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Spatial patterns and climate drivers 
of malaria in three border areas 
of Brazil, Venezuela and Guyana, 
2016–2018
Kinley Wangdi1,7*, Erica Wetzler2,7, Horace Cox3, Paola Marchesini4, Leopoldo Villegas5,6 & 
Sara Canavati2

In 2020, 77% of malaria cases in the Americas were concentrated in Venezuela, Brazil, and Colombia. 
These countries are characterized by a heterogeneous malaria landscape and malaria hotspots. 
Furthermore, the political unrest in Venezuela has led to significant cross-border population 
movement. Hence, the aim of this study was to describe spatial patterns and identify significant 
climatic drivers of malaria transmission along the Venezuela-Brazil-Guyana border, focusing on Bolivar 
state, Venezuela and Roraima state, Brazil. Malaria case data, stratified by species from 2016 to 2018, 
were obtained from the Brazilian Malaria Epidemiology Surveillance Information System, the Guyana 
Vector Borne Diseases Program, the Venezuelan Ministry of Health, and civil society organizations. 
Spatial autocorrelation in malaria incidence was explored using Getis-Ord (Gi*) statistics. A Poisson 
regression model was developed with a conditional autoregressive prior structure and posterior 
parameters were estimated using the Bayesian Markov chain Monte Carlo simulation with Gibbs 
sampling. There were 685,498 malaria cases during the study period. Plasmodium vivax was the 
predominant species (71.7%, 490,861). Malaria hotspots were located in eight municipalities along 
the Venezuela and Guyana international borders with Brazil. Plasmodium falciparum increased by 
2.6% (95% credible interval [CrI] 2.1%, 2.8%) for one meter increase in altitude, decreased by 1.6% 
(95% CrI 1.5%, 2.3%) and 0.9% (95% CrI 0.7%, 2.4%) per 1 cm increase in 6-month lagged precipitation 
and each 1 °C increase of minimum temperature without lag. Each 1 °C increase of 1-month lagged 
maximum temperature increased P. falciparum by 0.6% (95% CrI 0.4%, 1.9%). P. vivax cases increased 
by 1.5% (95% CrI 1.3%, 1.6%) for one meter increase in altitude and decreased by  1.1% (95% CrI 1.0%, 
1.2%) and 7.3% (95% CrI 6.7%, 9.7%)  for each 1 cm increase of precipitation lagged at 6-months and 
1 °C increase in minimum temperature lagged at 6-months. Each 1°C increase of two-month lagged 
maximum temperature increased P. vivax by 1.5% (95% CrI 0.6%, 7.1%). There was no significant 
residual spatial clustering after accounting for climatic covariates. Malaria hotspots were located 
along the Venezuela and Guyana international border with Roraima state, Brazil. In addition to 
population movement, climatic variables were important drivers of malaria transmission in these 
areas.

Abbreviations
AIC  Akaike’s information criterion
CAR   Conditional autoregressive
CrI  Credible interval
DIC  Deviation information criterion
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RR  Relative risk
SIVEP  MalariaBrazilian Malaria Epidemiology Surveillance Information System
SMRs  Standardized morbidity ratios
VIF  Variance inflation factors
WHO  World Health Organization

The WHO World Malaria Report 2021 showed that there were an estimated 241 million malaria cases and 627,000 
malaria deaths worldwide in 2020. This represents about 14 million more cases in 2020 compared to 2019, and 
69,000 more deaths. Approximately two-thirds of these additional deaths (47,000) were linked to disruptions in 
the provision of malaria prevention, diagnosis and treatment during the  pandemic1.

In the WHO Region of the Americas, malaria cases and case incidence reduced by 58% (from 1.5 million to 
0.65 million) and 67% (from 14.1 to 4.6 cases per 1000 population at risk) between 2000 and  20201. Over the 
same period, there was reduction in both malaria deaths and the malaria mortality rate by 56% (from 909 to 
409) and 66% (from 0.8 to 0.3 deaths per 100,000 population at risk),  respectively1. However, progress in this 
region suffered in recent years because of a major increase in malaria in the Bolivarian Republic of Venezuela, 
which had about 35,500 cases in 2000, rising to over 467,000 by  20191. In 2020, cases reduced to 232,000, or 
about  half of 2019  cases1. This was attributed to restrictions on movement during the COVID-19 pandemic and 
fuel shortages leading to reduced mining activities. As a result, occupational exposure risk to malaria vectors 
was significantly  decreased1.

