviewed during a group meeting with all 4 pediatric neuro-
ophthalmologists. After discussion, a consensus grade was
agreed upon for all photographs.

Development of AI Model

The algorithm used to differentiate between papilledema and
pseudopapilledema cases included 2 main componentsdan unsu-
pervised optic disc detector and a deep neural network for the
classification task. The disc detector takes a raw fundus image as
input, locates the optic disc through morphological operations, and
outputs a cropped image of the disc.12 The algorithm utilizes the
fact that the optic disc is one of the brightest elements in a
fundus image and applies intensity thresholding. To eliminate
false positives, a detected region is selected as a candidate optic
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disc only after evaluating its eccentricity and covered area. Since
this is an unsupervised approach, a small subset of images that
the detector failed (< 15%) were manually processed and cropped.

For the classification task, we utilized a DenseNet backbone
model, already pretrained on the ImageNet dataset for general
image classification and applied a multibranch training method.12

According to this approach, 3 different DenseNet instances were
created and trained on the same data, under different color
transformations of the cropped fundus. Specifically, we randomly
modified the contrast intensity of the red and the green channel
to create 2 additional input views for training. The additive
contrast ranged between 20% and 60% and was randomly
selected for each training sample at each step. These
transformations on the color channels of the fundus were
selected to unveil particular biomarkers, such as hemorrhages
and vessel congestion. We note that we did not apply any
transformation during the test phase. The 3 output feature vectors
were averaged and a fully connected layer was used to generate
the class predictions. We trained for a maximum of 50 epochs in
a 10-fold cross-validation regime among the available subjects,
from which we recorded, for all available images, the test proba-
bility of papilledema. Since this regime allowed for more than a
single prediction for each image we finally considered the average
output probabilities.

We then created an external test set using a random 20% sample
of the fundus photographs (selected by patient, such that there were
no patients with photographs in both the external test and training/
validation sets), matched to the original sample on proportion of
photographs with each diagnosis from each clinical site. The
remaining 80% of fundus photographs were used for training and
validation and the papilledema probability was calculated in each
of the photos in the previously unseen external test set.

Class Activation Maps

To visualize the key optic disc features that contributed to the
neural network’s performance, we utilized class activation maps
extracted from the model gradients. This involves taking an already
trained model and a test image, computing the model’s predictions,
and tracing the image gradients back to the input layer. This pro-
cess highlights the areas of the image whose parameters in the
input layer have the highest values and that the model prioritizes in
its prediction outcome.

Statistical Analysis

A receiver operating curve for the AI model was generated, and the
area under the receiver operating curve (AUC) was calculated. The
AI model and the human experts were compared with the gold
standard of clinical diagnosis by the submitting pediatric neuro-
ophthalmologist. The clinical diagnosis was based on history, ex-
amination, ancillary ophthalmic imaging tests ordered at the cli-
nician’s discretion (including ultrasonography, OCT,
autofluorescence, and fluorescein angiography), neuroimaging and
lumbar puncture results if performed, and longitudinal follow-up.
The accuracy, sensitivity, and specificity of the AI model varied
based on the papilledema probability cut-off value that was used to
classify photographs as pseudopapilledema or papilledema. In or-
der to maximize sensitivity while maintaining specificity similar to
human experts, a cut-off value of 0.45 was chosen. Using this
threshold, the accuracy, sensitivity, specificity, and positive and
negative predictive values of the overall model (both the cross-
validation and external test sets) were calculated. These metrics
were also used to evaluate limited models including (1) grade 1 to
2 papilledema plus all pseudopapilledema fundus photographs
(model for mild papilledema); (2) grade 3 to 5 papilledema plus all
pseudopapilledema fundus photographs (model for moderate-to-
severe papilledema); and (3) only the first set of fundus photo-
graphs per patient (model for initial presentation).

