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Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring
stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal
fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating
layout and responding deformation. To that end, an RBF neural network predictionmodel is proposed in this paper to assist design
and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected
by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

1. Introduction

Sheet metal part is widely used in aviation industry and
automotive industry due to its high strength and light weight
[1]. However, sheet metal part always tends to deform at
machining, assembly, andmeasuring stages during the whole
manufacturing process because of its properties of thin wall,
large size, and low rigidity. In order to constrain excessive
sheet metal part deformation, Cai et al. [2] put forward an
“𝑁-2-1” (𝑁 > 3) locating principle, which indicates that the
“𝑁-2-1” locating principle is more suitable for sheet metal
location than “3-2-1” principle. Apparently, in order to apply
“𝑁-2-1” locating principle to fixture locating layout design,
the key is to find the optimal number of locators as well as
their positions so as to reduce sheet metal part deformation.

To solve the problem above, many scholars and techni-
cians carried out a lot of research. Kashyap and Evries [3]
analyzed the clamping deformation of sheet metal part along
the normal direction at the locating point by finite element
method (FEM). After calculating the clamping deformation
by FEM, Kaya and Chen [4, 5] established an optimization
model to minimize the sheet metal part deformation and
obtained the optimal locators position by genetic algorithm

(GA). Similarly, after knowing the deformation by FEM, Liu
et al. [6] determined the initial number and positions of
the locators by adding locators on the datum plane at the
position with the maximum deformation repeatedly until
the deformation was reduced within the range of machining
accuracy. Then, the final positions were optimized along the
feed direction to reduce the maximum deformation of the
workpiece during the entire milling process. Prabhaharan et
al. [7] presented a fixture layout optimization method that
used GA and ant colony algorithm separately to decrease the
dimensional and form errors by FEM.

All the above papers calculated the concerned workpiece
deformation by means of FEM for deformation control
and, as a result, the evolutionary algorithm-based fixture
layout optimization procedure has to involve thousands of
computationally expensive finite element analysis. Therefore,
in order to save computational time and improve the opti-
mization efficiency, Hamedi [8] trained back propagation
neural network by only a few finite element analysis (FEA)
results to recognize the pattern between the clamping forces
and state of contact in the workpiece-fixture system and the
workpiecemaximumelastic deformation. Vasundara et al. [9]
applied back propagation neural network to approximate the
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relationship between the position of the fixturing elements
and the workpiece elastic deformation and compared the
performance of ANN and RSM. Selvakumar et al. [10] used
back propagation neural network to describe the function
relationship of the position of the locators and clamps
and the maximum workpiece deformation and combined
ANN with DOE to optimize the machining fixture layout.
Selvakumar et al. [11] integrated GAwith ANN to accomplish
the optimal machining fixture layout. Lu and Zhao [12] built
a back propagation neural network model to predict the
deformation of the sheet metal workpiece under different
fixture layouts and different fixture locator errors and applied
genetic algorithm to the established ANN model to find
the optimal position of the fourth fixture locator based
on the “𝑁-2-1” locating principle. Rex and Ravindran [13]
developed a back propagation neural network to predict
the elastic deformation of the workpiece-fixture system and
proposed an integrated approach for the optimal fixture
layout design. Qin et al. [14] constructed a back propagation
neural network model depicting the mapping relationship
between the multiple fixturing parameters and the clamping
deformation of workpiece and developed a unified approach
to multifixturing layout planning for thin-walled workpiece.

This paper, considering the low efficiency of the fixture
locating layout optimization method by FEM, proposes an
RBF neural network prediction model to assist design and
optimization of sheet metal fixture locating layout. First,
the method generates sample points by uniform sampling
method and constructs the sample data set with the help
of finite element analysis. Second, the nonlinear relationship
between the sheet metal fixture locating layout and respond-
ing deformation is described by RBF neural network; that
is, the prediction model is established. Finally, a case study
is presented to demonstrate the proposed method, and the
result shows that the method has preferable performance and
higher prediction accuracy.

2. Problem Description

2.1. “𝑁-2-1” Locating Principle for Sheet Metal Part. So as to
prevent excessive deformation and supply more reinforce-
ments for buckling prevention at machining, assembly, and
measuring stages during the whole manufacturing process,
sheet metal part is always under an overconstraint condition,
which is the so-called “𝑁-2-1” locating principle. The prin-
ciple considers that there are “𝑁” (𝑁 > 3) locating points
on the primary datum plane of sheet metal part and “2”
and “1” on the second and third datum plane, respectively.
Figure 1 shows a typical “𝑁-2-1” principle, where 6 locators
are required in order to support sheet metal on the primary
datum plane to avoid excessive deflection. Meanwhile, the
locator number “𝑁,” which is always more than three, is
determined by the dimensional specifications of sheet metal
part. Obviously, the key problem of locating layout designing
based on “𝑁-2-1” principle is how to determine the number
and position of “𝑁,” that is, the fixture locating layout.