So far, in the region, Argentina, Paraguay and El Salvador have eliminated  malaria1–3. Belize reported zero 
malaria cases for the second consecutive year in  20201. In addition, French Guiana, Guatemala, Honduras and 
Peru all met the global technical strategy 2020 malaria morbidity milestone of a reduction of at least 40% in case 
 incidence1. However, this progress has stalled in some places in recent years, with the rise in cases mainly due 
to the major increase in malaria in  Venezuela2,4. The country has been under a severe economic, political, and 
social crisis and all national institutions have been affected. The collapse of the Venezuelan health system has 
resulted in the deterioration of all facets of malaria prevention and  control5,6. Stock-outs of antimalarial drugs 
have been common, exacerbating malaria  transmission5.

Furthermore, the political unrest in Venezuela has led to significant cross-border population  movement7. 
More than 5.2 million people have left the country since 2015, and there has been a marked influx of Venezue-
lan nationals arriving in neighboring  countries7. Malaria transmission in the WHO Region of the Americas is 
 heterogeneous8,9 and four countries accounted for 77% of malaria cases in 20,2021. Several factors are responsible 
for the continued transmission of malaria including climatic, ecological and human factors, further characterized 
by spatial clustering of cases in transmission  hotspots10,11. If malaria control interventions in hotspot areas are 
not sustained, these hotspots can serve as sources of infection to neighbouring regions and to countries that have 
eliminated malaria or where transmission has been  interrupted12,13. Delineation of malaria hotspots can help to 
identify the underlying reasons for higher incidence of malaria in particular  areas14, which can serve to target 
interventions where they are most needed, likely having a greater impact than uniform resource  allocation11.

Spatial analysis and modelling enable the prediction of disease patterns and determination of ecological 
associations between disease risk and the  environment11,15,16. It is well known that geospatial methods can be 
used to link disease data to vector habitats, vector presence, abundance and density; quantify spatial diffusion; 
and characterize spatial and temporal patterns of  disease17–24. This paper aimed to describe spatial patterns and 
climatic drivers of malaria from 2016 to 2018 in Brazil (Roraima state), Venezuela (Bolivar state) and four regions 
of Guyana, all located in the Guyana Shield.

Methods
Study area and data. The study area included three border areas: Roraima state in Brazil, Bolivar state 
in Venezuela and four regions of Guyana (Fig. 1). Roraima and Bolivar are divided into 15 and 11 municipali-
ties, respectively. Individual-level, de-identified datasets were obtained from national surveillance systems and 
additional sources: the Brazilian Malaria Epidemiology Surveillance Information System (SIVEP-Malaria), the 
Guyana Vector Borne Diseases Program, the Venezuelan Ministry of Health, and civil society organizations in 
Venezuela. Individual-level data were extracted on age, sex and malaria species. The populations of the munici-
palities were obtained from national census projections in each  country25,26. Monthly precipitation, and mini-
mum and maximum temperature at 2.5 min intervals from January 2016 to December 2018 were obtained from 
the WorldClim  database27. Municipality polygon was used to extract the mean climatic variables using Zonal 
statistics in ArcMap 10.5.1 (ESRI Inc., Redlands, CA, USA). An electronic map of municipalities in shapefile 
format was obtained from the DIVA-GIS database (https:// www. diva- gis. org/).