Masked expert fundus photograph classification was evaluated
by the same metrics. Sensitivity, specificity, and overall accuracy
were compared between each expert and the AI model using
McNemar’s tests. Positive and negative predictive values were
compared between AI and human experts using the Generalized
Score Statistic.13 STATA (version 15.1; Stata Corp) was used for
statistical analyses. The P value threshold for significance was
set to 0.000625 using a Bonferroni adjustment for 60
comparisons and familywise ⍺ of 0.05.
Results

We included 851 fundus photographs of 235 children (105
with papilledema and 130 with pseudopapilledema). The
demographics of included patients are shown in Table 1.
The causes of papilledema and pseudopapilledema are
provided in Table S1. The mean age at diagnosis was
older in patients with papilledema (11.7 vs. 10.2 years,
P ¼ 0.0028). Females predominated in both groups, with
no difference in sex distribution between groups. There
was no difference in race or ethnicity between groups.
Overall, the majority of patients were White, but Hispanic
patients represented a significant minority (31%). There
was a significant difference in distribution of patients by
site, with University of California, Los Angeles and
Stanford contributing relatively fewer patients with
papilledema than the other sites. The most common cause
of papilledema was pseudotumor cerebri syndrome (78%).
The most common cause of pseudopapilledema was optic
disc drusen (61%). Among patients with papilledema, 83
(79%) had lumbar puncture results available (in others,
lumbar puncture was contraindicated due to a space-
occupying lesion in the brain); the average opening pres-
sure was 40 � 10 cm H2O.

Of the 851 fundus photographs, 380 were from children
with papilledema and 471 were from children with pseudo-
papilledema. The distribution of fundus cameras used to
acquire these photographs by site is shown in Table S2.
Different fundus cameras were used at each site to acquire
mydriatic or nonmydriatic, nonwidefield fundus photographs.

The receiver operating characteristic curve and accuracy,
sensitivity, and specificity of the cross-validation model
with various papilledema probability cut-off values are
shown in Figure 1. The AUC on the cross-validation set was
0.77 (95% confidence interval 0.74e0.80). With a papil-
ledema probability cut-off value of 0.45 (ie, probabilities
� 0.45 were classified as papilledema, and probabilities
< 0.45 were classified as pseudopapilledema), the accuracy,
sensitivity, and specificity were 70.0%, 73.4%, and 67.3%,
respectively (Table 2). The AI model achieved significantly
higher accuracy and sensitivity than expert 2 (70.0% vs.
61.0% and 73.4% vs. 62.9%, P < 0.0001 and
P ¼ 0.0003, respectively) on the cross-validation set. Pos-
itive and negative predictive values were also significantly
higher than expert 2 (64.4% vs. 55.6% and 75.8% vs.
66.5%, respectively; P < 0.0001 for both comparisons).
Specificity was not significantly different from experts 1 and
3



Table 1. Demographics of 235 Children With Papilledema and
Pseudopapilledema Included in This Study

Papilledema
n [ 105

Pseudopapilledema
n [ 130 P Value

Age (mean � SD)
at diagnosis

11.7 � 4.0 years 10.2 � 3.5 0.0028

Sex (female/male) 71 (68%)/34 (32%) 175 (76%)/55 (24%) 0.10
Race 0.11
Asian 2 (2%) 8 (6%)
Black or African

American
5 (5%) 2 (1.5%)

Native Hawaiian
or Pacific
Islander

1 (1%) 0

White 66 (63%) 83 (64%)
Other 21 (20%) 17 (13%)
Decline 10 (10%) 20 (15%)

Ethnicity 0.07
Hispanic 37 (35%) 36 (28%)
Non-Hispanic 53 (50%) 60 (46%)
Decline 15 (14%) 34 (26%)

Site < 0.0001
Boston Children’s

Hospital
42 (40%) 30 (24%)

Children’s
Hospital Los
Angeles

38 (36%) 25 (20%)

Stanford
University

19 (18%) 38 (29%)

UCLA 6 (6%) 34 (27%)

SD ¼ standard deviation; UCLA ¼ University of California, Los Angeles.
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2 after correcting for multiple comparisons (67.3% vs.
60.3% and 59.4%, P ¼ 0.02 and P ¼ 0.008, respectively).