2.2. Fixture Locating Layout Optimization Model. By using
“𝑁-2-1” locating principle, the deformation of the main
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Figure 1: “𝑁-2-1” locating principle of sheet metal part.

datum plane of sheet metal part along the normal direction
can be reduced. In order to evaluate the quality of different
fixture locating layout schemes, the normal deformation of
all finite element nodes of the part is chosen as the evaluation
function:

𝐹 (X) =
∑
𝑀

𝑖=1
𝑤
𝑖

2
(X)
𝑀
, (1)

where 𝐹(X) is the evaluation function for sheet metal defor-
mation; X is the vector composed of fixture locating layout
parameters; 𝑀 is the number of the finite element notes in
the sheet metal part; 𝑤

𝑖
is the normal deformation of the 𝑖th

node.
In this paper, the finite element model of sheet metal

fixture locating layout is established, so that the sheet metal
deformation can be analyzed to train the neural network.
And then, with the nonlinear mapping property of neural
network, the prediction model of sheet metal deformation,
meeting the need of general engineering, is suggested accord-
ing to the limited training samples. Let Ω

𝐴
be the nodes set

of finite element model of sheet metal part, and let fixture
locating layout vector X be the design variable. X should
satisfy the following constraints: (1) X must be within the
determined nodes set of finite element model of sheet metal
part; (2) in each fixture locating layout scheme, any two locat-
ing points cannot coincide. Thus, the optimization model for
sheet metal fixture locating layout scheme can be defined as
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where x
𝑗
is the position vector of the 𝑗th locating point;𝑁 is

the number of locating points.

3. Prediction Model for Sheet Metal Fixture
Locating Layout

From the analysis above, it can be seen that when fixture
locating layout parameters are given, we can use FEM to
calculate the sheetmetal deformation. However, as the fixture
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Figure 2: Network structure of BP neural network.

layout parameter varies, we cannot analyze the deformation
one by one, considering that it is a demanding job and
troublesome. To solve the problem, a prediction model for
sheet metal deformation is built in the paper based on
RBF neural network. What is more, by comparing with
the BP neural network prediction model, the feasibility and
superiority of RBF neural network prediction model are
proved sufficiently [15].

3.1. BP (Back Propagation) Neural Network. BP neural net-
work is a feed-forward neural network with three or more
layers, including input layer, hidden layer, and output layer.
It has 𝐼 input nodes, 𝐽 hidden nodes, and 𝐾 output nodes.
Since it is proved that any multivariable function can be
approximated to any desired degree of accuracy with a three-
layer BP neural network, a three-layer BP neural network can
be used in this paper to predict the sheet metal deformation
given a certain fixture locating layout. Figure 2 shows the
network structure of BP neural network.

3.2. RBF (Radial Basis Function) Neural Network. RBF neural
network is also a feed-forward neural network. It has 𝑛 input
layer nodes, ℎ hidden layer nodes, and𝑚 output layer nodes.
InRBFnetwork, x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ 𝑅𝑛 is the input vector,
and 𝜙
𝑖
(∗) is the activation function of hidden nodes, which is

a Gaussian function in this paper. The hidden nodes in RBF
network have local characteristics for input usually; that is,
the farther away the input is from the center of the hidden
node, the weaker effect the hidden node has on the input.
Therefore, each hidden node in the RBF network has a data
center 𝑐

𝑖
, which determines that, for a specific input, there will

be a specific number of neurons to be activated. 𝑏
0
, . . . , 𝑏

𝑚
are

the offsets of output nodes. 𝑦 = (𝑦
1
, . . . , 𝑦

𝑚
)
𝑇 is the network

output. Figure 3 shows the network structure of RBF neural
network.

3.3. The Experimental Design for Training Data Set. In this
section, the training sample points are selected by uniform
sampling method and the responding deformation is cal-
culated by FEM. Meanwhile, normalization of input data is
needed so that those relatively large inputs are still within the
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Figure 3: Network structure of RBF neural network.

Table 1: The physical properties of material.

Material properties Value
Mass density 2.8 × 103 kg/m3

Young’s modulus 7.12 × 104MPa
Poisson ratio 0.33

regionwhere the transfer function has a large gradient, which
can improve identification precision of the neural network.
The following formula can be used for normalization so that
each sample data falls in [0, 1]:

𝑥


𝑖
=
𝑥
𝑖
− 𝑥min
𝑥max − 𝑥min

, (3)

where 𝑥
𝑖
is the 𝑖th input sample and 𝑥min and 𝑥max are the

lower and upper sides of input sample, respectively.