Hotspot analysis. The presence and nature of spatial autocorrelation that suggest malaria case clustering 
by place of notification were assessed by the Getis-Ord statistic (Gi*)28,29. The local Getis-Ord statistic (Gi*) was 
used to identify the intensity and stability of hotspot/cold spot  clusters29,30. The Gi* statistic compares the local 
malaria mean rate (i.e., the rate of malaria for a target location and its neighbors) to the global malaria mean 
rate (the rates of all municipalities). The Gi* statistic compares the z-score and p-value for each municipality 
with global malaria means. Location with a statistically significant and larger z-score will have a more intense 
clustering of high values (hotspots), where it is unlikely that the spatial clustering of high values is the result of 
a random spatial process; and locations with statistically significant and smaller z-scores will have more intense 
clustering of low values (cold spots)29. ArcMap 10.5.1 software (ESRI, Redlands, CA) was used for hotspot analy-
sis and creating maps.

https://www.diva-gis.org/
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Crude standardized morbidity ratios. An initial descriptive analysis of malaria incidence was con-
ducted. Crude standardized morbidity ratios (SMRs) for each municipality were calculated using the following 
formula:

where Y is the overall SMR in municipality i, O is the total number of observed malaria cases in the municipal-
ity and E is the expected number of malaria cases in the municipality across the study period. The expected 

Yi =
Oi

Ei

Figure 1.  Map of the study areas.
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number was calculated by multiplying the national incidence by the average population for each municipality 
over the study period.

Independent variable selection. A preliminary Poisson regression was undertaken to select climatic 
covariates for each species. Climatic variables of precipitation, minimum and maximum temperature without a 
lag, and with one to 7-month lag times were entered into univariate models. Minimum temperature without lag, 
1-month lagged maximum temperature and 6-month lagged precipitation had the lowest values of the Akaike’s 
information criterion (AIC) for P. falciparum (Supplementary Table S1). Two-month maximum temperature 
and 6-month lagged precipitation and minimum temperature were selected for P. vivax with the lowest AIC 
(Supplementary Table S2). The co-linearity of the climatic variables was tested using variance inflation factors 
(VIF) (Supplementary Tables S3, S4).

Spatio-temporal model. Poisson regression models were developed in the Bayesian statistical software 
WinBUGS version 1.4 (Medical Research Council, Cambridge, UK and Imperial College London, UK) for P. 
falciparum and P. vivax. Alternative models were tested for each species including models with climatic variables 
such as precipitation, minimum and maximum temperature as explanatory variables, and spatially structured 
and unstructured random effects. The best model was selected based on the lowest deviation information cri-
terion (DIC) for each species. Three models were developed: Model I consisted of climatic explorative variables 
and unstructured random effects; Model II contained the same explorative variables as Model I and spatially 
structured random effects. Model III contained both structured and unstructured random effects and climatic 
explorative variables. Model III was the most comprehensive model, which had as an outcome the observed 
counts of malaria, Y, for ith municipality (i = 1…30) in the jth month (January 2016-December 2018) was struc-
tured as follows:

where E is the expected number of cases (acting as an offset to control for population size) and θ is the mean 
log relative risk (RR); α is the intercept, and β1, β2, β3, β4 and β5 the coefficients for trend, altitude, precipitation, 
minimum and maximum temperature, respectively;  ui is the unstructured random effect (assumed to have a 
mean of zero and variance σu

2) and  si is the spatially structured random effect (assumed to have a mean of zero 
and variance σs

2).
A conditional autoregressive (CAR) prior structure was used to model the spatially structured random effect. 

An adjacency weights matrix was used to calculate the spatial relationships between the municipalities. A weight 
of 1 was assigned if two municipalities shared a border and 0 if they did not. A flat prior distribution was speci-
fied for the intercept, whereas a normal prior distribution was specified for the coefficients. The priors for the 
precision of unstructured and spatially structured random effects were specified using non-informative gamma 
distributions with shape and scale parameters. Models were also developed without the structured and unstruc-
tured random effects to assess whether inclusion of these components improved model fit.

An initial burn-in of 10,000 iterations was run, and these iterations were discarded. Subsequent blocks of 
20,000 iterations were run and examined for convergence. Convergence was assessed by visual inspection of pos-
terior density and history plots, and occurred at approximately 100,000 iterations for each model. Ten thousand 
values from the posterior distributions of each model parameter were stored and summarized for the analysis 
(posterior mean and 95% credible intervals [CrI]).

In all analyses, an α-level of 0.05 was adopted to indicate statistical significance (as indicated by 95% CrI for 
RR that excluded 1). ArcMap 10.5.1 software (ESRI, Redlands, CA) was used to generate maps of the posterior 
means of the unstructured from the three models.