The performance of the AI model on the external test set
is also provided in Table 2. The model achieved higher
sensitivity, negative predictive value, and overall accuracy
in the external test set compared with the cross-validation
set. The AUC for the external test set was 0.81 (95% con-
fidence interval 0.74e0.87). The accuracy, sensitivity, and
specificity were 73.9%, 90.4%, and 56.4%, respectively. On
Figure 1. A, Receiver operating characteristic curve of the artificial intelligence
photographs on the cross-validation set. B, Accuracy, sensitivity, and specificity
of 0.45 was chosen for this study to maximize sensitivity while maintaining spe
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external testing, the AI model was significantly more sen-
sitive at detecting papilledema than both human experts
(90.4% vs. 68.7%, P ¼ 0.0002). Specificity did not signif-
icantly differ between the AI model and expert 1 or 2 on the
external test set (56.4% vs. 61.5% and 65.4%, P ¼ 0.49 and
P ¼ 0.27, respectively). Negative predictive value was
higher in the AI model compared with both experts on the
external test set (84.6% vs. 64.9% [expert 1] and 66.2%
[expert 2]), although this difference did not reach statistical
significance after correcting for multiple comparisons.

In the external test set, there were only 8 false negatives
(i.e., fundus photographs of papilledema incorrectly classi-
fied as pseudopapilledema). Of these, 6 had correct classi-
fication of the fellow eye as papilledema. The single patient
with papilledema whose fundus photographs of both eyes
were misclassified as pseudopapilledema was a 16-year-old
girl with pseudotumor cerebri syndrome and grade 1, nearly
resolved papilledema (Figure 2). Thus, the model did not
misclassify any patients with sight-threatening papilledema
or papilledema from a life-threatening etiology.

To determine the effect of papilledema grade, perfor-
mance metrics of the AI model and expert graders were
repeated in subgroup analyses of photos demonstrating mild
and moderate-to-severe papilledema. The distribution of
papilledema grades is shown in Table S3. Mild papilledema
(grade 1e2) was demonstrated in 204 (54%) photographs,
and moderate-to-severe papilledema (grade 3e5) was seen
in 176 (46%) photographs. Table 3 shows the accuracy,
sensitivity, specificity, and positive and negative predictive
values of the AI model and human experts in classifying
fundus photographs of mild and moderate-to-severe papil-
ledema. The sensitivity of the AI model in detecting mild
papilledema was 64.2% in the cross-validation set, higher
than both human experts (52.0% and 38.7%, P ¼ 0.006 and
P < 0.0001, respectively). The AI model’s sensitivity on the
external test set was 87.8%, significantly higher than both
human experts (53.1% and 49.0%, P ¼ 0.0001 and
P < 0.0001, respectively). Both positive and negative pre-
dictive value were higher in the AI model than both human
experts in the cross-validation set, and the AI model also
(AI) model to classify pediatric papilledema and pseudopapilledema fundus
of the AI model at varying papilledema probability cut-off values. A cut-off
cificity similar to human experts.



Table 2. AUC, Accuracy, Sensitivity, Specificity, and Positive and Negative Predictive Values of the AI Model, Expert Grader 1, and
Expert Grader 2 in Classifying Fundus Photographs of Pediatric Papilledema and Pseudopapilledema

AI Model Expert 1 (E1) Expert 2 (E2)
P Value
AI vs. E1

P Value
AI vs. E2

Cross-validation set
AUC 0.77 (0.74e0.80)
Accuracy 70.0 (66.8e73.1) 63.6 (60.2e66.8) 61.0 (57.6e64.3) 0.002 < 0.0001*
Sensitivity 73.4 (68.7e77.8) 67.6 (62.7e72.3) 62.9 (57.8e67.8) 0.04 0.0003*
Specificity 67.3 (62.9e71.5) 60.3 (55.7e64.7) 59.4 (54.9e63.9) 0.02 0.008
Positive predictive value 64.4 (59.7e68.9) 57.9 (53.1e62.5) 55.6 (50.7e60.3) 0.003 < 0.0001*
Negative predictive value 75.8 (71.4e79.9) 69.8 (65.1e74.2) 66.5 (61.8e71.0) 0.005 < 0.0001*