4. The Flowchart of Building
the Prediction Model

After the sample data is selected and normalized, the training
and testing work for neural network can be conducted. Due
to the nonlinear mapping relationship between the input
and output, the initial weights play a great role in deciding
whether the training work can achieve a local minimum or
can converge.Therefore, evenly distributed decimal empirical
value should be chose as the initial weights. Then, the above
network is simulated and calculated with MATLAB, and the
nonlinear mapping between the input and output is realized.
The flowchart of the prediction model for sheet metal fixture
locating layout is depicted in Figure 4.

5. Case Study

In this section, the prediction model based on BP/RBF
neural network for sheet metal fixture locating layout design
and optimization is illustrated by an aluminum alloy sheet
metal part, and its fixture locating scheme given “𝑁 =
4” is analyzed. As shown in Figure 5, the sheet metal has
dimensions of 400× 400× 1mm3, and the physical properties
of material are listed in Table 1. The “𝑁 = 4” locating points
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Table 2: Training data set.

Number 1 2 3 4 5 6 7 8
Coordination (0, 0) (133, 0) (267, 0) (400, 0) (0, 133) (133, 133) (267, 133) (400, 133)
∑ 1.0529 1.0549 0.6538 0.8257 0.9948 0.9839 0.5418 0.6421
Number 9 10 11 12 13 14 15 16
Coordination (0, 267) (133, 267) (267, 267) (400, 267) (0, 400) (133, 400) (267, 400) (400, 400)
∑ 0.6518 0.5418 0.0201 0.0427 0.8273 0.6421 0.0427 0.0234

Table 3: Testing data set.

Number 1 2 3 4 5 6
Coordination (40, 360) (120, 280) (240, 400) (280, 120) (360, 40) (400, 240)
∑ 0.7898 0.6150 0.0771 0.6150 0.7898 0.0771

Start

Proper BP/RBF neural network construction

BP/RBF neural network training and testing

Accuracy requirements met?

BP/RBF neural network prediction model

Modify
neural
network

parameters

Yes

No

Training and testing samples extraction by FEM

Figure 4: The flowchart of the prediction model for sheet metal
fixture locating layout.
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Figure 5: The initial fixture locating layout of the aluminum alloy
sheet metal part.

on the primary datum plane are RP-1, RP-2, RP-3, and RP-4.
The “2” locating points on the second datum plane are RP-5
andRP-6. And the “1” locating point on the third datumplane
is RP-7. Set the coordinates of the fixed locating points RP-1,
RP-2, RP-3, RP-5, RP-6, and RP-7 as (100, 100), (100, 300),
(300, 100), (133, 0), (267, 0), and (0, 200). The locating point
to be optimized is RP-4 and its coordinate is (𝑥, 𝑦).

The training and testing data sets, as shown in Tables 2
and 3, are generated by uniform sampling method. And the
normal deformation of each finite element note of the sheet

Table 4: The relative errors of the prediction models.

Prediction models Relative error
BP neural network prediction model 11.66%
RBF neural network prediction model 6.91%

metal under its deadweight is calculated by the commercial
finite element software ABAQUS [16].

In summary, referring to the flowchart of the prediction
model for sheet metal fixture locating layout, the prediction
models based on BP neural network and RBF neural network
are established separately with the help of MATLAB neural
network toolbox [17]. In BP neural network structure, the
input layer has two neurons (𝐼 = 2), which, respectively,
represent the 𝑥 and 𝑦 coordinates of RP-4. The output layer
has one neuron (𝐾 = 1), that is, the evaluation function value
𝐹(X) for sheet metal deformation. According to the general
empirical formula 𝐽 = 2 ⋅ 𝐼 + 1 = 5, the hidden layer has five
neurons (𝐽 = 5).

Therefore, the response surface model describing the
mapping relation between the fixture locating layout scheme
and sheetmetal part deformation can be established byfixture
locating layout and the responding deformation evaluation
function. In other words, given a locating layout scheme, the
sheet metal part deformation can be obtained. The response
surfaces of the neural network prediction models are shown
in Figure 6. Finally, the output curves and the corresponding
relative errors are shown in Figure 7 and Table 4.

6. Conclusions

In order to assist the design and optimization of sheet
metal fixture locating layout, this paper establishes an RBF
neural network prediction model to describe the mapping
relationship between sheet metal fixture locating layout and
responding deformation. The major contributions of this
paper include the following:

(1) A prediction model based on RBF neural network for
sheet metal fixture locating layout design and opti-
mization is developed, and the prediction accuracy
meets the need of general engineering.
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Figure 6: The response surfaces of BP and RBF neural network prediction models.
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Figure 7: The output comparison between BP and RBF neural
network prediction models.

(2) Once the proposed prediction model is applied to
fixture locating layout optimization in the near future,
it can replace the finite element simulation for sheet
metal deformation. Thus, the calculation amount is
reduced and therefore the efficiency of fixture locating
layout design and optimization is improved.

(3) Compared with the BP neural network trained and
tested with the same sample sets, the RBF neural
network based predictionmodel is of higher precision
and more stable.
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