Ethics approval and consent to participate. The National Center of Bioethics in Venezuela (CENABI) 
approved the research protocol and the National Survey Ethics Council (CONEP) considered that ethical clear-
ance for the use of this secondary data in Brazil was not necessary. Not applicable. Human participants were not 
involved in the study. This research uses secondary data and is not subject to ethics approval.

Results
Descriptive analysis. There were a total of 684,498 malaria cases recorded during the study period, and 
88.3% (604,306) of these cases were reported from Bolivar state, Venezuela. Compared to 2016, malaria cases 
across the study areas increased from 25.5% (174,635) to 37.5% (256,482) and 37.0% (253,381) cases in 2017 and 
2018, respectively. More than two-thirds of cases were in males (67.5%, 461,912). The predominant species was P. 
vivax (71.7%, 490,861) followed by P. falciparum (22.4%, 153,512). However, mixed infections with P. vivax and 
P. falciparum consisted of 4.6% (8,008), 5.7% (14,492) and 6.9% (17,381) in 2016, 2017 and 2018, respectively 
(Table 1). Mean precipitation, and minimum and maximum temperature were 150.5 mm (range 1.1–413.6 mm), 
21.9 °C (range 16.9–24.6 °C) and 31.1 °C (range 26.8–35.2 °C), respectively (Supplementary Table S5). The P. 
falciparum SMR varied from 0.0 to 14.94 during the study period, and Pacaraima municipality in Roraima state 
and Sifontes municipality in Bolivar state reporting the highest SMR with ranges increasing each year: 2016 

Yijkl ∼ Poisson (µijkl)

log(µijkl) = log(Eijkl)+ θijkl

θijkl = α+β1×trend+β2×Altitude+β3×Precipitationij+β4×Tempminij+β5×Tempmaxij+ui+si .
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(SMR 6.20–14.94), 2017 (SMR 4.45–14.28) and 2018 (SMR 6.1–17.04) (Fig. 2A). The P. vivax SMR varied from 
0.0 to 18.78 during the study period with Sifontes municipality again reporting the highest SMR: 2016 (SMR 
6.68–18.78), 2017 (SMR 8.42–17.14) and 2018 (SMR 6.07–18.18) (Fig. 2B).

Spatial autocorrelation. Applying the Getis-Ord G* statistic hotspot analysis to P. falciparum and P. vivax 
incidence in each municipality revealed statistically significant (p < 0.01) hotspots in eight border municipalities 
of Venezuela and Guyana: Piar, Padre Pedro Chien, Roscio, El Callao and Sifontes in Bolivar state and Barina-
Waini and Cuyuni-Mazaruni in Guyana (Figs. 3, 4).

Spatio-temporal model. Model I, containing the unstructured random effect, had the best fit and was 
the most parsimonious of all the models, examined for both P. falciparum and P. vivax, as indicated by the low-
est DIC (Table 2). For P. falciparum, monthly malaria cases increased by 2.1% (95% CrI 2.0%, 2.1%) per month 
during the study period. One meter increase in altidude increased malaria cases by 2.6% (95% CrI 2.1%, 2.8%). 
While one cm increase in 6-month lagged precipitation and each 1 °C increase of minimum temperature was 
associated with 1.6% (95% CrI 1.5%, 2.3%) and 0.9% (95% CrI 0.7%, 2.4%) decrease of P. falciparum, respec-
tively. Each 1 °C increase of 1-month lagged maximum temperature increased P. falciparum by 0.6% (95% CrI 
0.4%, 1.9%). Monthly P. vivax increased by 1.0% (95% CrI 0.9%, 1.0%) during the study period. P. vivax cases 
increased by 1.5% (95% CrI 1.3%, 1.6%) for one meter increase in altitude and decreased by 1.1% (95% CrI 1.0%, 
1.2%) for each cm increase of precipitation lagged at 6-months and 7.3% (95% CrI 6.7%, 9.7%) for each 1 °C 
increase in minimum temperature lagged at 6-months. Each 1°C increase of two-month lagged maximum tem-
perature increased P. vivax by 1.5% (95% CrI 0.6%, 7.1%)  (Table 2). There is no evidence of spatial clustering 
after accounting for model covariates,- meaning covariates in the model explained the transmission of malaria 
and there was no effect from malaria transmission in the adjoining municipalities  (Fig. 5).