External test set
AUC 0.81 (0.74e0.87)
Accuracy 73.9 (66.4e80.5) 65.2 (57.3e72.5) 67.1 (59.2e74.3) 0.07 0.17
Sensitivity 90.4 (81.9e95.7) 68.7 (57.6e78.4) 68.7 (57.6e78.4) 0.0002* 0.0002*
Specificity 56.4 (44.7e67.6) 61.5 (49.8e72.3) 65.4 (53.8e75.8) 0.49 0.27
Positive predictive value 68.8 (59.2e77.3) 65.5 (55.1e75.4) 67.9 (56.8e77.6) 0.45 0.85
Negative predictive value 84.6 (71.9e93.1) 64.9 (52.9e75.6) 66.2 (54.6e76.6) 0.0008 0.002

AI ¼ artificial intelligence; AUC ¼ area under the receiver operator characteristic curve.
Results from cross-validation and external test sets are displayed separately. Percentages are shown with 95% confidence intervals in parenthesis. P values
comparing the AI model with expert graders are provided. Significant values after correcting for multiple comparisons (< 0.000625) are indicated by
asterisks.
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had significantly higher negative predictive value than both
experts on the external test set for mild papilledema (88%
vs. 67.6% and 67.1%, respectively; P ¼ 0.0002 for both
comparisons). The AI model and human experts had similar
specificity when classifying mild papilledema. Additionally,
the AI model and human experts performed similarly in
accuracy and sensitivity when classifying moderate-to-
severe papilledema. On the moderate-to-severe cases in
the external test set, specificity was lower in the AI model
compared with human experts (56.4% vs. 61.5% and
65.4%), but this difference did not reach statistical signifi-
cance (P ¼ 0.49 and P ¼ 0.27).

A final subanalysis was performed including only the
fundus photographs from each patient’s first ophthalmology
visit (Table S4). The AI model (on both cross-validation and
external test sets) had higher sensitivity, negative predictive
Figure 2. Fundus photographs of the single patient with papilledema with misc
testing set.
value, and accuracy on this subgroup analysis compared
with human experts, although differences did not reach
statistical significance with the Bonferroni correction.

Finally, class activation maps highlighting the regions of
each fundus photograph used by the AI model for classifi-
cation were generated. Figure 3 displays an example of a
fundus photograph of a child with pseudotumor cerebri
that was incorrectly classified as pseudopapilledema by
the AI model but correctly identified as papilledema by
both human experts. Peripapillary hemorrhages, a sign of
true papilledema, were cropped by the automated
algorithm for optic nerve detection (Fig 3B). The class
activation map (Fig 3C) indicates that the model focused
primarily on the temporal optic nerve to make the
incorrect classification decision, rather than the optic nerve
borders or peripapillary region.
lassification of both eyes by the artificial intelligence model in the external

5



Table 3. AUC, Accuracy, Sensitivity, Specificity, and Positive and Negative Predictive Values of the AI Model, Expert Grader 1, and
Expert Grader 2 in Classifying Fundus Photographs of Pediatric Papilledema and Pseudopapilledema, by Papilledema Grade