Discussion
This study aimed to describe spatial patterns and climatic drivers of malaria in the border states of Brazil, Ven-
ezuela and Guyana using national malaria surveillance data from 2016 to 2018. The great majority of malaria 
cases were reported from Bolivar state in Venezuela: 157,311 (90.1%), 231,261 (90.2%), and 215,734 (85.1%) 
from 2016 to 2018, respectively. The most commonly reported malaria species was P. vivax (490,861, 71.7%). 
Hotspots of both P. falciparum and P. vivax were located in the border municipalities of Venezuela and Guyana. 
P. falciparum transmission was positively associated with altitude  and maximum temperature lagged at 1-month, 
and negatively associated with precipitation lagged at 6-months and minimum temperature without lag. Whereas 
P. vivax was positively associated with altitude and maximum temperature lagged at 2-months and negatively 
associated with precipitation and minimum temperature lagged at 6-months.

Since 1990, the majority of malaria cases in Venezuela have come from Bolivar state: > 60% (1992–1995) 
and 88% (2000–2014)7,31–33, with most cases clustering in Sifontes municipality (Bolivar State)7. Additionally, in 
Sifontes municipality, gold mining has been associated with a high incidence of malaria, with miners account-
ing for up to 80% of  cases8,9,31,34. In contrast to progress made in neighboring countries and in the Americas, the 

Table 1.  Demographic characteristics of malaria from 2016 to 2018. *p-value significant at < 0.05.

Characteristics

Year

p-value*2016 2017 2018

Country Number (%) Number (%) Number (%)

Roraima, Brazil 8969 (5.1) 14,082 (5.5) 23,369 (9.2)  < 0.001

Guyana 8355 (4.8) 11,139 (4.3) 14,278 (5.6)

Bolivar, Venezuela 157,311 (90.1) 23,1261 (90.2) 215,734 (85.1)

Total 174,635 (25.5) 256, 482 (37.5) 253, 381 (37.0)

Sex

Female 53,839 (30.8) 83,136 (31.4) 85,611 (33.8)  < 0.001

Male 120,796 (69.2) 173,346 (76.6) 167,770 (66.2)

Age category (years)

0–18 41,123 (23.7) 62,715 (24.5) 61,618 (24.4)  < 0.001

19–30 63,891 (36.8) 89,782 (56.0) 89,926 (35.6)

31–40 34,107 (19.6) 50,397 (19.7) 50,311 (19.9)

40+ 34,597 (19.9) 52,797 (20.7) 50,914 (20.1)s

Species

P. falciparum 37,217 (21.3) 53,138 (20.7) 63,157 (24.9)  < 0.001

P. vivax 129,354 (74.1) 188,755 (73.6) 172,752 (68.2)

P. malariae 11 (0.0) 13 (0.0) 15 (0.0)

Mixed 8008 (4.6) 14,492 (5.7) 17,381 (6.9)
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political and economic crisis in Venezuela has thwarted malaria control efforts. Malaria cases have increased 
significantly in recent years: from 35,500 cases in 2000 to over 467,000 cases in  20192.

Our study showed that malaria hotspots were consistently found in municipalities along the Venezuela-
Guyana border with Brazil, including Sifontes municipality, and in municipalities adjacent to Sifontes municipal-
ity, including Piar, Padre Pedro Chien, Roscio, and El Callao in Bolivar state. Sifontes municipality was recently 
identified as the most important cluster of malaria transmission in the  Americas7. This highlights the issue of 
cross-border malaria, which can impact malaria control  efforts35,36. A plausible solution can be cross-country 
collaboration to improve surveillance and finding ways to provide early diagnosis and treatment for border 
populations, which are usually more mobile and difficult to track. Higher cases in these regions have also been 
related to occupation, especially gold  mining37. Gold mining drives increased population movement to mining 
sites, usually young  males8. Our findings confirmed this. Males made up two-thirds of cases and more than half 
of malaria cases were in the 19–40 year age group (Table 1). Furthermore, poor living conditions and working 
outdoors during late at night or early in the morning also could expose miners to increased mosquito bites.