AI Model Expert 1 (E1) Expert 2 (E2)
P Value
AI vs. E1

P Value
AI vs. E2

Mild papilledema (Frisen grade 1e2)
Cross validation set

AUC 0.71 (0.67e0.74)
Accuracy 66.4 (62.7e69.9) 57.8 (54.0e61.5) 53.2 (49.3e57.0) 0.0006* < 0.0001*
Sensitivity 64.2 (57.2e70.8) 52.0 (44.9e59.0) 38.7 (32.0e45.8) 0.006 < 0.0001*
Specificity 67.3 (62.9e71.5) 60.3 (55.7e64.7) 59.4 (54.9e63.9) 0.02 0.008
Positive predictive value 46.0 (40.1e51.9) 36.2 (30.7e42.0) 29.3 (23.9e35.1) 0.0003* < 0.0001*
Negative predictive value 81.3 (77.1e85.0) 74.3 (69.7e78.7) 69.1 (64.4e73.6) 0.0005* < 0.0001*

External test set
AUC 0.78 (0.70e0.85)
Accuracy 68.5 (59.7e76.5) 58.3 (49.2e67.0) 59.1 (50.0e67.7) 0.07 0.13
Sensitivity 87.8 (75.2e95.4) 53.1 (38.3e67.5) 49.0 (34.4e63.7) 0.0001* < 0.0001*
Specificity 56.4 (44.7e67.6) 61.5 (49.8e72.3) 65.4 (53.8e75.8) 0.49 0.27
Positive predictive value 55.8 (44.1e67.2) 46.4 (33.0e60.3) 47.1 (32.9e61.5) 0.09 0.17
Negative predictive value 88.0 (75.7e95.5) 67.6 (55.5e78.2) 67.1 (55.4e77.5) 0.0002* 0.0002*

Moderate to severe papilledema (Frisen grade 3e5)
Cross validation set

AUC 0.84 (0.81e0.87)
Accuracy 71.9 (68.2e75.3) 67.2 (63.5e70.8) 68.0 (64.2e71.6) 0.05 0.10
Sensitivity 84.1 (77.8e89.2) 85.8 (79.7e90.6) 90.9 (85.7e94.7) 0.62 0.03
Specificity 67.3 (62.9e71.5) 60.3 (55.7e64.7) 59.4 (54.9e63.9) 0.02 0.008
Positive predictive value 49.0 (43.2e54.8) 44.7 (39.3e50.1) 45.6 (40.3e51.0) 0.06 0.12
Negative predictive value 91.9 (88.5e94.5) 91.9 (88.3e94.7) 94.6 (91.4e96.9) 0.99 0.09

External test set
AUC 0.84 (0.76e0.90)
Accuracy 67.8 (58.4e76.4) 70.5 (61.2e78.8) 75.0 (65.9e82.7) 0.63 0.23
Sensitivity 94.1 (80.3e99.3) 91.2 (76.3e98.1) 97.1 (84.7e99.9) 0.65 0.56
Specificity 56.4 (44.7e67.6) 61.5 (49.8e72.3) 65.4 (53.8e75.8) 0.49 0.27
Positive predictive value 48.5 (36.0e61.1) 50.8 (37.7e63.9) 55.0 (41.6e67.9) 0.63 0.23
Negative predictive value 95.7 (85.2e99.5) 94.1 (83.8e98.8) 98.1 (89.7e100) 0.73 0.49

AI ¼ artificial intelligence; AUC ¼ area under the receiver operator characteristic curve.
Results from cross-validation and external test sets are displayed separately. Percentages are shown with 95% confidence intervals in parenthesis. P values
comparing the AI model with expert graders are provided. Significant values after correcting for multiple comparisons (< 0.000625) are indicated by
asterisks.
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Discussion

In this study, we developed a deep learning AI model to
differentiate pediatric papilledema from pseudopapilledema
using transfer learning and a tribranch convolutional neural
network. On external testing, the overall model achieved an
AUC of 0.81. With the threshold optimized to maximize
sensitivity while maintaining specificity similar to human
experts, the accuracy, sensitivity, and specificity of the
model on external testing were 73.9%, 90.4%, and 56.4%,
respectively. The model was significantly more sensitive at
detecting papilledema than human experts, and the differ-
ence between AI and human experts was especially marked
in cases of mild (grade 1e2) papilledema. We chose to
optimize sensitivity given that the consequences of mis-
diagnosing papilledema (potentially missing a life-
threatening diagnosis such as a brain tumor) are more
serious than mistaking pseudopapilledema for papilledema
(resulting in unnecessary diagnostic work-up including
neuroimaging and/or lumbar puncture). Importantly, in the
external test set of 161 photographs, there were only 8
fundus photographs of papilledema that were misclassified.
6