Plasmodium vivax was the predominant species in this study and is also the primary species in the 
 Americas34,38. Relapse of P. vivax is associated with the release of dormant hypnozoites from the liver. Chal-
lenges to correct diagnosis include lack of sensitive diagnostic tools. Rapid Diagnostic Tests (RDTs), which are 
widely used in the region and globally, are unable to diagnose dormant hypnozoites in the liver or in pregnant 
women. Secondly, adherence to P. vivax treatment is a main challenge, which includes a three-day course of 
chloroquine and 7 or 14 days of  primaquine39,40. Hence, continued P. vivax transmission in other parts of world 
has been attributed to lack of adherence to  treatment41,42. Since cross-border populations are hard to follow up, we 
propose implementation of community-based adherence support, which has been used for HIV and TB and has 
significantly improved  treatment43–45. Treatment follow up can be done through a friend or family member who 
is travelling with the patient or someone who is part of the patient’s community such as a community member, 
a support group, and/or a religious leader.

Altitude was positively associated with both both species of malaria. This is partly explained by the fact that 
the study area is generally low-lying with altitude ranging from 64.2 to 995.5 meters. Malaria incidence decreased 

Figure 2.  Raw standardized morbidity ratios of (A) Plasmodium falciparum. (B) Plasmodium vivax, 2016–2018. 
PF, Plasmodium falciparum; PV, Plasmodium vivax; SMR, standardized morbidity ratios.
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with increased altitude due to decreases in temperature, which makes the environment unsuitable for Anopheles 
vectors 46–48. Further, temperature variation influences the incidence and transmission of infection due to its 
direct effect on development and survivorship of vectors and malaria  parasites49.

Climatic variables of precipitation and temperature are also associated with the transmission of malaria in 
this study. The transmission of the malaria parasite and mosquito survival are affected by  temperature50,51. At 
temperatures of 22 °C, it takes less than three weeks to complete the life cycle of malaria parasite development 
in the mosquito  vector52. The biting rate and gonotrophic processes are also temperature  dependent53,54. Other 
studies have reported rainfall as an important driver of malaria  transmission55,56. The main vectors responsible 
for malaria transmission in the Americas, including Anopheles darlingi and An. Albimanus, are also affected by 
 climate57–60.

Figure 3.  Hot spots (Getis-Ord Gi*) of Plasmodium falciparum.
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There are some limitations to this study. First, the main limitation is the lack of completeness and repre-
sentativeness of surveillance data. Second, the true number of malaria cases could have been underestimated if 
cases were diagnosed and treated in private health settings or self-diagnosed and not captured by the national 
surveillance system. Third, populations of municipalities were projected, which may have resulted in over or 
under estimation. Fourth, unmeasured risk modifiers including socio-economic development, living standards, 
occupation, treatment, localized behavioral patterns, population mobility, and bed net use and residual indoor 
insecticide coverage were unaccounted for in this study. Fifth, since entomological data were not available, they 
were not included in the model. Entomological data would have improved the model. Hence, we suggest includ-
ing these data in further analysis if available. 

Figure 4.  Hot spots (Getis-Ord Gi*) of Plasmodium vivax. 
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Conclusion
Plasmodium falciparum and P. vivax transmission was negatively associated with increased precipitation and 
minimum temperature, and positively associated with altitude and maximum temperature. Hotspots of both 
P. falciparum and P. vivax were isolated in eight municipalities along the Venezuela and Guyana international 
border with Brazil. Targeted distribution of resources, including prompt diagnosis and treatment and intensi-
fied interventions in hotspot municipalities, will be required for effective control of local malaria transmission. 
Furthermore, cross-border surveillance needs to be strengthened and ongoing identification of hotspots is needed 
to stay on track with malaria elimination targets.

Figure 5.  Spatial distribution of the posterior means of unstructured random effects for (A) Plasmodium 
falciparum and (B) Plasmodium vivax in Model I.
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Data availability
The study dataset can be made available only upon the approval by researchers and organizations involved.
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