When these misclassifications were evaluated on a patient
basis, there was only 1 patient with papilledema whose
fundus photographs from both eyes were misclassified. This
patient had nearly resolved papilledema from pseudotumor
cerebri. Thus, on external testing, our model did not
misclassify any patients with life- or vision-threatening
papilledema.

The accuracy of our human graders (61.0%e67.1%) is
similar to previous reports in the literature. In 2017, Chang
et al2 conducted a prospective study in which 3 masked
expert neuro-ophthalmologists graded fundus photographs
(and other imaging modalities) as representing pediatric
pseudopapilledema or papilledema. The accuracy of classi-
fying fundus photographs ranged from 63% to 71% for the 3
individual graders. The authors concluded that no imaging
modality interpreted in isolation, including fundus photo-
graphs, achieved sufficient accuracy for differentiating pe-
diatric papilledema from pseudopapilledema.

In contrast, the BONSAI group developed an AI model
that detected papilledema on fundus photographs with an
AUC of 0.96 and accuracy of 87.5% in the external testing
data set.9 Major differences between the current study and



Figure 3. Fundus photograph of a child with papilledema classified incorrectly by the artificial intelligence model and correctly by both human experts. The
full photograph (A) demonstrating peripapillary hemorrhages (arrow) was cropped close to the optic nerve (B) using the unsupervised algorithm for optic
nerve detection. The class activation map (C) highlights the areas of the photograph used by the model to incorrectly classify as pseudopapilledema. The
superimposed cropped photograph and class activation map are shown in (D).
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the BONSAI study include (1) the average age of patients in
the BONSAI study was 48.6 years, whereas our study
included only pediatric patients; and (2) the BONSAI
model was trained to differentiate photographs of
papilledema from normal optic nerves and optic nerves
with any other abnormality (including optic atrophy and
congenital optic disc anomalies). Pediatric
pseudopapilledema, as indicated by its name, is more
similar in appearance to papilledema than normal optic
nerves and other optic nerve pathologies. Therefore, the
classification task for our model was more difficult than
the BONSAI study and lower accuracies are expected.
The difference in task difficulty is reflected in the
difference in performance of human experts in our study
compared with the BONSAI study (accuracy 61.0%e
67.1% in our study vs. 89.0%e89.6% in the BONSAI
study).14 Other smaller studies reported similarly high
accuracy when using AI to detect papilledema on fundus
photographs,15e17 but these studies also used variable
comparison groups (including normal optic nerves) and did
not report patient ages.

The most challenging clinical scenario in evaluating
children with apparently swollen optic nerves is differenti-
ating mild papilledema from pseudopapilledema. The AI
model proved to be particularly helpful in this situation, as
the sensitivity for detecting mild papilledema was 87.8% on
external testing, clinically and statistically significantly su-
perior to human experts (53.1% and 49.0%, P � 0.0001).
Both the AI model and human experts achieved high
sensitivity in detecting moderate-to-severe papilledema
(94.1 vs. 91.2% and 97.1%, P ¼ 0.65 and P ¼ 0.56,
respectively).

Despite the AI model’s superiority to human experts, the
accuracy and sensitivity are still insufficient for its use as the
sole factor in deciding whether to pursue work-up for pap-
illedema. Because we used a deep neural network, the image
characteristics used by the model for classification are
largely unknown. However, 1 possible factor contributing to
reduced model accuracy may be postulated from the class
activation map in Figure 3A. This fundus photograph of
papilledema was incorrectly classified as
pseudopapilledema and the salient features for human
interpretation (peripapillary hemorrhage and obscuration of
blood vessels) were missed by the model due to
excessively tight cropping. These findings suggest that our
model may benefit from adjusting the cropping area after
the optic nerve is detected by the unsupervised algorithm.

Given that our model was particularly sensitive in
detecting mild papilledema, we propose that AI may be
useful in the future to triage children with apparently mildly
swollen optic nerves prior to evaluation by pediatric neuro-
ophthalmology. Those with a high probability of true pap-
illedema may be referred for immediate assessment in the
emergency department, whereas those with a lower proba-
bility may be considered for urgent outpatient evaluation.
Moderate-to-severe papilledema is likely to be accurately
detected by both humans and AI, although not all providers
may reach the level of expertise of our graders.

Our study highlights the need for additional research on
methods to improve our ability to differentiate pediatric
papilledema from pseudopapilledema. The next step for the
Pediatric Optic Nerve Investigator Group is to initiate a
multicenter, multimodality prospective study to evaluate
whether a combination of imaging techniques (ultrasonog-
raphy, autofluorescence, OCT, fundus photography, and
fluorescence angiography) and AI can accurately distinguish
between the 2 diagnoses.

The strengths of this study include a relatively diverse data
set with regards to ethnicity (31% Hispanic), acquisition of
fundus photographs using multiple types of mydriatic and
nonmydriatic fundus cameras and multiple different opera-
tors, and strict inclusion criteria minimizing the possibility of
mislabeling the "gold standard" clinical diagnosis. All pa-
tients with papilledema had abnormal neuroimaging or
elevated lumbar puncture opening pressure and all patients
with pseudopapilledema either had normal neuroimaging and
lumbar puncture opening pressure or no change in optic nerve
appearance over at least 6 months. While the latter criterion
may not absolutely exclude true papilledema, the average
follow-up time in the pseudopapilledema patients was 28
7
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months. After 2 years, some degree of atrophy or gliosis
would be expected if these patients had true papilledema.

The limitations of this study include the retrospective
nature and relatively small sample size. An automated
method of detecting the optic nerve region was developed
and used for this study, but this algorithm failed in a small
subset (< 15%) of photographs, which required manual
cropping. Refinement of the optic nerve detection algorithm
is needed prior to AI model deployment for clinical pur-
poses. Finally, the fundus photographs were submitted by
pediatric neuro-ophthalmologists at tertiary care academic
centers and may not be representative of the distribution and
underlying causes of pediatric papilledema and pseudopa-
pilledema in the general population. Specifically, the num-
ber of patients with papilledema was nearly equal to those
with pseudopapilledema in our cohort, whereas pseudopa-
pilledema is far more common (up to 10 times more
frequent) in the general pediatric population.18 Although the
positive predictive value of the AI model in our external test
set was 69%, the positive predictive value would be much
lower (18.5%) if the sensitivity and specificity of our
model was applied to the general population with an
estimated 10% prevalence of papilledema among children
referred for elevated optic nerves. The skewed distribution
is likely related to the recruitment sites, which were all
highly subspecialized pediatric neuro-ophthalmic clinics at
tertiary care referral centers, as well as a possible bias
8

toward taking fundus photographs in patients with papil-
ledema in order to monitor for changes. Future iterations of
this AI model will benefit from inclusion of images from
general pediatric ophthalmology clinics with a distribution
of papilledema and pseudopapilledema photographs that is
more representative of the general population.

In conclusion, we report that an AI model can detect
papilledema with higher accuracy and sensitivity than hu-
man experts and may be particularly helpful in differenti-
ating mild papilledema from pseudopapilledema. However,
further studies with additional data, ideally including a more
representative ratio of papilledema to pseudopapilledema
images, are needed. Larger datasets will improve the accu-
racy of the AI model beyond this proof-of-concept, pilot
study. A future multicenter, multimodality prospective study
incorporating AI may further advance our ability to differ-
entiate between pediatric papilledema and pseudopapille-
dema, reducing the likelihood of missing space-occupying
lesions in the brain or subjecting children to unnecessary
and invasive procedures.
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